mirror of
https://github.com/python-pillow/Pillow.git
synced 2025-01-13 10:46:16 +03:00
fix Image constants references
This commit is contained in:
parent
eebecba3c2
commit
5511111f3b
|
@ -121,39 +121,47 @@ Filters
|
|||
For geometry operations that may map multiple input pixels to a single output
|
||||
pixel, the Python Imaging Library provides different resampling *filters*.
|
||||
|
||||
``NEAREST``
|
||||
.. py:currentmodule:: PIL.Image
|
||||
|
||||
.. data:: NEAREST
|
||||
|
||||
Pick one nearest pixel from the input image. Ignore all other input pixels.
|
||||
|
||||
``BOX``
|
||||
.. data:: BOX
|
||||
|
||||
Each pixel of source image contributes to one pixel of the
|
||||
destination image with identical weights.
|
||||
For upscaling is equivalent of ``NEAREST``.
|
||||
For upscaling is equivalent of :data:`NEAREST`.
|
||||
This filter can only be used with the :py:meth:`~PIL.Image.Image.resize`
|
||||
and :py:meth:`~PIL.Image.Image.thumbnail` methods.
|
||||
|
||||
.. versionadded:: 3.4.0
|
||||
|
||||
``BILINEAR``
|
||||
.. data:: BILINEAR
|
||||
|
||||
For resize calculate the output pixel value using linear interpolation
|
||||
on all pixels that may contribute to the output value.
|
||||
For other transformations linear interpolation over a 2x2 environment
|
||||
in the input image is used.
|
||||
|
||||
``HAMMING``
|
||||
Produces a sharper image than ``BILINEAR``, doesn't have dislocations
|
||||
on local level like with ``BOX``.
|
||||
.. data:: HAMMING
|
||||
|
||||
Produces a sharper image than :data:`BILINEAR`, doesn't have dislocations
|
||||
on local level like with :data:`BOX`.
|
||||
This filter can only be used with the :py:meth:`~PIL.Image.Image.resize`
|
||||
and :py:meth:`~PIL.Image.Image.thumbnail` methods.
|
||||
|
||||
.. versionadded:: 3.4.0
|
||||
|
||||
``BICUBIC``
|
||||
.. data:: BICUBIC
|
||||
|
||||
For resize calculate the output pixel value using cubic interpolation
|
||||
on all pixels that may contribute to the output value.
|
||||
For other transformations cubic interpolation over a 4x4 environment
|
||||
in the input image is used.
|
||||
|
||||
``LANCZOS``
|
||||
.. data:: LANCZOS
|
||||
|
||||
Calculate the output pixel value using a high-quality Lanczos filter (a
|
||||
truncated sinc) on all pixels that may contribute to the output value.
|
||||
This filter can only be used with the :py:meth:`~PIL.Image.Image.resize`
|
||||
|
@ -165,19 +173,19 @@ pixel, the Python Imaging Library provides different resampling *filters*.
|
|||
Filters comparison table
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
+------------+-------------+-----------+-------------+
|
||||
| Filter | Downscaling | Upscaling | Performance |
|
||||
| | quality | quality | |
|
||||
+============+=============+===========+=============+
|
||||
|``NEAREST`` | | | ⭐⭐⭐⭐⭐ |
|
||||
+------------+-------------+-----------+-------------+
|
||||
|``BOX`` | ⭐ | | ⭐⭐⭐⭐ |
|
||||
+------------+-------------+-----------+-------------+
|
||||
|``BILINEAR``| ⭐ | ⭐ | ⭐⭐⭐ |
|
||||
+------------+-------------+-----------+-------------+
|
||||
|``HAMMING`` | ⭐⭐ | | ⭐⭐⭐ |
|
||||
+------------+-------------+-----------+-------------+
|
||||
|``BICUBIC`` | ⭐⭐⭐ | ⭐⭐⭐ | ⭐⭐ |
|
||||
+------------+-------------+-----------+-------------+
|
||||
|``LANCZOS`` | ⭐⭐⭐⭐ | ⭐⭐⭐⭐ | ⭐ |
|
||||
+------------+-------------+-----------+-------------+
|
||||
+----------------+-------------+-----------+-------------+
|
||||
| Filter | Downscaling | Upscaling | Performance |
|
||||
| | quality | quality | |
|
||||
+================+=============+===========+=============+
|
||||
|:data:`NEAREST` | | | ⭐⭐⭐⭐⭐ |
|
||||
+----------------+-------------+-----------+-------------+
|
||||
|:data:`BOX` | ⭐ | | ⭐⭐⭐⭐ |
|
||||
+----------------+-------------+-----------+-------------+
|
||||
|:data:`BILINEAR`| ⭐ | ⭐ | ⭐⭐⭐ |
|
||||
+----------------+-------------+-----------+-------------+
|
||||
|:data:`HAMMING` | ⭐⭐ | | ⭐⭐⭐ |
|
||||
+----------------+-------------+-----------+-------------+
|
||||
|:data:`BICUBIC` | ⭐⭐⭐ | ⭐⭐⭐ | ⭐⭐ |
|
||||
+----------------+-------------+-----------+-------------+
|
||||
|:data:`LANCZOS` | ⭐⭐⭐⭐ | ⭐⭐⭐⭐ | ⭐ |
|
||||
+----------------+-------------+-----------+-------------+
|
||||
|
|
|
@ -234,7 +234,7 @@ This rotates the input image by ``theta`` degrees counter clockwise:
|
|||
.. automethod:: PIL.Image.Image.transform
|
||||
.. automethod:: PIL.Image.Image.transpose
|
||||
|
||||
This flips the input image by using the ``Image.FLIP_LEFT_RIGHT`` method.
|
||||
This flips the input image by using the :data:`FLIP_LEFT_RIGHT` method.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
|
@ -324,3 +324,134 @@ Instances of the :py:class:`Image` class have the following attributes:
|
|||
Unless noted elsewhere, this dictionary does not affect saving files.
|
||||
|
||||
:type: :py:class:`dict`
|
||||
|
||||
Constants
|
||||
---------
|
||||
|
||||
.. data:: NONE
|
||||
|
||||
Transpose methods
|
||||
^^^^^^^^^^^^^^^^^
|
||||
|
||||
Used to specify the :meth:`Image.transpose` method to use.
|
||||
|
||||
.. data:: FLIP_LEFT_RIGHT
|
||||
.. data:: FLIP_TOP_BOTTOM
|
||||
.. data:: ROTATE_90
|
||||
.. data:: ROTATE_180
|
||||
.. data:: ROTATE_270
|
||||
.. data:: TRANSPOSE
|
||||
.. data:: TRANSVERSE
|
||||
|
||||
Transform methods
|
||||
^^^^^^^^^^^^^^^^^
|
||||
|
||||
Used to specify the :meth:`Image.transform` method to use.
|
||||
|
||||
.. data:: AFFINE
|
||||
|
||||
Affine transform
|
||||
|
||||
.. data:: EXTENT
|
||||
|
||||
Cut out a rectangular subregion
|
||||
|
||||
.. data:: PERSPECTIVE
|
||||
|
||||
Perspective transform
|
||||
|
||||
.. data:: QUAD
|
||||
|
||||
Map a quadrilateral to a rectangle
|
||||
|
||||
.. data:: MESH
|
||||
|
||||
Map a number of source quadrilaterals in one operation
|
||||
|
||||
Resampling filters
|
||||
^^^^^^^^^^^^^^^^^^
|
||||
|
||||
See :ref:`concept-filters` for details.
|
||||
|
||||
.. data:: NEAREST
|
||||
:noindex:
|
||||
.. data:: BOX
|
||||
:noindex:
|
||||
.. data:: BILINEAR
|
||||
:noindex:
|
||||
.. data:: HAMMING
|
||||
:noindex:
|
||||
.. data:: BICUBIC
|
||||
:noindex:
|
||||
.. data:: LANCZOS
|
||||
:noindex:
|
||||
|
||||
Some filters are also available under the following names for backwards compatibility:
|
||||
|
||||
.. data:: NONE
|
||||
:noindex:
|
||||
:value: NEAREST
|
||||
.. data:: LINEAR
|
||||
:value: BILINEAR
|
||||
.. data:: CUBIC
|
||||
:value: BICUBIC
|
||||
.. data:: ANTIALIAS
|
||||
:value: LANCZOS
|
||||
|
||||
Dither modes
|
||||
^^^^^^^^^^^^
|
||||
|
||||
Used to specify the dithering method to use for the
|
||||
:meth:`~Image.convert` and :meth:`~Image.quantize` methods.
|
||||
|
||||
.. data:: NONE
|
||||
:noindex:
|
||||
|
||||
No dither
|
||||
|
||||
.. comment: (not implemented)
|
||||
.. data:: ORDERED
|
||||
.. data:: RASTERIZE
|
||||
|
||||
.. data:: FLOYDSTEINBERG
|
||||
|
||||
Floyd-Steinberg dither
|
||||
|
||||
Palettes
|
||||
^^^^^^^^
|
||||
|
||||
Used to specify the pallete to use for the :meth:`~Image.convert` method.
|
||||
|
||||
.. data:: WEB
|
||||
.. data:: ADAPTIVE
|
||||
|
||||
Quantization methods
|
||||
^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Used to specify the quantization method to use for the :meth:`~Image.quantize` method.
|
||||
|
||||
.. data:: MEDIANCUT
|
||||
|
||||
Median cut
|
||||
|
||||
.. data:: MAXCOVERAGE
|
||||
|
||||
Maximum coverage
|
||||
|
||||
.. data:: FASTOCTREE
|
||||
|
||||
Fast octree
|
||||
|
||||
.. data:: LIBIMAGEQUANT
|
||||
|
||||
libimagequant
|
||||
|
||||
Check support using :py:func:`PIL.features.check_feature`
|
||||
with ``feature="libimagequant"``.
|
||||
|
||||
.. comment: These are not referenced anywhere?
|
||||
Categories
|
||||
^^^^^^^^^^
|
||||
.. data:: NORMAL
|
||||
.. data:: SEQUENCE
|
||||
.. data:: CONTAINER
|
||||
|
|
|
@ -29,53 +29,53 @@ Image resizing filters
|
|||
Image resizing methods :py:meth:`~PIL.Image.Image.resize` and
|
||||
:py:meth:`~PIL.Image.Image.thumbnail` take a ``resample`` argument, which tells
|
||||
which filter should be used for resampling. Possible values are:
|
||||
:py:attr:`PIL.Image.NEAREST`, :py:attr:`PIL.Image.BILINEAR`,
|
||||
:py:attr:`PIL.Image.BICUBIC` and :py:attr:`PIL.Image.ANTIALIAS`.
|
||||
:py:data:`PIL.Image.NEAREST`, :py:data:`PIL.Image.BILINEAR`,
|
||||
:py:data:`PIL.Image.BICUBIC` and :py:data:`PIL.Image.ANTIALIAS`.
|
||||
Almost all of them were changed in this version.
|
||||
|
||||
Bicubic and bilinear downscaling
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
From the beginning :py:attr:`~PIL.Image.BILINEAR` and
|
||||
:py:attr:`~PIL.Image.BICUBIC` filters were based on affine transformations
|
||||
From the beginning :py:data:`~PIL.Image.BILINEAR` and
|
||||
:py:data:`~PIL.Image.BICUBIC` filters were based on affine transformations
|
||||
and used a fixed number of pixels from the source image for every destination
|
||||
pixel (2x2 pixels for :py:attr:`~PIL.Image.BILINEAR` and 4x4 for
|
||||
:py:attr:`~PIL.Image.BICUBIC`). This gave an unsatisfactory result for
|
||||
pixel (2x2 pixels for :py:data:`~PIL.Image.BILINEAR` and 4x4 for
|
||||
:py:data:`~PIL.Image.BICUBIC`). This gave an unsatisfactory result for
|
||||
downscaling. At the same time, a high quality convolutions-based algorithm with
|
||||
flexible kernel was used for :py:attr:`~PIL.Image.ANTIALIAS` filter.
|
||||
flexible kernel was used for :py:data:`~PIL.Image.ANTIALIAS` filter.
|
||||
|
||||
Starting from Pillow 2.7.0, a high quality convolutions-based algorithm is used
|
||||
for all of these three filters.
|
||||
|
||||
If you have previously used any tricks to maintain quality when downscaling with
|
||||
:py:attr:`~PIL.Image.BILINEAR` and :py:attr:`~PIL.Image.BICUBIC` filters
|
||||
:py:data:`~PIL.Image.BILINEAR` and :py:data:`~PIL.Image.BICUBIC` filters
|
||||
(for example, reducing within several steps), they are unnecessary now.
|
||||
|
||||
Antialias renamed to Lanczos
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
A new :py:attr:`PIL.Image.LANCZOS` constant was added instead of
|
||||
:py:attr:`~PIL.Image.ANTIALIAS`.
|
||||
A new :py:data:`PIL.Image.LANCZOS` constant was added instead of
|
||||
:py:data:`~PIL.Image.ANTIALIAS`.
|
||||
|
||||
When :py:attr:`~PIL.Image.ANTIALIAS` was initially added, it was the only
|
||||
When :py:data:`~PIL.Image.ANTIALIAS` was initially added, it was the only
|
||||
high-quality filter based on convolutions. It's name was supposed to reflect
|
||||
this. Starting from Pillow 2.7.0 all resize method are based on convolutions.
|
||||
All of them are antialias from now on. And the real name of the
|
||||
:py:attr:`~PIL.Image.ANTIALIAS` filter is Lanczos filter.
|
||||
:py:data:`~PIL.Image.ANTIALIAS` filter is Lanczos filter.
|
||||
|
||||
The :py:attr:`~PIL.Image.ANTIALIAS` constant is left for backward compatibility
|
||||
and is an alias for :py:attr:`~PIL.Image.LANCZOS`.
|
||||
The :py:data:`~PIL.Image.ANTIALIAS` constant is left for backward compatibility
|
||||
and is an alias for :py:data:`~PIL.Image.LANCZOS`.
|
||||
|
||||
Lanczos upscaling quality
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
The image upscaling quality with :py:attr:`~PIL.Image.LANCZOS` filter was
|
||||
almost the same as :py:attr:`~PIL.Image.BILINEAR` due to bug. This has been fixed.
|
||||
The image upscaling quality with :py:data:`~PIL.Image.LANCZOS` filter was
|
||||
almost the same as :py:data:`~PIL.Image.BILINEAR` due to bug. This has been fixed.
|
||||
|
||||
Bicubic upscaling quality
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
The :py:attr:`~PIL.Image.BICUBIC` filter for affine transformations produced
|
||||
The :py:data:`~PIL.Image.BICUBIC` filter for affine transformations produced
|
||||
sharp, slightly pixelated image for upscaling. Bicubic for convolutions is
|
||||
more soft.
|
||||
|
||||
|
@ -84,42 +84,42 @@ Resize performance
|
|||
|
||||
In most cases, convolution is more a expensive algorithm for downscaling
|
||||
because it takes into account all the pixels of source image. Therefore
|
||||
:py:attr:`~PIL.Image.BILINEAR` and :py:attr:`~PIL.Image.BICUBIC` filters'
|
||||
:py:data:`~PIL.Image.BILINEAR` and :py:data:`~PIL.Image.BICUBIC` filters'
|
||||
performance can be lower than before. On the other hand the quality of
|
||||
:py:attr:`~PIL.Image.BILINEAR` and :py:attr:`~PIL.Image.BICUBIC` was close to
|
||||
:py:attr:`~PIL.Image.NEAREST`. So if such quality is suitable for your tasks
|
||||
you can switch to :py:attr:`~PIL.Image.NEAREST` filter for downscaling,
|
||||
:py:data:`~PIL.Image.BILINEAR` and :py:data:`~PIL.Image.BICUBIC` was close to
|
||||
:py:data:`~PIL.Image.NEAREST`. So if such quality is suitable for your tasks
|
||||
you can switch to :py:data:`~PIL.Image.NEAREST` filter for downscaling,
|
||||
which will give a huge improvement in performance.
|
||||
|
||||
At the same time performance of convolution resampling for downscaling has been
|
||||
improved by around a factor of two compared to the previous version.
|
||||
The upscaling performance of the :py:attr:`~PIL.Image.LANCZOS` filter has
|
||||
remained the same. For :py:attr:`~PIL.Image.BILINEAR` filter it has improved by
|
||||
1.5 times and for :py:attr:`~PIL.Image.BICUBIC` by four times.
|
||||
The upscaling performance of the :py:data:`~PIL.Image.LANCZOS` filter has
|
||||
remained the same. For :py:data:`~PIL.Image.BILINEAR` filter it has improved by
|
||||
1.5 times and for :py:data:`~PIL.Image.BICUBIC` by four times.
|
||||
|
||||
Default filter for thumbnails
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
In Pillow 2.5 the default filter for :py:meth:`~PIL.Image.Image.thumbnail` was
|
||||
changed from :py:attr:`~PIL.Image.NEAREST` to :py:attr:`~PIL.Image.ANTIALIAS`.
|
||||
changed from :py:data:`~PIL.Image.NEAREST` to :py:data:`~PIL.Image.ANTIALIAS`.
|
||||
Antialias was chosen because all the other filters gave poor quality for
|
||||
reduction. Starting from Pillow 2.7.0, :py:attr:`~PIL.Image.ANTIALIAS` has been
|
||||
replaced with :py:attr:`~PIL.Image.BICUBIC`, because it's faster and
|
||||
:py:attr:`~PIL.Image.ANTIALIAS` doesn't give any advantages after
|
||||
reduction. Starting from Pillow 2.7.0, :py:data:`~PIL.Image.ANTIALIAS` has been
|
||||
replaced with :py:data:`~PIL.Image.BICUBIC`, because it's faster and
|
||||
:py:data:`~PIL.Image.ANTIALIAS` doesn't give any advantages after
|
||||
downscaling with libjpeg, which uses supersampling internally, not convolutions.
|
||||
|
||||
Image transposition
|
||||
-------------------
|
||||
|
||||
A new method :py:attr:`PIL.Image.TRANSPOSE` has been added for the
|
||||
A new method :py:data:`PIL.Image.TRANSPOSE` has been added for the
|
||||
:py:meth:`~PIL.Image.Image.transpose` operation in addition to
|
||||
:py:attr:`~PIL.Image.FLIP_LEFT_RIGHT`, :py:attr:`~PIL.Image.FLIP_TOP_BOTTOM`,
|
||||
:py:attr:`~PIL.Image.ROTATE_90`, :py:attr:`~PIL.Image.ROTATE_180`,
|
||||
:py:attr:`~PIL.Image.ROTATE_270`. :py:attr:`~PIL.Image.TRANSPOSE` is an algebra
|
||||
:py:data:`~PIL.Image.FLIP_LEFT_RIGHT`, :py:data:`~PIL.Image.FLIP_TOP_BOTTOM`,
|
||||
:py:data:`~PIL.Image.ROTATE_90`, :py:data:`~PIL.Image.ROTATE_180`,
|
||||
:py:data:`~PIL.Image.ROTATE_270`. :py:data:`~PIL.Image.TRANSPOSE` is an algebra
|
||||
transpose, with an image reflected across its main diagonal.
|
||||
|
||||
The speed of :py:attr:`~PIL.Image.ROTATE_90`, :py:attr:`~PIL.Image.ROTATE_270`
|
||||
and :py:attr:`~PIL.Image.TRANSPOSE` has been significantly improved for large
|
||||
The speed of :py:data:`~PIL.Image.ROTATE_90`, :py:data:`~PIL.Image.ROTATE_270`
|
||||
and :py:data:`~PIL.Image.TRANSPOSE` has been significantly improved for large
|
||||
images which don't fit in the processor cache.
|
||||
|
||||
Gaussian blur and unsharp mask
|
||||
|
|
|
@ -27,7 +27,7 @@ New DecompressionBomb Warning
|
|||
|
||||
:py:meth:`PIL.Image.Image.crop` now may raise a DecompressionBomb
|
||||
warning if the crop region enlarges the image over the threshold
|
||||
specified by :py:attr:`PIL.Image.MAX_PIXELS`.
|
||||
specified by :py:data:`PIL.Image.MAX_PIXELS`.
|
||||
|
||||
Removed Deprecated Items
|
||||
========================
|
||||
|
|
|
@ -876,7 +876,7 @@ class Image:
|
|||
The default method of converting a greyscale ("L") or "RGB"
|
||||
image into a bilevel (mode "1") image uses Floyd-Steinberg
|
||||
dither to approximate the original image luminosity levels. If
|
||||
dither is NONE, all values larger than 128 are set to 255 (white),
|
||||
dither is :data:`NONE`, all values larger than 128 are set to 255 (white),
|
||||
all other values to 0 (black). To use other thresholds, use the
|
||||
:py:meth:`~PIL.Image.Image.point` method.
|
||||
|
||||
|
@ -889,11 +889,11 @@ class Image:
|
|||
should be 4- or 12-tuple containing floating point values.
|
||||
:param dither: Dithering method, used when converting from
|
||||
mode "RGB" to "P" or from "RGB" or "L" to "1".
|
||||
Available methods are NONE or FLOYDSTEINBERG (default).
|
||||
Available methods are :data:`NONE` or :data:`FLOYDSTEINBERG` (default).
|
||||
Note that this is not used when **matrix** is supplied.
|
||||
:param palette: Palette to use when converting from mode "RGB"
|
||||
to "P". Available palettes are WEB or ADAPTIVE.
|
||||
:param colors: Number of colors to use for the ADAPTIVE palette.
|
||||
to "P". Available palettes are :data:`WEB` or :data:`ADAPTIVE`.
|
||||
:param colors: Number of colors to use for the :data:`ADAPTIVE` palette.
|
||||
Defaults to 256.
|
||||
:rtype: :py:class:`~PIL.Image.Image`
|
||||
:returns: An :py:class:`~PIL.Image.Image` object.
|
||||
|
@ -1051,10 +1051,10 @@ class Image:
|
|||
of colors.
|
||||
|
||||
:param colors: The desired number of colors, <= 256
|
||||
:param method: ``Image.MEDIANCUT=0`` (median cut),
|
||||
``Image.MAXCOVERAGE=1`` (maximum coverage),
|
||||
``Image.FASTOCTREE=2`` (fast octree),
|
||||
``Image.LIBIMAGEQUANT=3`` (libimagequant; check support using
|
||||
:param method: :data:`MEDIANCUT` (median cut),
|
||||
:data:`MAXCOVERAGE` (maximum coverage),
|
||||
:data:`FASTOCTREE` (fast octree),
|
||||
:data:`LIBIMAGEQUANT` (libimagequant; check support using
|
||||
:py:func:`PIL.features.check_feature`
|
||||
with ``feature="libimagequant"``).
|
||||
:param kmeans: Integer
|
||||
|
@ -1062,7 +1062,7 @@ class Image:
|
|||
:py:class:`PIL.Image.Image`.
|
||||
:param dither: Dithering method, used when converting from
|
||||
mode "RGB" to "P" or from "RGB" or "L" to "1".
|
||||
Available methods are NONE or FLOYDSTEINBERG (default).
|
||||
Available methods are :data:`NONE` or :data:`FLOYDSTEINBERG` (default).
|
||||
Default: 1 (legacy setting)
|
||||
:returns: A new image
|
||||
|
||||
|
@ -1842,12 +1842,12 @@ class Image:
|
|||
:param size: The requested size in pixels, as a 2-tuple:
|
||||
(width, height).
|
||||
:param resample: An optional resampling filter. This can be
|
||||
one of :py:attr:`PIL.Image.NEAREST`, :py:attr:`PIL.Image.BOX`,
|
||||
:py:attr:`PIL.Image.BILINEAR`, :py:attr:`PIL.Image.HAMMING`,
|
||||
:py:attr:`PIL.Image.BICUBIC` or :py:attr:`PIL.Image.LANCZOS`.
|
||||
Default filter is :py:attr:`PIL.Image.BICUBIC`.
|
||||
one of :py:data:`PIL.Image.NEAREST`, :py:data:`PIL.Image.BOX`,
|
||||
:py:data:`PIL.Image.BILINEAR`, :py:data:`PIL.Image.HAMMING`,
|
||||
:py:data:`PIL.Image.BICUBIC` or :py:data:`PIL.Image.LANCZOS`.
|
||||
Default filter is :py:data:`PIL.Image.BICUBIC`.
|
||||
If the image has mode "1" or "P", it is
|
||||
always set to :py:attr:`PIL.Image.NEAREST`.
|
||||
always set to :py:data:`PIL.Image.NEAREST`.
|
||||
See: :ref:`concept-filters`.
|
||||
:param box: An optional 4-tuple of floats providing
|
||||
the source image region to be scaled.
|
||||
|
@ -1977,12 +1977,12 @@ class Image:
|
|||
|
||||
:param angle: In degrees counter clockwise.
|
||||
:param resample: An optional resampling filter. This can be
|
||||
one of :py:attr:`PIL.Image.NEAREST` (use nearest neighbour),
|
||||
:py:attr:`PIL.Image.BILINEAR` (linear interpolation in a 2x2
|
||||
environment), or :py:attr:`PIL.Image.BICUBIC`
|
||||
one of :py:data:`PIL.Image.NEAREST` (use nearest neighbour),
|
||||
:py:data:`PIL.Image.BILINEAR` (linear interpolation in a 2x2
|
||||
environment), or :py:data:`PIL.Image.BICUBIC`
|
||||
(cubic spline interpolation in a 4x4 environment).
|
||||
If omitted, or if the image has mode "1" or "P", it is
|
||||
set to :py:attr:`PIL.Image.NEAREST`. See :ref:`concept-filters`.
|
||||
set to :py:data:`PIL.Image.NEAREST`. See :ref:`concept-filters`.
|
||||
:param expand: Optional expansion flag. If true, expands the output
|
||||
image to make it large enough to hold the entire rotated image.
|
||||
If false or omitted, make the output image the same size as the
|
||||
|
@ -2267,10 +2267,10 @@ class Image:
|
|||
|
||||
:param size: Requested size.
|
||||
:param resample: Optional resampling filter. This can be one
|
||||
of :py:attr:`PIL.Image.NEAREST`, :py:attr:`PIL.Image.BILINEAR`,
|
||||
:py:attr:`PIL.Image.BICUBIC`, or :py:attr:`PIL.Image.LANCZOS`.
|
||||
If omitted, it defaults to :py:attr:`PIL.Image.BICUBIC`.
|
||||
(was :py:attr:`PIL.Image.NEAREST` prior to version 2.5.0).
|
||||
of :py:data:`PIL.Image.NEAREST`, :py:data:`PIL.Image.BILINEAR`,
|
||||
:py:data:`PIL.Image.BICUBIC`, or :py:data:`PIL.Image.LANCZOS`.
|
||||
If omitted, it defaults to :py:data:`PIL.Image.BICUBIC`.
|
||||
(was :py:data:`PIL.Image.NEAREST` prior to version 2.5.0).
|
||||
See: :ref:`concept-filters`.
|
||||
:param reducing_gap: Apply optimization by resizing the image
|
||||
in two steps. First, reducing the image by integer times
|
||||
|
@ -2334,11 +2334,11 @@ class Image:
|
|||
|
||||
:param size: The output size.
|
||||
:param method: The transformation method. This is one of
|
||||
:py:attr:`PIL.Image.EXTENT` (cut out a rectangular subregion),
|
||||
:py:attr:`PIL.Image.AFFINE` (affine transform),
|
||||
:py:attr:`PIL.Image.PERSPECTIVE` (perspective transform),
|
||||
:py:attr:`PIL.Image.QUAD` (map a quadrilateral to a rectangle), or
|
||||
:py:attr:`PIL.Image.MESH` (map a number of source quadrilaterals
|
||||
:py:data:`PIL.Image.EXTENT` (cut out a rectangular subregion),
|
||||
:py:data:`PIL.Image.AFFINE` (affine transform),
|
||||
:py:data:`PIL.Image.PERSPECTIVE` (perspective transform),
|
||||
:py:data:`PIL.Image.QUAD` (map a quadrilateral to a rectangle), or
|
||||
:py:data:`PIL.Image.MESH` (map a number of source quadrilaterals
|
||||
in one operation).
|
||||
|
||||
It may also be an :py:class:`~PIL.Image.ImageTransformHandler`
|
||||
|
@ -2358,11 +2358,11 @@ class Image:
|
|||
return method, data
|
||||
:param data: Extra data to the transformation method.
|
||||
:param resample: Optional resampling filter. It can be one of
|
||||
:py:attr:`PIL.Image.NEAREST` (use nearest neighbour),
|
||||
:py:attr:`PIL.Image.BILINEAR` (linear interpolation in a 2x2
|
||||
environment), or :py:attr:`PIL.Image.BICUBIC` (cubic spline
|
||||
:py:data:`PIL.Image.NEAREST` (use nearest neighbour),
|
||||
:py:data:`PIL.Image.BILINEAR` (linear interpolation in a 2x2
|
||||
environment), or :py:data:`PIL.Image.BICUBIC` (cubic spline
|
||||
interpolation in a 4x4 environment). If omitted, or if the image
|
||||
has mode "1" or "P", it is set to :py:attr:`PIL.Image.NEAREST`.
|
||||
has mode "1" or "P", it is set to :py:data:`PIL.Image.NEAREST`.
|
||||
See: :ref:`concept-filters`.
|
||||
:param fill: If **method** is an
|
||||
:py:class:`~PIL.Image.ImageTransformHandler` object, this is one of
|
||||
|
@ -2486,10 +2486,10 @@ class Image:
|
|||
"""
|
||||
Transpose image (flip or rotate in 90 degree steps)
|
||||
|
||||
:param method: One of :py:attr:`PIL.Image.FLIP_LEFT_RIGHT`,
|
||||
:py:attr:`PIL.Image.FLIP_TOP_BOTTOM`, :py:attr:`PIL.Image.ROTATE_90`,
|
||||
:py:attr:`PIL.Image.ROTATE_180`, :py:attr:`PIL.Image.ROTATE_270`,
|
||||
:py:attr:`PIL.Image.TRANSPOSE` or :py:attr:`PIL.Image.TRANSVERSE`.
|
||||
:param method: One of :py:data:`PIL.Image.FLIP_LEFT_RIGHT`,
|
||||
:py:data:`PIL.Image.FLIP_TOP_BOTTOM`, :py:data:`PIL.Image.ROTATE_90`,
|
||||
:py:data:`PIL.Image.ROTATE_180`, :py:data:`PIL.Image.ROTATE_270`,
|
||||
:py:data:`PIL.Image.TRANSPOSE` or :py:data:`PIL.Image.TRANSVERSE`.
|
||||
:returns: Returns a flipped or rotated copy of this image.
|
||||
"""
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user