two ImagingStretchHorizaontal pass with two transposes

This commit is contained in:
homm 2014-10-25 05:20:37 +04:00
parent c8471bcbda
commit 40f9f48680

View File

@ -79,7 +79,7 @@ static inline float bicubic_filter(float x)
static struct filter BICUBIC = { bicubic_filter, 2.0 };
Imaging
ImagingStretchPass(Imaging imOut, Imaging imIn, int filter)
ImagingStretchHorizaontal(Imaging imOut, Imaging imIn, int filter)
{
/* FIXME: this is a quick and straightforward translation from a
python prototype. might need some further C-ification... */
@ -87,14 +87,19 @@ ImagingStretchPass(Imaging imOut, Imaging imIn, int filter)
ImagingSectionCookie cookie;
struct filter *filterp;
float support, scale, filterscale;
float center, ww, ss, ymin, ymax, xmin, xmax;
int xx, yy, x, y, b;
float center, ww, ss, xmin, xmax;
int xx, yy, x, b;
float *k;
/* check modes */
if (!imOut || !imIn || strcmp(imIn->mode, imOut->mode) != 0)
return (Imaging) ImagingError_ModeError();
if (imOut->ysize != imIn->ysize)
return (Imaging) ImagingError_ValueError(
"ImagingStretchHorizaontal requires equal heights"
);
/* check filter */
switch (filter) {
case IMAGING_TRANSFORM_NEAREST:
@ -115,14 +120,8 @@ ImagingStretchPass(Imaging imOut, Imaging imIn, int filter)
);
}
if (imIn->ysize == imOut->ysize) {
/* prepare for horizontal stretch */
filterscale = scale = (float) imIn->xsize / imOut->xsize;
} else if (imIn->xsize == imOut->xsize) {
/* prepare for vertical stretch */
filterscale = scale = (float) imIn->ysize / imOut->ysize;
} else
return (Imaging) ImagingError_Mismatch();
/* prepare for horizontal stretch */
filterscale = scale = (float) imIn->xsize / imOut->xsize;
/* determine support size (length of resampling filter) */
support = filterp->support;
@ -139,162 +138,83 @@ ImagingStretchPass(Imaging imOut, Imaging imIn, int filter)
return (Imaging) ImagingError_MemoryError();
ImagingSectionEnter(&cookie);
if (imIn->xsize == imOut->xsize) {
/* vertical stretch */
for (yy = 0; yy < imOut->ysize; yy++) {
center = (yy + 0.5) * scale;
ww = 0.0;
ss = 1.0 / filterscale;
/* calculate filter weights */
ymin = floor(center - support);
if (ymin < 0.0)
ymin = 0.0;
ymax = ceil(center + support);
if (ymax > (float) imIn->ysize)
ymax = (float) imIn->ysize;
for (y = (int) ymin; y < (int) ymax; y++) {
float w = filterp->filter((y - center + 0.5) * ss) * ss;
k[y - (int) ymin] = w;
ww = ww + w;
/* horizontal stretch */
for (xx = 0; xx < imOut->xsize; xx++) {
center = (xx + 0.5) * scale;
ww = 0.0;
ss = 1.0 / filterscale;
xmin = floor(center - support);
if (xmin < 0.0)
xmin = 0.0;
xmax = ceil(center + support);
if (xmax > (float) imIn->xsize)
xmax = (float) imIn->xsize;
for (x = (int) xmin; x < (int) xmax; x++) {
float w = filterp->filter((x - center + 0.5) * ss) * ss;
k[x - (int) xmin] = w;
ww = ww + w;
}
if (ww == 0.0)
ww = 1.0;
else
ww = 1.0 / ww;
if (imIn->image8) {
/* 8-bit grayscale */
for (yy = 0; yy < imOut->ysize; yy++) {
ss = 0.0;
for (x = (int) xmin; x < (int) xmax; x++)
ss = ss + imIn->image8[yy][x] * k[x - (int) xmin];
ss = ss * ww + 0.5;
if (ss < 0.5)
imOut->image8[yy][xx] = (UINT8) 0;
else if (ss >= 255.0)
imOut->image8[yy][xx] = (UINT8) 255;
else
imOut->image8[yy][xx] = (UINT8) ss;
}
if (ww == 0.0)
ww = 1.0;
else
ww = 1.0 / ww;
if (imIn->image8) {
/* 8-bit grayscale */
for (xx = 0; xx < imOut->xsize; xx++) {
ss = 0.0;
for (y = (int) ymin; y < (int) ymax; y++)
ss = ss + imIn->image8[y][xx] * k[y - (int) ymin];
ss = ss * ww + 0.5;
if (ss < 0.5)
imOut->image8[yy][xx] = 0;
else if (ss >= 255.0)
imOut->image8[yy][xx] = 255;
else
imOut->image8[yy][xx] = (UINT8) ss;
}
} else
switch(imIn->type) {
case IMAGING_TYPE_UINT8:
/* n-bit grayscale */
for (xx = 0; xx < imOut->xsize*4; xx++) {
/* FIXME: skip over unused pixels */
} else
switch(imIn->type) {
case IMAGING_TYPE_UINT8:
/* n-bit grayscale */
for (yy = 0; yy < imOut->ysize; yy++) {
for (b = 0; b < imIn->bands; b++) {
if (imIn->bands == 2 && b)
b = 3; /* hack to deal with LA images */
ss = 0.0;
for (y = (int) ymin; y < (int) ymax; y++)
ss = ss + (UINT8) imIn->image[y][xx] * k[y-(int) ymin];
for (x = (int) xmin; x < (int) xmax; x++)
ss = ss + (UINT8) imIn->image[yy][x*4+b] * k[x - (int) xmin];
ss = ss * ww + 0.5;
if (ss < 0.5)
imOut->image[yy][xx] = (UINT8) 0;
imOut->image[yy][xx*4+b] = (UINT8) 0;
else if (ss >= 255.0)
imOut->image[yy][xx] = (UINT8) 255;
imOut->image[yy][xx*4+b] = (UINT8) 255;
else
imOut->image[yy][xx] = (UINT8) ss;
imOut->image[yy][xx*4+b] = (UINT8) ss;
}
break;
case IMAGING_TYPE_INT32:
/* 32-bit integer */
for (xx = 0; xx < imOut->xsize; xx++) {
ss = 0.0;
for (y = (int) ymin; y < (int) ymax; y++)
ss = ss + IMAGING_PIXEL_I(imIn, xx, y) * k[y - (int) ymin];
IMAGING_PIXEL_I(imOut, xx, yy) = (int) ss * ww;
}
break;
case IMAGING_TYPE_FLOAT32:
/* 32-bit float */
for (xx = 0; xx < imOut->xsize; xx++) {
ss = 0.0;
for (y = (int) ymin; y < (int) ymax; y++)
ss = ss + IMAGING_PIXEL_F(imIn, xx, y) * k[y - (int) ymin];
IMAGING_PIXEL_F(imOut, xx, yy) = ss * ww;
}
break;
default:
ImagingSectionLeave(&cookie);
return (Imaging) ImagingError_ModeError();
}
}
} else {
/* horizontal stretch */
for (xx = 0; xx < imOut->xsize; xx++) {
center = (xx + 0.5) * scale;
ww = 0.0;
ss = 1.0 / filterscale;
xmin = floor(center - support);
if (xmin < 0.0)
xmin = 0.0;
xmax = ceil(center + support);
if (xmax > (float) imIn->xsize)
xmax = (float) imIn->xsize;
for (x = (int) xmin; x < (int) xmax; x++) {
float w = filterp->filter((x - center + 0.5) * ss) * ss;
k[x - (int) xmin] = w;
ww = ww + w;
}
if (ww == 0.0)
ww = 1.0;
else
ww = 1.0 / ww;
if (imIn->image8) {
/* 8-bit grayscale */
break;
case IMAGING_TYPE_INT32:
/* 32-bit integer */
for (yy = 0; yy < imOut->ysize; yy++) {
ss = 0.0;
for (x = (int) xmin; x < (int) xmax; x++)
ss = ss + imIn->image8[yy][x] * k[x - (int) xmin];
ss = ss * ww + 0.5;
if (ss < 0.5)
imOut->image8[yy][xx] = (UINT8) 0;
else if (ss >= 255.0)
imOut->image8[yy][xx] = (UINT8) 255;
else
imOut->image8[yy][xx] = (UINT8) ss;
ss = ss + IMAGING_PIXEL_I(imIn, x, yy) * k[x - (int) xmin];
IMAGING_PIXEL_I(imOut, xx, yy) = (int) ss * ww;
}
} else
switch(imIn->type) {
case IMAGING_TYPE_UINT8:
/* n-bit grayscale */
for (yy = 0; yy < imOut->ysize; yy++) {
for (b = 0; b < imIn->bands; b++) {
if (imIn->bands == 2 && b)
b = 3; /* hack to deal with LA images */
ss = 0.0;
for (x = (int) xmin; x < (int) xmax; x++)
ss = ss + (UINT8) imIn->image[yy][x*4+b] * k[x - (int) xmin];
ss = ss * ww + 0.5;
if (ss < 0.5)
imOut->image[yy][xx*4+b] = (UINT8) 0;
else if (ss >= 255.0)
imOut->image[yy][xx*4+b] = (UINT8) 255;
else
imOut->image[yy][xx*4+b] = (UINT8) ss;
}
}
break;
case IMAGING_TYPE_INT32:
/* 32-bit integer */
for (yy = 0; yy < imOut->ysize; yy++) {
ss = 0.0;
for (x = (int) xmin; x < (int) xmax; x++)
ss = ss + IMAGING_PIXEL_I(imIn, x, yy) * k[x - (int) xmin];
IMAGING_PIXEL_I(imOut, xx, yy) = (int) ss * ww;
}
break;
case IMAGING_TYPE_FLOAT32:
/* 32-bit float */
for (yy = 0; yy < imOut->ysize; yy++) {
ss = 0.0;
for (x = (int) xmin; x < (int) xmax; x++)
ss = ss + IMAGING_PIXEL_F(imIn, x, yy) * k[x - (int) xmin];
IMAGING_PIXEL_F(imOut, xx, yy) = ss * ww;
}
break;
default:
ImagingSectionLeave(&cookie);
return (Imaging) ImagingError_ModeError();
break;
case IMAGING_TYPE_FLOAT32:
/* 32-bit float */
for (yy = 0; yy < imOut->ysize; yy++) {
ss = 0.0;
for (x = (int) xmin; x < (int) xmax; x++)
ss = ss + IMAGING_PIXEL_F(imIn, x, yy) * k[x - (int) xmin];
IMAGING_PIXEL_F(imOut, xx, yy) = ss * ww;
}
}
break;
default:
ImagingSectionLeave(&cookie);
return (Imaging) ImagingError_ModeError();
}
}
ImagingSectionLeave(&cookie);
@ -307,34 +227,58 @@ ImagingStretchPass(Imaging imOut, Imaging imIn, int filter)
Imaging
ImagingStretch(Imaging imOut, Imaging imIn, int filter)
{
Imaging imTemp;
Imaging imTemp1, imTemp2, imTemp3;
int xsize = imOut->xsize;
int ysize = imOut->ysize;
if (strcmp(imIn->mode, "P") == 0 || strcmp(imIn->mode, "1") == 0)
return (Imaging) ImagingError_ModeError();
/* two-pass resize: minimize size of intermediate image */
if ((Py_ssize_t) imIn->xsize * ysize < (Py_ssize_t) xsize * imIn->ysize)
imTemp = ImagingNew(imIn->mode, imIn->xsize, ysize);
else
imTemp = ImagingNew(imIn->mode, xsize, imIn->ysize);
if ( ! imTemp)
/* two-pass resize */
imTemp1 = ImagingNew(imIn->mode, xsize, imIn->ysize);
if ( ! imTemp1)
return NULL;
/* first pass */
if ( ! ImagingStretchPass(imTemp, imIn, filter)) {
ImagingDelete(imTemp);
if ( ! ImagingStretchHorizaontal(imTemp1, imIn, filter)) {
ImagingDelete(imTemp1);
return NULL;
}
imTemp2 = ImagingNew(imIn->mode, imIn->ysize, xsize);
if ( ! imTemp2) {
ImagingDelete(imTemp1);
return NULL;
}
/* transpose image once */
if ( ! ImagingTranspose(imTemp2, imTemp1)) {
ImagingDelete(imTemp1);
ImagingDelete(imTemp2);
return NULL;
}
ImagingDelete(imTemp1);
imTemp3 = ImagingNew(imIn->mode, ysize, xsize);
if ( ! imTemp3) {
ImagingDelete(imTemp2);
return NULL;
}
/* second pass */
if ( ! ImagingStretchPass(imOut, imTemp, filter)) {
ImagingDelete(imTemp);
if ( ! ImagingStretchHorizaontal(imTemp3, imTemp2, filter)) {
ImagingDelete(imTemp2);
ImagingDelete(imTemp3);
return NULL;
}
ImagingDelete(imTemp2);
ImagingDelete(imTemp);
/* transpose result */
if ( ! ImagingTranspose(imOut, imTemp3)) {
ImagingDelete(imTemp3);
return NULL;
}
ImagingDelete(imTemp3);
return imOut;
}