fix Image constants references

This commit is contained in:
nulano 2020-06-22 08:45:18 +02:00
parent eebecba3c2
commit 5511111f3b
5 changed files with 235 additions and 96 deletions

View File

@ -121,39 +121,47 @@ Filters
For geometry operations that may map multiple input pixels to a single output
pixel, the Python Imaging Library provides different resampling *filters*.
``NEAREST``
.. py:currentmodule:: PIL.Image
.. data:: NEAREST
Pick one nearest pixel from the input image. Ignore all other input pixels.
``BOX``
.. data:: BOX
Each pixel of source image contributes to one pixel of the
destination image with identical weights.
For upscaling is equivalent of ``NEAREST``.
For upscaling is equivalent of :data:`NEAREST`.
This filter can only be used with the :py:meth:`~PIL.Image.Image.resize`
and :py:meth:`~PIL.Image.Image.thumbnail` methods.
.. versionadded:: 3.4.0
``BILINEAR``
.. data:: BILINEAR
For resize calculate the output pixel value using linear interpolation
on all pixels that may contribute to the output value.
For other transformations linear interpolation over a 2x2 environment
in the input image is used.
``HAMMING``
Produces a sharper image than ``BILINEAR``, doesn't have dislocations
on local level like with ``BOX``.
.. data:: HAMMING
Produces a sharper image than :data:`BILINEAR`, doesn't have dislocations
on local level like with :data:`BOX`.
This filter can only be used with the :py:meth:`~PIL.Image.Image.resize`
and :py:meth:`~PIL.Image.Image.thumbnail` methods.
.. versionadded:: 3.4.0
``BICUBIC``
.. data:: BICUBIC
For resize calculate the output pixel value using cubic interpolation
on all pixels that may contribute to the output value.
For other transformations cubic interpolation over a 4x4 environment
in the input image is used.
``LANCZOS``
.. data:: LANCZOS
Calculate the output pixel value using a high-quality Lanczos filter (a
truncated sinc) on all pixels that may contribute to the output value.
This filter can only be used with the :py:meth:`~PIL.Image.Image.resize`
@ -165,19 +173,19 @@ pixel, the Python Imaging Library provides different resampling *filters*.
Filters comparison table
~~~~~~~~~~~~~~~~~~~~~~~~
+------------+-------------+-----------+-------------+
| Filter | Downscaling | Upscaling | Performance |
| | quality | quality | |
+============+=============+===========+=============+
|``NEAREST`` | | | ⭐⭐⭐⭐⭐ |
+------------+-------------+-----------+-------------+
|``BOX`` | ⭐ | | ⭐⭐⭐⭐ |
+------------+-------------+-----------+-------------+
|``BILINEAR``| ⭐ | ⭐ | ⭐⭐⭐ |
+------------+-------------+-----------+-------------+
|``HAMMING`` | ⭐⭐ | | ⭐⭐⭐ |
+------------+-------------+-----------+-------------+
|``BICUBIC`` | ⭐⭐⭐ | ⭐⭐⭐ | ⭐⭐ |
+------------+-------------+-----------+-------------+
|``LANCZOS`` | ⭐⭐⭐⭐ | ⭐⭐⭐⭐ | ⭐ |
+------------+-------------+-----------+-------------+
+----------------+-------------+-----------+-------------+
| Filter | Downscaling | Upscaling | Performance |
| | quality | quality | |
+================+=============+===========+=============+
|:data:`NEAREST` | | | ⭐⭐⭐⭐⭐ |
+----------------+-------------+-----------+-------------+
|:data:`BOX` | ⭐ | | ⭐⭐⭐⭐ |
+----------------+-------------+-----------+-------------+
|:data:`BILINEAR`| ⭐ | ⭐ | ⭐⭐⭐ |
+----------------+-------------+-----------+-------------+
|:data:`HAMMING` | ⭐⭐ | | ⭐⭐⭐ |
+----------------+-------------+-----------+-------------+
|:data:`BICUBIC` | ⭐⭐⭐ | ⭐⭐⭐ | ⭐⭐ |
+----------------+-------------+-----------+-------------+
|:data:`LANCZOS` | ⭐⭐⭐⭐ | ⭐⭐⭐⭐ | ⭐ |
+----------------+-------------+-----------+-------------+

View File

@ -234,7 +234,7 @@ This rotates the input image by ``theta`` degrees counter clockwise:
.. automethod:: PIL.Image.Image.transform
.. automethod:: PIL.Image.Image.transpose
This flips the input image by using the ``Image.FLIP_LEFT_RIGHT`` method.
This flips the input image by using the :data:`FLIP_LEFT_RIGHT` method.
.. code-block:: python
@ -324,3 +324,134 @@ Instances of the :py:class:`Image` class have the following attributes:
Unless noted elsewhere, this dictionary does not affect saving files.
:type: :py:class:`dict`
Constants
---------
.. data:: NONE
Transpose methods
^^^^^^^^^^^^^^^^^
Used to specify the :meth:`Image.transpose` method to use.
.. data:: FLIP_LEFT_RIGHT
.. data:: FLIP_TOP_BOTTOM
.. data:: ROTATE_90
.. data:: ROTATE_180
.. data:: ROTATE_270
.. data:: TRANSPOSE
.. data:: TRANSVERSE
Transform methods
^^^^^^^^^^^^^^^^^
Used to specify the :meth:`Image.transform` method to use.
.. data:: AFFINE
Affine transform
.. data:: EXTENT
Cut out a rectangular subregion
.. data:: PERSPECTIVE
Perspective transform
.. data:: QUAD
Map a quadrilateral to a rectangle
.. data:: MESH
Map a number of source quadrilaterals in one operation
Resampling filters
^^^^^^^^^^^^^^^^^^
See :ref:`concept-filters` for details.
.. data:: NEAREST
:noindex:
.. data:: BOX
:noindex:
.. data:: BILINEAR
:noindex:
.. data:: HAMMING
:noindex:
.. data:: BICUBIC
:noindex:
.. data:: LANCZOS
:noindex:
Some filters are also available under the following names for backwards compatibility:
.. data:: NONE
:noindex:
:value: NEAREST
.. data:: LINEAR
:value: BILINEAR
.. data:: CUBIC
:value: BICUBIC
.. data:: ANTIALIAS
:value: LANCZOS
Dither modes
^^^^^^^^^^^^
Used to specify the dithering method to use for the
:meth:`~Image.convert` and :meth:`~Image.quantize` methods.
.. data:: NONE
:noindex:
No dither
.. comment: (not implemented)
.. data:: ORDERED
.. data:: RASTERIZE
.. data:: FLOYDSTEINBERG
Floyd-Steinberg dither
Palettes
^^^^^^^^
Used to specify the pallete to use for the :meth:`~Image.convert` method.
.. data:: WEB
.. data:: ADAPTIVE
Quantization methods
^^^^^^^^^^^^^^^^^^^^
Used to specify the quantization method to use for the :meth:`~Image.quantize` method.
.. data:: MEDIANCUT
Median cut
.. data:: MAXCOVERAGE
Maximum coverage
.. data:: FASTOCTREE
Fast octree
.. data:: LIBIMAGEQUANT
libimagequant
Check support using :py:func:`PIL.features.check_feature`
with ``feature="libimagequant"``.
.. comment: These are not referenced anywhere?
Categories
^^^^^^^^^^
.. data:: NORMAL
.. data:: SEQUENCE
.. data:: CONTAINER

View File

@ -29,53 +29,53 @@ Image resizing filters
Image resizing methods :py:meth:`~PIL.Image.Image.resize` and
:py:meth:`~PIL.Image.Image.thumbnail` take a ``resample`` argument, which tells
which filter should be used for resampling. Possible values are:
:py:attr:`PIL.Image.NEAREST`, :py:attr:`PIL.Image.BILINEAR`,
:py:attr:`PIL.Image.BICUBIC` and :py:attr:`PIL.Image.ANTIALIAS`.
:py:data:`PIL.Image.NEAREST`, :py:data:`PIL.Image.BILINEAR`,
:py:data:`PIL.Image.BICUBIC` and :py:data:`PIL.Image.ANTIALIAS`.
Almost all of them were changed in this version.
Bicubic and bilinear downscaling
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
From the beginning :py:attr:`~PIL.Image.BILINEAR` and
:py:attr:`~PIL.Image.BICUBIC` filters were based on affine transformations
From the beginning :py:data:`~PIL.Image.BILINEAR` and
:py:data:`~PIL.Image.BICUBIC` filters were based on affine transformations
and used a fixed number of pixels from the source image for every destination
pixel (2x2 pixels for :py:attr:`~PIL.Image.BILINEAR` and 4x4 for
:py:attr:`~PIL.Image.BICUBIC`). This gave an unsatisfactory result for
pixel (2x2 pixels for :py:data:`~PIL.Image.BILINEAR` and 4x4 for
:py:data:`~PIL.Image.BICUBIC`). This gave an unsatisfactory result for
downscaling. At the same time, a high quality convolutions-based algorithm with
flexible kernel was used for :py:attr:`~PIL.Image.ANTIALIAS` filter.
flexible kernel was used for :py:data:`~PIL.Image.ANTIALIAS` filter.
Starting from Pillow 2.7.0, a high quality convolutions-based algorithm is used
for all of these three filters.
If you have previously used any tricks to maintain quality when downscaling with
:py:attr:`~PIL.Image.BILINEAR` and :py:attr:`~PIL.Image.BICUBIC` filters
:py:data:`~PIL.Image.BILINEAR` and :py:data:`~PIL.Image.BICUBIC` filters
(for example, reducing within several steps), they are unnecessary now.
Antialias renamed to Lanczos
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
A new :py:attr:`PIL.Image.LANCZOS` constant was added instead of
:py:attr:`~PIL.Image.ANTIALIAS`.
A new :py:data:`PIL.Image.LANCZOS` constant was added instead of
:py:data:`~PIL.Image.ANTIALIAS`.
When :py:attr:`~PIL.Image.ANTIALIAS` was initially added, it was the only
When :py:data:`~PIL.Image.ANTIALIAS` was initially added, it was the only
high-quality filter based on convolutions. It's name was supposed to reflect
this. Starting from Pillow 2.7.0 all resize method are based on convolutions.
All of them are antialias from now on. And the real name of the
:py:attr:`~PIL.Image.ANTIALIAS` filter is Lanczos filter.
:py:data:`~PIL.Image.ANTIALIAS` filter is Lanczos filter.
The :py:attr:`~PIL.Image.ANTIALIAS` constant is left for backward compatibility
and is an alias for :py:attr:`~PIL.Image.LANCZOS`.
The :py:data:`~PIL.Image.ANTIALIAS` constant is left for backward compatibility
and is an alias for :py:data:`~PIL.Image.LANCZOS`.
Lanczos upscaling quality
^^^^^^^^^^^^^^^^^^^^^^^^^
The image upscaling quality with :py:attr:`~PIL.Image.LANCZOS` filter was
almost the same as :py:attr:`~PIL.Image.BILINEAR` due to bug. This has been fixed.
The image upscaling quality with :py:data:`~PIL.Image.LANCZOS` filter was
almost the same as :py:data:`~PIL.Image.BILINEAR` due to bug. This has been fixed.
Bicubic upscaling quality
^^^^^^^^^^^^^^^^^^^^^^^^^
The :py:attr:`~PIL.Image.BICUBIC` filter for affine transformations produced
The :py:data:`~PIL.Image.BICUBIC` filter for affine transformations produced
sharp, slightly pixelated image for upscaling. Bicubic for convolutions is
more soft.
@ -84,42 +84,42 @@ Resize performance
In most cases, convolution is more a expensive algorithm for downscaling
because it takes into account all the pixels of source image. Therefore
:py:attr:`~PIL.Image.BILINEAR` and :py:attr:`~PIL.Image.BICUBIC` filters'
:py:data:`~PIL.Image.BILINEAR` and :py:data:`~PIL.Image.BICUBIC` filters'
performance can be lower than before. On the other hand the quality of
:py:attr:`~PIL.Image.BILINEAR` and :py:attr:`~PIL.Image.BICUBIC` was close to
:py:attr:`~PIL.Image.NEAREST`. So if such quality is suitable for your tasks
you can switch to :py:attr:`~PIL.Image.NEAREST` filter for downscaling,
:py:data:`~PIL.Image.BILINEAR` and :py:data:`~PIL.Image.BICUBIC` was close to
:py:data:`~PIL.Image.NEAREST`. So if such quality is suitable for your tasks
you can switch to :py:data:`~PIL.Image.NEAREST` filter for downscaling,
which will give a huge improvement in performance.
At the same time performance of convolution resampling for downscaling has been
improved by around a factor of two compared to the previous version.
The upscaling performance of the :py:attr:`~PIL.Image.LANCZOS` filter has
remained the same. For :py:attr:`~PIL.Image.BILINEAR` filter it has improved by
1.5 times and for :py:attr:`~PIL.Image.BICUBIC` by four times.
The upscaling performance of the :py:data:`~PIL.Image.LANCZOS` filter has
remained the same. For :py:data:`~PIL.Image.BILINEAR` filter it has improved by
1.5 times and for :py:data:`~PIL.Image.BICUBIC` by four times.
Default filter for thumbnails
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In Pillow 2.5 the default filter for :py:meth:`~PIL.Image.Image.thumbnail` was
changed from :py:attr:`~PIL.Image.NEAREST` to :py:attr:`~PIL.Image.ANTIALIAS`.
changed from :py:data:`~PIL.Image.NEAREST` to :py:data:`~PIL.Image.ANTIALIAS`.
Antialias was chosen because all the other filters gave poor quality for
reduction. Starting from Pillow 2.7.0, :py:attr:`~PIL.Image.ANTIALIAS` has been
replaced with :py:attr:`~PIL.Image.BICUBIC`, because it's faster and
:py:attr:`~PIL.Image.ANTIALIAS` doesn't give any advantages after
reduction. Starting from Pillow 2.7.0, :py:data:`~PIL.Image.ANTIALIAS` has been
replaced with :py:data:`~PIL.Image.BICUBIC`, because it's faster and
:py:data:`~PIL.Image.ANTIALIAS` doesn't give any advantages after
downscaling with libjpeg, which uses supersampling internally, not convolutions.
Image transposition
-------------------
A new method :py:attr:`PIL.Image.TRANSPOSE` has been added for the
A new method :py:data:`PIL.Image.TRANSPOSE` has been added for the
:py:meth:`~PIL.Image.Image.transpose` operation in addition to
:py:attr:`~PIL.Image.FLIP_LEFT_RIGHT`, :py:attr:`~PIL.Image.FLIP_TOP_BOTTOM`,
:py:attr:`~PIL.Image.ROTATE_90`, :py:attr:`~PIL.Image.ROTATE_180`,
:py:attr:`~PIL.Image.ROTATE_270`. :py:attr:`~PIL.Image.TRANSPOSE` is an algebra
:py:data:`~PIL.Image.FLIP_LEFT_RIGHT`, :py:data:`~PIL.Image.FLIP_TOP_BOTTOM`,
:py:data:`~PIL.Image.ROTATE_90`, :py:data:`~PIL.Image.ROTATE_180`,
:py:data:`~PIL.Image.ROTATE_270`. :py:data:`~PIL.Image.TRANSPOSE` is an algebra
transpose, with an image reflected across its main diagonal.
The speed of :py:attr:`~PIL.Image.ROTATE_90`, :py:attr:`~PIL.Image.ROTATE_270`
and :py:attr:`~PIL.Image.TRANSPOSE` has been significantly improved for large
The speed of :py:data:`~PIL.Image.ROTATE_90`, :py:data:`~PIL.Image.ROTATE_270`
and :py:data:`~PIL.Image.TRANSPOSE` has been significantly improved for large
images which don't fit in the processor cache.
Gaussian blur and unsharp mask

View File

@ -27,7 +27,7 @@ New DecompressionBomb Warning
:py:meth:`PIL.Image.Image.crop` now may raise a DecompressionBomb
warning if the crop region enlarges the image over the threshold
specified by :py:attr:`PIL.Image.MAX_PIXELS`.
specified by :py:data:`PIL.Image.MAX_PIXELS`.
Removed Deprecated Items
========================

View File

@ -876,7 +876,7 @@ class Image:
The default method of converting a greyscale ("L") or "RGB"
image into a bilevel (mode "1") image uses Floyd-Steinberg
dither to approximate the original image luminosity levels. If
dither is NONE, all values larger than 128 are set to 255 (white),
dither is :data:`NONE`, all values larger than 128 are set to 255 (white),
all other values to 0 (black). To use other thresholds, use the
:py:meth:`~PIL.Image.Image.point` method.
@ -889,11 +889,11 @@ class Image:
should be 4- or 12-tuple containing floating point values.
:param dither: Dithering method, used when converting from
mode "RGB" to "P" or from "RGB" or "L" to "1".
Available methods are NONE or FLOYDSTEINBERG (default).
Available methods are :data:`NONE` or :data:`FLOYDSTEINBERG` (default).
Note that this is not used when **matrix** is supplied.
:param palette: Palette to use when converting from mode "RGB"
to "P". Available palettes are WEB or ADAPTIVE.
:param colors: Number of colors to use for the ADAPTIVE palette.
to "P". Available palettes are :data:`WEB` or :data:`ADAPTIVE`.
:param colors: Number of colors to use for the :data:`ADAPTIVE` palette.
Defaults to 256.
:rtype: :py:class:`~PIL.Image.Image`
:returns: An :py:class:`~PIL.Image.Image` object.
@ -1051,10 +1051,10 @@ class Image:
of colors.
:param colors: The desired number of colors, <= 256
:param method: ``Image.MEDIANCUT=0`` (median cut),
``Image.MAXCOVERAGE=1`` (maximum coverage),
``Image.FASTOCTREE=2`` (fast octree),
``Image.LIBIMAGEQUANT=3`` (libimagequant; check support using
:param method: :data:`MEDIANCUT` (median cut),
:data:`MAXCOVERAGE` (maximum coverage),
:data:`FASTOCTREE` (fast octree),
:data:`LIBIMAGEQUANT` (libimagequant; check support using
:py:func:`PIL.features.check_feature`
with ``feature="libimagequant"``).
:param kmeans: Integer
@ -1062,7 +1062,7 @@ class Image:
:py:class:`PIL.Image.Image`.
:param dither: Dithering method, used when converting from
mode "RGB" to "P" or from "RGB" or "L" to "1".
Available methods are NONE or FLOYDSTEINBERG (default).
Available methods are :data:`NONE` or :data:`FLOYDSTEINBERG` (default).
Default: 1 (legacy setting)
:returns: A new image
@ -1842,12 +1842,12 @@ class Image:
:param size: The requested size in pixels, as a 2-tuple:
(width, height).
:param resample: An optional resampling filter. This can be
one of :py:attr:`PIL.Image.NEAREST`, :py:attr:`PIL.Image.BOX`,
:py:attr:`PIL.Image.BILINEAR`, :py:attr:`PIL.Image.HAMMING`,
:py:attr:`PIL.Image.BICUBIC` or :py:attr:`PIL.Image.LANCZOS`.
Default filter is :py:attr:`PIL.Image.BICUBIC`.
one of :py:data:`PIL.Image.NEAREST`, :py:data:`PIL.Image.BOX`,
:py:data:`PIL.Image.BILINEAR`, :py:data:`PIL.Image.HAMMING`,
:py:data:`PIL.Image.BICUBIC` or :py:data:`PIL.Image.LANCZOS`.
Default filter is :py:data:`PIL.Image.BICUBIC`.
If the image has mode "1" or "P", it is
always set to :py:attr:`PIL.Image.NEAREST`.
always set to :py:data:`PIL.Image.NEAREST`.
See: :ref:`concept-filters`.
:param box: An optional 4-tuple of floats providing
the source image region to be scaled.
@ -1977,12 +1977,12 @@ class Image:
:param angle: In degrees counter clockwise.
:param resample: An optional resampling filter. This can be
one of :py:attr:`PIL.Image.NEAREST` (use nearest neighbour),
:py:attr:`PIL.Image.BILINEAR` (linear interpolation in a 2x2
environment), or :py:attr:`PIL.Image.BICUBIC`
one of :py:data:`PIL.Image.NEAREST` (use nearest neighbour),
:py:data:`PIL.Image.BILINEAR` (linear interpolation in a 2x2
environment), or :py:data:`PIL.Image.BICUBIC`
(cubic spline interpolation in a 4x4 environment).
If omitted, or if the image has mode "1" or "P", it is
set to :py:attr:`PIL.Image.NEAREST`. See :ref:`concept-filters`.
set to :py:data:`PIL.Image.NEAREST`. See :ref:`concept-filters`.
:param expand: Optional expansion flag. If true, expands the output
image to make it large enough to hold the entire rotated image.
If false or omitted, make the output image the same size as the
@ -2267,10 +2267,10 @@ class Image:
:param size: Requested size.
:param resample: Optional resampling filter. This can be one
of :py:attr:`PIL.Image.NEAREST`, :py:attr:`PIL.Image.BILINEAR`,
:py:attr:`PIL.Image.BICUBIC`, or :py:attr:`PIL.Image.LANCZOS`.
If omitted, it defaults to :py:attr:`PIL.Image.BICUBIC`.
(was :py:attr:`PIL.Image.NEAREST` prior to version 2.5.0).
of :py:data:`PIL.Image.NEAREST`, :py:data:`PIL.Image.BILINEAR`,
:py:data:`PIL.Image.BICUBIC`, or :py:data:`PIL.Image.LANCZOS`.
If omitted, it defaults to :py:data:`PIL.Image.BICUBIC`.
(was :py:data:`PIL.Image.NEAREST` prior to version 2.5.0).
See: :ref:`concept-filters`.
:param reducing_gap: Apply optimization by resizing the image
in two steps. First, reducing the image by integer times
@ -2334,11 +2334,11 @@ class Image:
:param size: The output size.
:param method: The transformation method. This is one of
:py:attr:`PIL.Image.EXTENT` (cut out a rectangular subregion),
:py:attr:`PIL.Image.AFFINE` (affine transform),
:py:attr:`PIL.Image.PERSPECTIVE` (perspective transform),
:py:attr:`PIL.Image.QUAD` (map a quadrilateral to a rectangle), or
:py:attr:`PIL.Image.MESH` (map a number of source quadrilaterals
:py:data:`PIL.Image.EXTENT` (cut out a rectangular subregion),
:py:data:`PIL.Image.AFFINE` (affine transform),
:py:data:`PIL.Image.PERSPECTIVE` (perspective transform),
:py:data:`PIL.Image.QUAD` (map a quadrilateral to a rectangle), or
:py:data:`PIL.Image.MESH` (map a number of source quadrilaterals
in one operation).
It may also be an :py:class:`~PIL.Image.ImageTransformHandler`
@ -2358,11 +2358,11 @@ class Image:
return method, data
:param data: Extra data to the transformation method.
:param resample: Optional resampling filter. It can be one of
:py:attr:`PIL.Image.NEAREST` (use nearest neighbour),
:py:attr:`PIL.Image.BILINEAR` (linear interpolation in a 2x2
environment), or :py:attr:`PIL.Image.BICUBIC` (cubic spline
:py:data:`PIL.Image.NEAREST` (use nearest neighbour),
:py:data:`PIL.Image.BILINEAR` (linear interpolation in a 2x2
environment), or :py:data:`PIL.Image.BICUBIC` (cubic spline
interpolation in a 4x4 environment). If omitted, or if the image
has mode "1" or "P", it is set to :py:attr:`PIL.Image.NEAREST`.
has mode "1" or "P", it is set to :py:data:`PIL.Image.NEAREST`.
See: :ref:`concept-filters`.
:param fill: If **method** is an
:py:class:`~PIL.Image.ImageTransformHandler` object, this is one of
@ -2486,10 +2486,10 @@ class Image:
"""
Transpose image (flip or rotate in 90 degree steps)
:param method: One of :py:attr:`PIL.Image.FLIP_LEFT_RIGHT`,
:py:attr:`PIL.Image.FLIP_TOP_BOTTOM`, :py:attr:`PIL.Image.ROTATE_90`,
:py:attr:`PIL.Image.ROTATE_180`, :py:attr:`PIL.Image.ROTATE_270`,
:py:attr:`PIL.Image.TRANSPOSE` or :py:attr:`PIL.Image.TRANSVERSE`.
:param method: One of :py:data:`PIL.Image.FLIP_LEFT_RIGHT`,
:py:data:`PIL.Image.FLIP_TOP_BOTTOM`, :py:data:`PIL.Image.ROTATE_90`,
:py:data:`PIL.Image.ROTATE_180`, :py:data:`PIL.Image.ROTATE_270`,
:py:data:`PIL.Image.TRANSPOSE` or :py:data:`PIL.Image.TRANSVERSE`.
:returns: Returns a flipped or rotated copy of this image.
"""