mirror of
				https://github.com/python-pillow/Pillow.git
				synced 2025-10-31 16:07:30 +03:00 
			
		
		
		
	Further parametrizations
This commit is contained in:
		
							parent
							
								
									8f25ea46eb
								
							
						
					
					
						commit
						3353ea80e1
					
				|  | @ -514,13 +514,15 @@ class TestCoreResampleBox: | |||
|             assert_image_similar(reference, without_box, 5) | ||||
| 
 | ||||
|     @pytest.mark.parametrize("mode", ("RGB", "L", "RGBA", "LA", "I", "")) | ||||
|     def test_formats(self, mode): | ||||
|         for resample in [Image.Resampling.NEAREST, Image.Resampling.BILINEAR]: | ||||
|             im = hopper(mode) | ||||
|             box = (20, 20, im.size[0] - 20, im.size[1] - 20) | ||||
|             with_box = im.resize((32, 32), resample, box) | ||||
|             cropped = im.crop(box).resize((32, 32), resample) | ||||
|             assert_image_similar(cropped, with_box, 0.4) | ||||
|     @pytest.mark.parametrize( | ||||
|         "resample", (Image.Resampling.NEAREST, Image.Resampling.BILINEAR) | ||||
|     ) | ||||
|     def test_formats(self, mode, resample): | ||||
|         im = hopper(mode) | ||||
|         box = (20, 20, im.size[0] - 20, im.size[1] - 20) | ||||
|         with_box = im.resize((32, 32), resample, box) | ||||
|         cropped = im.crop(box).resize((32, 32), resample) | ||||
|         assert_image_similar(cropped, with_box, 0.4) | ||||
| 
 | ||||
|     def test_passthrough(self): | ||||
|         # When no resize is required | ||||
|  |  | |||
|  | @ -46,33 +46,58 @@ class TestImagingCoreResize: | |||
|             assert r.size == (15, 12) | ||||
|             assert r.im.bands == im.im.bands | ||||
| 
 | ||||
|     def test_reduce_filters(self): | ||||
|         for f in [ | ||||
|     @pytest.mark.parametrize( | ||||
|         "resample", | ||||
|         ( | ||||
|             Image.Resampling.NEAREST, | ||||
|             Image.Resampling.BOX, | ||||
|             Image.Resampling.BILINEAR, | ||||
|             Image.Resampling.HAMMING, | ||||
|             Image.Resampling.BICUBIC, | ||||
|             Image.Resampling.LANCZOS, | ||||
|         ]: | ||||
|             r = self.resize(hopper("RGB"), (15, 12), f) | ||||
|             assert r.mode == "RGB" | ||||
|             assert r.size == (15, 12) | ||||
|         ), | ||||
|     ) | ||||
|     def test_reduce_filters(self, resample): | ||||
|         r = self.resize(hopper("RGB"), (15, 12), resample) | ||||
|         assert r.mode == "RGB" | ||||
|         assert r.size == (15, 12) | ||||
| 
 | ||||
|     def test_enlarge_filters(self): | ||||
|         for f in [ | ||||
|     @pytest.mark.parametrize( | ||||
|         "resample", | ||||
|         ( | ||||
|             Image.Resampling.NEAREST, | ||||
|             Image.Resampling.BOX, | ||||
|             Image.Resampling.BILINEAR, | ||||
|             Image.Resampling.HAMMING, | ||||
|             Image.Resampling.BICUBIC, | ||||
|             Image.Resampling.LANCZOS, | ||||
|         ]: | ||||
|             r = self.resize(hopper("RGB"), (212, 195), f) | ||||
|             assert r.mode == "RGB" | ||||
|             assert r.size == (212, 195) | ||||
|         ), | ||||
|     ) | ||||
|     def test_enlarge_filters(self, resample): | ||||
|         r = self.resize(hopper("RGB"), (212, 195), resample) | ||||
|         assert r.mode == "RGB" | ||||
|         assert r.size == (212, 195) | ||||
| 
 | ||||
|     def test_endianness(self): | ||||
|     @pytest.mark.parametrize( | ||||
|         "resample", | ||||
|         ( | ||||
|             Image.Resampling.NEAREST, | ||||
|             Image.Resampling.BOX, | ||||
|             Image.Resampling.BILINEAR, | ||||
|             Image.Resampling.HAMMING, | ||||
|             Image.Resampling.BICUBIC, | ||||
|             Image.Resampling.LANCZOS, | ||||
|         ), | ||||
|     ) | ||||
|     @pytest.mark.parametrize( | ||||
|         "mode, channels_set", | ||||
|         ( | ||||
|             ("RGB", ("blank", "filled", "dirty")), | ||||
|             ("RGBA", ("blank", "blank", "filled", "dirty")), | ||||
|             ("LA", ("filled", "dirty")), | ||||
|         ), | ||||
|     ) | ||||
|     def test_endianness(self, resample, mode, channels_set): | ||||
|         # Make an image with one colored pixel, in one channel. | ||||
|         # When resized, that channel should be the same as a GS image. | ||||
|         # Other channels should be unaffected. | ||||
|  | @ -86,47 +111,37 @@ class TestImagingCoreResize: | |||
|         } | ||||
|         samples["dirty"].putpixel((1, 1), 128) | ||||
| 
 | ||||
|         for f in [ | ||||
|         # samples resized with current filter | ||||
|         references = { | ||||
|             name: self.resize(ch, (4, 4), resample) for name, ch in samples.items() | ||||
|         } | ||||
| 
 | ||||
|         for channels in set(permutations(channels_set)): | ||||
|             # compile image from different channels permutations | ||||
|             im = Image.merge(mode, [samples[ch] for ch in channels]) | ||||
|             resized = self.resize(im, (4, 4), resample) | ||||
| 
 | ||||
|             for i, ch in enumerate(resized.split()): | ||||
|                 # check what resized channel in image is the same | ||||
|                 # as separately resized channel | ||||
|                 assert_image_equal(ch, references[channels[i]]) | ||||
| 
 | ||||
|     @pytest.mark.parametrize( | ||||
|         "resample", | ||||
|         ( | ||||
|             Image.Resampling.NEAREST, | ||||
|             Image.Resampling.BOX, | ||||
|             Image.Resampling.BILINEAR, | ||||
|             Image.Resampling.HAMMING, | ||||
|             Image.Resampling.BICUBIC, | ||||
|             Image.Resampling.LANCZOS, | ||||
|         ]: | ||||
|             # samples resized with current filter | ||||
|             references = { | ||||
|                 name: self.resize(ch, (4, 4), f) for name, ch in samples.items() | ||||
|             } | ||||
| 
 | ||||
|             for mode, channels_set in [ | ||||
|                 ("RGB", ("blank", "filled", "dirty")), | ||||
|                 ("RGBA", ("blank", "blank", "filled", "dirty")), | ||||
|                 ("LA", ("filled", "dirty")), | ||||
|             ]: | ||||
|                 for channels in set(permutations(channels_set)): | ||||
|                     # compile image from different channels permutations | ||||
|                     im = Image.merge(mode, [samples[ch] for ch in channels]) | ||||
|                     resized = self.resize(im, (4, 4), f) | ||||
| 
 | ||||
|                     for i, ch in enumerate(resized.split()): | ||||
|                         # check what resized channel in image is the same | ||||
|                         # as separately resized channel | ||||
|                         assert_image_equal(ch, references[channels[i]]) | ||||
| 
 | ||||
|     def test_enlarge_zero(self): | ||||
|         for f in [ | ||||
|             Image.Resampling.NEAREST, | ||||
|             Image.Resampling.BOX, | ||||
|             Image.Resampling.BILINEAR, | ||||
|             Image.Resampling.HAMMING, | ||||
|             Image.Resampling.BICUBIC, | ||||
|             Image.Resampling.LANCZOS, | ||||
|         ]: | ||||
|             r = self.resize(Image.new("RGB", (0, 0), "white"), (212, 195), f) | ||||
|             assert r.mode == "RGB" | ||||
|             assert r.size == (212, 195) | ||||
|             assert r.getdata()[0] == (0, 0, 0) | ||||
|         ), | ||||
|     ) | ||||
|     def test_enlarge_zero(self, resample): | ||||
|         r = self.resize(Image.new("RGB", (0, 0), "white"), (212, 195), resample) | ||||
|         assert r.mode == "RGB" | ||||
|         assert r.size == (212, 195) | ||||
|         assert r.getdata()[0] == (0, 0, 0) | ||||
| 
 | ||||
|     def test_unknown_filter(self): | ||||
|         with pytest.raises(ValueError): | ||||
|  | @ -170,74 +185,71 @@ class TestReducingGapResize: | |||
|                 (52, 34), Image.Resampling.BICUBIC, reducing_gap=0.99 | ||||
|             ) | ||||
| 
 | ||||
|     def test_reducing_gap_1(self, gradients_image): | ||||
|         for box, epsilon in [ | ||||
|             (None, 4), | ||||
|             ((1.1, 2.2, 510.8, 510.9), 4), | ||||
|             ((3, 10, 410, 256), 10), | ||||
|         ]: | ||||
|             ref = gradients_image.resize((52, 34), Image.Resampling.BICUBIC, box=box) | ||||
|             im = gradients_image.resize( | ||||
|                 (52, 34), Image.Resampling.BICUBIC, box=box, reducing_gap=1.0 | ||||
|             ) | ||||
| 
 | ||||
|             with pytest.raises(AssertionError): | ||||
|                 assert_image_equal(ref, im) | ||||
| 
 | ||||
|             assert_image_similar(ref, im, epsilon) | ||||
| 
 | ||||
|     def test_reducing_gap_2(self, gradients_image): | ||||
|         for box, epsilon in [ | ||||
|             (None, 1.5), | ||||
|             ((1.1, 2.2, 510.8, 510.9), 1.5), | ||||
|             ((3, 10, 410, 256), 1), | ||||
|         ]: | ||||
|             ref = gradients_image.resize((52, 34), Image.Resampling.BICUBIC, box=box) | ||||
|             im = gradients_image.resize( | ||||
|                 (52, 34), Image.Resampling.BICUBIC, box=box, reducing_gap=2.0 | ||||
|             ) | ||||
| 
 | ||||
|             with pytest.raises(AssertionError): | ||||
|                 assert_image_equal(ref, im) | ||||
| 
 | ||||
|             assert_image_similar(ref, im, epsilon) | ||||
| 
 | ||||
|     def test_reducing_gap_3(self, gradients_image): | ||||
|         for box, epsilon in [ | ||||
|             (None, 1), | ||||
|             ((1.1, 2.2, 510.8, 510.9), 1), | ||||
|             ((3, 10, 410, 256), 0.5), | ||||
|         ]: | ||||
|             ref = gradients_image.resize((52, 34), Image.Resampling.BICUBIC, box=box) | ||||
|             im = gradients_image.resize( | ||||
|                 (52, 34), Image.Resampling.BICUBIC, box=box, reducing_gap=3.0 | ||||
|             ) | ||||
| 
 | ||||
|             with pytest.raises(AssertionError): | ||||
|                 assert_image_equal(ref, im) | ||||
| 
 | ||||
|             assert_image_similar(ref, im, epsilon) | ||||
| 
 | ||||
|     def test_reducing_gap_8(self, gradients_image): | ||||
|         for box in [None, (1.1, 2.2, 510.8, 510.9), (3, 10, 410, 256)]: | ||||
|             ref = gradients_image.resize((52, 34), Image.Resampling.BICUBIC, box=box) | ||||
|             im = gradients_image.resize( | ||||
|                 (52, 34), Image.Resampling.BICUBIC, box=box, reducing_gap=8.0 | ||||
|             ) | ||||
|     @pytest.mark.parametrize( | ||||
|         "box, epsilon", | ||||
|         ((None, 4), ((1.1, 2.2, 510.8, 510.9), 4), ((3, 10, 410, 256), 10)), | ||||
|     ) | ||||
|     def test_reducing_gap_1(self, gradients_image, box, epsilon): | ||||
|         ref = gradients_image.resize((52, 34), Image.Resampling.BICUBIC, box=box) | ||||
|         im = gradients_image.resize( | ||||
|             (52, 34), Image.Resampling.BICUBIC, box=box, reducing_gap=1.0 | ||||
|         ) | ||||
| 
 | ||||
|         with pytest.raises(AssertionError): | ||||
|             assert_image_equal(ref, im) | ||||
| 
 | ||||
|     def test_box_filter(self, gradients_image): | ||||
|         for box, epsilon in [ | ||||
|             ((0, 0, 512, 512), 5.5), | ||||
|             ((0.9, 1.7, 128, 128), 9.5), | ||||
|         ]: | ||||
|             ref = gradients_image.resize((52, 34), Image.Resampling.BOX, box=box) | ||||
|             im = gradients_image.resize( | ||||
|                 (52, 34), Image.Resampling.BOX, box=box, reducing_gap=1.0 | ||||
|             ) | ||||
|         assert_image_similar(ref, im, epsilon) | ||||
| 
 | ||||
|             assert_image_similar(ref, im, epsilon) | ||||
|     @pytest.mark.parametrize( | ||||
|         "box, epsilon", | ||||
|         ((None, 1.5), ((1.1, 2.2, 510.8, 510.9), 1.5), ((3, 10, 410, 256), 1)), | ||||
|     ) | ||||
|     def test_reducing_gap_2(self, gradients_image, box, epsilon): | ||||
|         ref = gradients_image.resize((52, 34), Image.Resampling.BICUBIC, box=box) | ||||
|         im = gradients_image.resize( | ||||
|             (52, 34), Image.Resampling.BICUBIC, box=box, reducing_gap=2.0 | ||||
|         ) | ||||
| 
 | ||||
|         with pytest.raises(AssertionError): | ||||
|             assert_image_equal(ref, im) | ||||
| 
 | ||||
|         assert_image_similar(ref, im, epsilon) | ||||
| 
 | ||||
|     @pytest.mark.parametrize( | ||||
|         "box, epsilon", | ||||
|         ((None, 1), ((1.1, 2.2, 510.8, 510.9), 1), ((3, 10, 410, 256), 0.5)), | ||||
|     ) | ||||
|     def test_reducing_gap_3(self, gradients_image, box, epsilon): | ||||
|         ref = gradients_image.resize((52, 34), Image.Resampling.BICUBIC, box=box) | ||||
|         im = gradients_image.resize( | ||||
|             (52, 34), Image.Resampling.BICUBIC, box=box, reducing_gap=3.0 | ||||
|         ) | ||||
| 
 | ||||
|         with pytest.raises(AssertionError): | ||||
|             assert_image_equal(ref, im) | ||||
| 
 | ||||
|         assert_image_similar(ref, im, epsilon) | ||||
| 
 | ||||
|     @pytest.mark.parametrize("box", (None, (1.1, 2.2, 510.8, 510.9), (3, 10, 410, 256))) | ||||
|     def test_reducing_gap_8(self, gradients_image, box): | ||||
|         ref = gradients_image.resize((52, 34), Image.Resampling.BICUBIC, box=box) | ||||
|         im = gradients_image.resize( | ||||
|             (52, 34), Image.Resampling.BICUBIC, box=box, reducing_gap=8.0 | ||||
|         ) | ||||
| 
 | ||||
|         assert_image_equal(ref, im) | ||||
| 
 | ||||
|     @pytest.mark.parametrize( | ||||
|         "box, epsilon", | ||||
|         (((0, 0, 512, 512), 5.5), ((0.9, 1.7, 128, 128), 9.5)), | ||||
|     ) | ||||
|     def test_box_filter(self, gradients_image, box, epsilon): | ||||
|         ref = gradients_image.resize((52, 34), Image.Resampling.BOX, box=box) | ||||
|         im = gradients_image.resize( | ||||
|             (52, 34), Image.Resampling.BOX, box=box, reducing_gap=1.0 | ||||
|         ) | ||||
| 
 | ||||
|         assert_image_similar(ref, im, epsilon) | ||||
| 
 | ||||
| 
 | ||||
| class TestImageResize: | ||||
|  | @ -264,15 +276,14 @@ class TestImageResize: | |||
|             im = im.resize((64, 64)) | ||||
|             assert im.size == (64, 64) | ||||
| 
 | ||||
|     def test_default_filter(self): | ||||
|         for mode in "L", "RGB", "I", "F": | ||||
|             im = hopper(mode) | ||||
|             assert im.resize((20, 20), Image.Resampling.BICUBIC) == im.resize((20, 20)) | ||||
|     @pytest.mark.parametrize("mode", ("L", "RGB", "I", "F")) | ||||
|     def test_default_filter_bicubic(self, mode): | ||||
|         im = hopper(mode) | ||||
|         assert im.resize((20, 20), Image.Resampling.BICUBIC) == im.resize((20, 20)) | ||||
| 
 | ||||
|         for mode in "1", "P": | ||||
|             im = hopper(mode) | ||||
|             assert im.resize((20, 20), Image.Resampling.NEAREST) == im.resize((20, 20)) | ||||
| 
 | ||||
|         for mode in "I;16", "I;16L", "I;16B", "BGR;15", "BGR;16": | ||||
|             im = hopper(mode) | ||||
|             assert im.resize((20, 20), Image.Resampling.NEAREST) == im.resize((20, 20)) | ||||
|     @pytest.mark.parametrize( | ||||
|         "mode", ("1", "P", "I;16", "I;16L", "I;16B", "BGR;15", "BGR;16") | ||||
|     ) | ||||
|     def test_default_filter_nearest(self, mode): | ||||
|         im = hopper(mode) | ||||
|         assert im.resize((20, 20), Image.Resampling.NEAREST) == im.resize((20, 20)) | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue
	
	Block a user