mirror of
				https://github.com/python-pillow/Pillow.git
				synced 2025-10-31 07:57:27 +03:00 
			
		
		
		
	Further parametrizations
This commit is contained in:
		
							parent
							
								
									8f25ea46eb
								
							
						
					
					
						commit
						3353ea80e1
					
				|  | @ -514,13 +514,15 @@ class TestCoreResampleBox: | ||||||
|             assert_image_similar(reference, without_box, 5) |             assert_image_similar(reference, without_box, 5) | ||||||
| 
 | 
 | ||||||
|     @pytest.mark.parametrize("mode", ("RGB", "L", "RGBA", "LA", "I", "")) |     @pytest.mark.parametrize("mode", ("RGB", "L", "RGBA", "LA", "I", "")) | ||||||
|     def test_formats(self, mode): |     @pytest.mark.parametrize( | ||||||
|         for resample in [Image.Resampling.NEAREST, Image.Resampling.BILINEAR]: |         "resample", (Image.Resampling.NEAREST, Image.Resampling.BILINEAR) | ||||||
|             im = hopper(mode) |     ) | ||||||
|             box = (20, 20, im.size[0] - 20, im.size[1] - 20) |     def test_formats(self, mode, resample): | ||||||
|             with_box = im.resize((32, 32), resample, box) |         im = hopper(mode) | ||||||
|             cropped = im.crop(box).resize((32, 32), resample) |         box = (20, 20, im.size[0] - 20, im.size[1] - 20) | ||||||
|             assert_image_similar(cropped, with_box, 0.4) |         with_box = im.resize((32, 32), resample, box) | ||||||
|  |         cropped = im.crop(box).resize((32, 32), resample) | ||||||
|  |         assert_image_similar(cropped, with_box, 0.4) | ||||||
| 
 | 
 | ||||||
|     def test_passthrough(self): |     def test_passthrough(self): | ||||||
|         # When no resize is required |         # When no resize is required | ||||||
|  |  | ||||||
|  | @ -46,33 +46,58 @@ class TestImagingCoreResize: | ||||||
|             assert r.size == (15, 12) |             assert r.size == (15, 12) | ||||||
|             assert r.im.bands == im.im.bands |             assert r.im.bands == im.im.bands | ||||||
| 
 | 
 | ||||||
|     def test_reduce_filters(self): |     @pytest.mark.parametrize( | ||||||
|         for f in [ |         "resample", | ||||||
|  |         ( | ||||||
|             Image.Resampling.NEAREST, |             Image.Resampling.NEAREST, | ||||||
|             Image.Resampling.BOX, |             Image.Resampling.BOX, | ||||||
|             Image.Resampling.BILINEAR, |             Image.Resampling.BILINEAR, | ||||||
|             Image.Resampling.HAMMING, |             Image.Resampling.HAMMING, | ||||||
|             Image.Resampling.BICUBIC, |             Image.Resampling.BICUBIC, | ||||||
|             Image.Resampling.LANCZOS, |             Image.Resampling.LANCZOS, | ||||||
|         ]: |         ), | ||||||
|             r = self.resize(hopper("RGB"), (15, 12), f) |     ) | ||||||
|             assert r.mode == "RGB" |     def test_reduce_filters(self, resample): | ||||||
|             assert r.size == (15, 12) |         r = self.resize(hopper("RGB"), (15, 12), resample) | ||||||
|  |         assert r.mode == "RGB" | ||||||
|  |         assert r.size == (15, 12) | ||||||
| 
 | 
 | ||||||
|     def test_enlarge_filters(self): |     @pytest.mark.parametrize( | ||||||
|         for f in [ |         "resample", | ||||||
|  |         ( | ||||||
|             Image.Resampling.NEAREST, |             Image.Resampling.NEAREST, | ||||||
|             Image.Resampling.BOX, |             Image.Resampling.BOX, | ||||||
|             Image.Resampling.BILINEAR, |             Image.Resampling.BILINEAR, | ||||||
|             Image.Resampling.HAMMING, |             Image.Resampling.HAMMING, | ||||||
|             Image.Resampling.BICUBIC, |             Image.Resampling.BICUBIC, | ||||||
|             Image.Resampling.LANCZOS, |             Image.Resampling.LANCZOS, | ||||||
|         ]: |         ), | ||||||
|             r = self.resize(hopper("RGB"), (212, 195), f) |     ) | ||||||
|             assert r.mode == "RGB" |     def test_enlarge_filters(self, resample): | ||||||
|             assert r.size == (212, 195) |         r = self.resize(hopper("RGB"), (212, 195), resample) | ||||||
|  |         assert r.mode == "RGB" | ||||||
|  |         assert r.size == (212, 195) | ||||||
| 
 | 
 | ||||||
|     def test_endianness(self): |     @pytest.mark.parametrize( | ||||||
|  |         "resample", | ||||||
|  |         ( | ||||||
|  |             Image.Resampling.NEAREST, | ||||||
|  |             Image.Resampling.BOX, | ||||||
|  |             Image.Resampling.BILINEAR, | ||||||
|  |             Image.Resampling.HAMMING, | ||||||
|  |             Image.Resampling.BICUBIC, | ||||||
|  |             Image.Resampling.LANCZOS, | ||||||
|  |         ), | ||||||
|  |     ) | ||||||
|  |     @pytest.mark.parametrize( | ||||||
|  |         "mode, channels_set", | ||||||
|  |         ( | ||||||
|  |             ("RGB", ("blank", "filled", "dirty")), | ||||||
|  |             ("RGBA", ("blank", "blank", "filled", "dirty")), | ||||||
|  |             ("LA", ("filled", "dirty")), | ||||||
|  |         ), | ||||||
|  |     ) | ||||||
|  |     def test_endianness(self, resample, mode, channels_set): | ||||||
|         # Make an image with one colored pixel, in one channel. |         # Make an image with one colored pixel, in one channel. | ||||||
|         # When resized, that channel should be the same as a GS image. |         # When resized, that channel should be the same as a GS image. | ||||||
|         # Other channels should be unaffected. |         # Other channels should be unaffected. | ||||||
|  | @ -86,47 +111,37 @@ class TestImagingCoreResize: | ||||||
|         } |         } | ||||||
|         samples["dirty"].putpixel((1, 1), 128) |         samples["dirty"].putpixel((1, 1), 128) | ||||||
| 
 | 
 | ||||||
|         for f in [ |         # samples resized with current filter | ||||||
|  |         references = { | ||||||
|  |             name: self.resize(ch, (4, 4), resample) for name, ch in samples.items() | ||||||
|  |         } | ||||||
|  | 
 | ||||||
|  |         for channels in set(permutations(channels_set)): | ||||||
|  |             # compile image from different channels permutations | ||||||
|  |             im = Image.merge(mode, [samples[ch] for ch in channels]) | ||||||
|  |             resized = self.resize(im, (4, 4), resample) | ||||||
|  | 
 | ||||||
|  |             for i, ch in enumerate(resized.split()): | ||||||
|  |                 # check what resized channel in image is the same | ||||||
|  |                 # as separately resized channel | ||||||
|  |                 assert_image_equal(ch, references[channels[i]]) | ||||||
|  | 
 | ||||||
|  |     @pytest.mark.parametrize( | ||||||
|  |         "resample", | ||||||
|  |         ( | ||||||
|             Image.Resampling.NEAREST, |             Image.Resampling.NEAREST, | ||||||
|             Image.Resampling.BOX, |             Image.Resampling.BOX, | ||||||
|             Image.Resampling.BILINEAR, |             Image.Resampling.BILINEAR, | ||||||
|             Image.Resampling.HAMMING, |             Image.Resampling.HAMMING, | ||||||
|             Image.Resampling.BICUBIC, |             Image.Resampling.BICUBIC, | ||||||
|             Image.Resampling.LANCZOS, |             Image.Resampling.LANCZOS, | ||||||
|         ]: |         ), | ||||||
|             # samples resized with current filter |     ) | ||||||
|             references = { |     def test_enlarge_zero(self, resample): | ||||||
|                 name: self.resize(ch, (4, 4), f) for name, ch in samples.items() |         r = self.resize(Image.new("RGB", (0, 0), "white"), (212, 195), resample) | ||||||
|             } |         assert r.mode == "RGB" | ||||||
| 
 |         assert r.size == (212, 195) | ||||||
|             for mode, channels_set in [ |         assert r.getdata()[0] == (0, 0, 0) | ||||||
|                 ("RGB", ("blank", "filled", "dirty")), |  | ||||||
|                 ("RGBA", ("blank", "blank", "filled", "dirty")), |  | ||||||
|                 ("LA", ("filled", "dirty")), |  | ||||||
|             ]: |  | ||||||
|                 for channels in set(permutations(channels_set)): |  | ||||||
|                     # compile image from different channels permutations |  | ||||||
|                     im = Image.merge(mode, [samples[ch] for ch in channels]) |  | ||||||
|                     resized = self.resize(im, (4, 4), f) |  | ||||||
| 
 |  | ||||||
|                     for i, ch in enumerate(resized.split()): |  | ||||||
|                         # check what resized channel in image is the same |  | ||||||
|                         # as separately resized channel |  | ||||||
|                         assert_image_equal(ch, references[channels[i]]) |  | ||||||
| 
 |  | ||||||
|     def test_enlarge_zero(self): |  | ||||||
|         for f in [ |  | ||||||
|             Image.Resampling.NEAREST, |  | ||||||
|             Image.Resampling.BOX, |  | ||||||
|             Image.Resampling.BILINEAR, |  | ||||||
|             Image.Resampling.HAMMING, |  | ||||||
|             Image.Resampling.BICUBIC, |  | ||||||
|             Image.Resampling.LANCZOS, |  | ||||||
|         ]: |  | ||||||
|             r = self.resize(Image.new("RGB", (0, 0), "white"), (212, 195), f) |  | ||||||
|             assert r.mode == "RGB" |  | ||||||
|             assert r.size == (212, 195) |  | ||||||
|             assert r.getdata()[0] == (0, 0, 0) |  | ||||||
| 
 | 
 | ||||||
|     def test_unknown_filter(self): |     def test_unknown_filter(self): | ||||||
|         with pytest.raises(ValueError): |         with pytest.raises(ValueError): | ||||||
|  | @ -170,74 +185,71 @@ class TestReducingGapResize: | ||||||
|                 (52, 34), Image.Resampling.BICUBIC, reducing_gap=0.99 |                 (52, 34), Image.Resampling.BICUBIC, reducing_gap=0.99 | ||||||
|             ) |             ) | ||||||
| 
 | 
 | ||||||
|     def test_reducing_gap_1(self, gradients_image): |     @pytest.mark.parametrize( | ||||||
|         for box, epsilon in [ |         "box, epsilon", | ||||||
|             (None, 4), |         ((None, 4), ((1.1, 2.2, 510.8, 510.9), 4), ((3, 10, 410, 256), 10)), | ||||||
|             ((1.1, 2.2, 510.8, 510.9), 4), |     ) | ||||||
|             ((3, 10, 410, 256), 10), |     def test_reducing_gap_1(self, gradients_image, box, epsilon): | ||||||
|         ]: |         ref = gradients_image.resize((52, 34), Image.Resampling.BICUBIC, box=box) | ||||||
|             ref = gradients_image.resize((52, 34), Image.Resampling.BICUBIC, box=box) |         im = gradients_image.resize( | ||||||
|             im = gradients_image.resize( |             (52, 34), Image.Resampling.BICUBIC, box=box, reducing_gap=1.0 | ||||||
|                 (52, 34), Image.Resampling.BICUBIC, box=box, reducing_gap=1.0 |         ) | ||||||
|             ) |  | ||||||
| 
 |  | ||||||
|             with pytest.raises(AssertionError): |  | ||||||
|                 assert_image_equal(ref, im) |  | ||||||
| 
 |  | ||||||
|             assert_image_similar(ref, im, epsilon) |  | ||||||
| 
 |  | ||||||
|     def test_reducing_gap_2(self, gradients_image): |  | ||||||
|         for box, epsilon in [ |  | ||||||
|             (None, 1.5), |  | ||||||
|             ((1.1, 2.2, 510.8, 510.9), 1.5), |  | ||||||
|             ((3, 10, 410, 256), 1), |  | ||||||
|         ]: |  | ||||||
|             ref = gradients_image.resize((52, 34), Image.Resampling.BICUBIC, box=box) |  | ||||||
|             im = gradients_image.resize( |  | ||||||
|                 (52, 34), Image.Resampling.BICUBIC, box=box, reducing_gap=2.0 |  | ||||||
|             ) |  | ||||||
| 
 |  | ||||||
|             with pytest.raises(AssertionError): |  | ||||||
|                 assert_image_equal(ref, im) |  | ||||||
| 
 |  | ||||||
|             assert_image_similar(ref, im, epsilon) |  | ||||||
| 
 |  | ||||||
|     def test_reducing_gap_3(self, gradients_image): |  | ||||||
|         for box, epsilon in [ |  | ||||||
|             (None, 1), |  | ||||||
|             ((1.1, 2.2, 510.8, 510.9), 1), |  | ||||||
|             ((3, 10, 410, 256), 0.5), |  | ||||||
|         ]: |  | ||||||
|             ref = gradients_image.resize((52, 34), Image.Resampling.BICUBIC, box=box) |  | ||||||
|             im = gradients_image.resize( |  | ||||||
|                 (52, 34), Image.Resampling.BICUBIC, box=box, reducing_gap=3.0 |  | ||||||
|             ) |  | ||||||
| 
 |  | ||||||
|             with pytest.raises(AssertionError): |  | ||||||
|                 assert_image_equal(ref, im) |  | ||||||
| 
 |  | ||||||
|             assert_image_similar(ref, im, epsilon) |  | ||||||
| 
 |  | ||||||
|     def test_reducing_gap_8(self, gradients_image): |  | ||||||
|         for box in [None, (1.1, 2.2, 510.8, 510.9), (3, 10, 410, 256)]: |  | ||||||
|             ref = gradients_image.resize((52, 34), Image.Resampling.BICUBIC, box=box) |  | ||||||
|             im = gradients_image.resize( |  | ||||||
|                 (52, 34), Image.Resampling.BICUBIC, box=box, reducing_gap=8.0 |  | ||||||
|             ) |  | ||||||
| 
 | 
 | ||||||
|  |         with pytest.raises(AssertionError): | ||||||
|             assert_image_equal(ref, im) |             assert_image_equal(ref, im) | ||||||
| 
 | 
 | ||||||
|     def test_box_filter(self, gradients_image): |         assert_image_similar(ref, im, epsilon) | ||||||
|         for box, epsilon in [ |  | ||||||
|             ((0, 0, 512, 512), 5.5), |  | ||||||
|             ((0.9, 1.7, 128, 128), 9.5), |  | ||||||
|         ]: |  | ||||||
|             ref = gradients_image.resize((52, 34), Image.Resampling.BOX, box=box) |  | ||||||
|             im = gradients_image.resize( |  | ||||||
|                 (52, 34), Image.Resampling.BOX, box=box, reducing_gap=1.0 |  | ||||||
|             ) |  | ||||||
| 
 | 
 | ||||||
|             assert_image_similar(ref, im, epsilon) |     @pytest.mark.parametrize( | ||||||
|  |         "box, epsilon", | ||||||
|  |         ((None, 1.5), ((1.1, 2.2, 510.8, 510.9), 1.5), ((3, 10, 410, 256), 1)), | ||||||
|  |     ) | ||||||
|  |     def test_reducing_gap_2(self, gradients_image, box, epsilon): | ||||||
|  |         ref = gradients_image.resize((52, 34), Image.Resampling.BICUBIC, box=box) | ||||||
|  |         im = gradients_image.resize( | ||||||
|  |             (52, 34), Image.Resampling.BICUBIC, box=box, reducing_gap=2.0 | ||||||
|  |         ) | ||||||
|  | 
 | ||||||
|  |         with pytest.raises(AssertionError): | ||||||
|  |             assert_image_equal(ref, im) | ||||||
|  | 
 | ||||||
|  |         assert_image_similar(ref, im, epsilon) | ||||||
|  | 
 | ||||||
|  |     @pytest.mark.parametrize( | ||||||
|  |         "box, epsilon", | ||||||
|  |         ((None, 1), ((1.1, 2.2, 510.8, 510.9), 1), ((3, 10, 410, 256), 0.5)), | ||||||
|  |     ) | ||||||
|  |     def test_reducing_gap_3(self, gradients_image, box, epsilon): | ||||||
|  |         ref = gradients_image.resize((52, 34), Image.Resampling.BICUBIC, box=box) | ||||||
|  |         im = gradients_image.resize( | ||||||
|  |             (52, 34), Image.Resampling.BICUBIC, box=box, reducing_gap=3.0 | ||||||
|  |         ) | ||||||
|  | 
 | ||||||
|  |         with pytest.raises(AssertionError): | ||||||
|  |             assert_image_equal(ref, im) | ||||||
|  | 
 | ||||||
|  |         assert_image_similar(ref, im, epsilon) | ||||||
|  | 
 | ||||||
|  |     @pytest.mark.parametrize("box", (None, (1.1, 2.2, 510.8, 510.9), (3, 10, 410, 256))) | ||||||
|  |     def test_reducing_gap_8(self, gradients_image, box): | ||||||
|  |         ref = gradients_image.resize((52, 34), Image.Resampling.BICUBIC, box=box) | ||||||
|  |         im = gradients_image.resize( | ||||||
|  |             (52, 34), Image.Resampling.BICUBIC, box=box, reducing_gap=8.0 | ||||||
|  |         ) | ||||||
|  | 
 | ||||||
|  |         assert_image_equal(ref, im) | ||||||
|  | 
 | ||||||
|  |     @pytest.mark.parametrize( | ||||||
|  |         "box, epsilon", | ||||||
|  |         (((0, 0, 512, 512), 5.5), ((0.9, 1.7, 128, 128), 9.5)), | ||||||
|  |     ) | ||||||
|  |     def test_box_filter(self, gradients_image, box, epsilon): | ||||||
|  |         ref = gradients_image.resize((52, 34), Image.Resampling.BOX, box=box) | ||||||
|  |         im = gradients_image.resize( | ||||||
|  |             (52, 34), Image.Resampling.BOX, box=box, reducing_gap=1.0 | ||||||
|  |         ) | ||||||
|  | 
 | ||||||
|  |         assert_image_similar(ref, im, epsilon) | ||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| class TestImageResize: | class TestImageResize: | ||||||
|  | @ -264,15 +276,14 @@ class TestImageResize: | ||||||
|             im = im.resize((64, 64)) |             im = im.resize((64, 64)) | ||||||
|             assert im.size == (64, 64) |             assert im.size == (64, 64) | ||||||
| 
 | 
 | ||||||
|     def test_default_filter(self): |     @pytest.mark.parametrize("mode", ("L", "RGB", "I", "F")) | ||||||
|         for mode in "L", "RGB", "I", "F": |     def test_default_filter_bicubic(self, mode): | ||||||
|             im = hopper(mode) |         im = hopper(mode) | ||||||
|             assert im.resize((20, 20), Image.Resampling.BICUBIC) == im.resize((20, 20)) |         assert im.resize((20, 20), Image.Resampling.BICUBIC) == im.resize((20, 20)) | ||||||
| 
 | 
 | ||||||
|         for mode in "1", "P": |     @pytest.mark.parametrize( | ||||||
|             im = hopper(mode) |         "mode", ("1", "P", "I;16", "I;16L", "I;16B", "BGR;15", "BGR;16") | ||||||
|             assert im.resize((20, 20), Image.Resampling.NEAREST) == im.resize((20, 20)) |     ) | ||||||
| 
 |     def test_default_filter_nearest(self, mode): | ||||||
|         for mode in "I;16", "I;16L", "I;16B", "BGR;15", "BGR;16": |         im = hopper(mode) | ||||||
|             im = hopper(mode) |         assert im.resize((20, 20), Image.Resampling.NEAREST) == im.resize((20, 20)) | ||||||
|             assert im.resize((20, 20), Image.Resampling.NEAREST) == im.resize((20, 20)) |  | ||||||
|  |  | ||||||
		Loading…
	
		Reference in New Issue
	
	Block a user