Merge pull request #8807 from radarhere/dxt1

Support saving DDS images with pixel formats
This commit is contained in:
Hugo van Kemenade 2025-03-18 15:31:38 +02:00 committed by GitHub
commit 74fec91d33
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
7 changed files with 529 additions and 28 deletions

View File

@ -9,7 +9,13 @@ import pytest
from PIL import DdsImagePlugin, Image
from .helper import assert_image_equal, assert_image_equal_tofile, hopper
from .helper import (
assert_image_equal,
assert_image_equal_tofile,
assert_image_similar,
assert_image_similar_tofile,
hopper,
)
TEST_FILE_DXT1 = "Tests/images/dxt1-rgb-4bbp-noalpha_MipMaps-1.dds"
TEST_FILE_DXT3 = "Tests/images/dxt3-argb-8bbp-explicitalpha_MipMaps-1.dds"
@ -109,6 +115,32 @@ def test_sanity_ati1_bc4u(image_path: str) -> None:
assert_image_equal_tofile(im, TEST_FILE_ATI1.replace(".dds", ".png"))
def test_dx10_bc2(tmp_path: Path) -> None:
out = str(tmp_path / "temp.dds")
with Image.open(TEST_FILE_DXT3) as im:
im.save(out, pixel_format="BC2")
with Image.open(out) as reloaded:
assert reloaded.format == "DDS"
assert reloaded.mode == "RGBA"
assert reloaded.size == (256, 256)
assert_image_similar(im, reloaded, 3.81)
def test_dx10_bc3(tmp_path: Path) -> None:
out = str(tmp_path / "temp.dds")
with Image.open(TEST_FILE_DXT5) as im:
im.save(out, pixel_format="BC3")
with Image.open(out) as reloaded:
assert reloaded.format == "DDS"
assert reloaded.mode == "RGBA"
assert reloaded.size == (256, 256)
assert_image_similar(im, reloaded, 3.69)
@pytest.mark.parametrize(
"image_path",
(
@ -370,7 +402,7 @@ def test_not_implemented(test_file: str) -> None:
def test_save_unsupported_mode(tmp_path: Path) -> None:
out = str(tmp_path / "temp.dds")
im = hopper("HSV")
with pytest.raises(OSError):
with pytest.raises(OSError, match="cannot write mode HSV as DDS"):
im.save(out)
@ -389,5 +421,93 @@ def test_save(mode: str, test_file: str, tmp_path: Path) -> None:
assert im.mode == mode
im.save(out)
with Image.open(out) as reloaded:
assert_image_equal(im, reloaded)
assert_image_equal_tofile(im, out)
def test_save_unsupported_pixel_format(tmp_path: Path) -> None:
out = str(tmp_path / "temp.dds")
im = hopper()
with pytest.raises(OSError, match="cannot write pixel format UNKNOWN"):
im.save(out, pixel_format="UNKNOWN")
def test_save_dxt1(tmp_path: Path) -> None:
# RGB
out = str(tmp_path / "temp.dds")
with Image.open(TEST_FILE_DXT1) as im:
im.convert("RGB").save(out, pixel_format="DXT1")
assert_image_similar_tofile(im, out, 1.84)
# RGBA
im_alpha = im.copy()
im_alpha.putpixel((0, 0), (0, 0, 0, 0))
im_alpha.save(out, pixel_format="DXT1")
with Image.open(out) as reloaded:
assert reloaded.getpixel((0, 0)) == (0, 0, 0, 0)
# L
im_l = im.convert("L")
im_l.save(out, pixel_format="DXT1")
assert_image_similar_tofile(im_l.convert("RGBA"), out, 6.07)
# LA
im_alpha.convert("LA").save(out, pixel_format="DXT1")
with Image.open(out) as reloaded:
assert reloaded.getpixel((0, 0)) == (0, 0, 0, 0)
def test_save_dxt3(tmp_path: Path) -> None:
# RGB
out = str(tmp_path / "temp.dds")
with Image.open(TEST_FILE_DXT3) as im:
im_rgb = im.convert("RGB")
im_rgb.save(out, pixel_format="DXT3")
assert_image_similar_tofile(im_rgb.convert("RGBA"), out, 1.26)
# RGBA
im.save(out, pixel_format="DXT3")
assert_image_similar_tofile(im, out, 3.81)
# L
im_l = im.convert("L")
im_l.save(out, pixel_format="DXT3")
assert_image_similar_tofile(im_l.convert("RGBA"), out, 5.89)
# LA
im_la = im.convert("LA")
im_la.save(out, pixel_format="DXT3")
assert_image_similar_tofile(im_la.convert("RGBA"), out, 8.44)
def test_save_dxt5(tmp_path: Path) -> None:
# RGB
out = str(tmp_path / "temp.dds")
with Image.open(TEST_FILE_DXT1) as im:
im.convert("RGB").save(out, pixel_format="DXT5")
assert_image_similar_tofile(im, out, 1.84)
# RGBA
with Image.open(TEST_FILE_DXT5) as im_rgba:
im_rgba.save(out, pixel_format="DXT5")
assert_image_similar_tofile(im_rgba, out, 3.69)
# L
im_l = im.convert("L")
im_l.save(out, pixel_format="DXT5")
assert_image_similar_tofile(im_l.convert("RGBA"), out, 6.07)
# LA
im_la = im_rgba.convert("LA")
im_la.save(out, pixel_format="DXT5")
assert_image_similar_tofile(im_la.convert("RGBA"), out, 8.32)
def test_save_dx10_bc5(tmp_path: Path) -> None:
out = str(tmp_path / "temp.dds")
with Image.open(TEST_FILE_DX10_BC5_TYPELESS) as im:
im.save(out, pixel_format="BC5")
assert_image_similar_tofile(im, out, 9.56)
im = hopper("L")
with pytest.raises(OSError, match="only RGB mode can be written as BC5"):
im.save(out, pixel_format="BC5")

View File

@ -68,6 +68,7 @@ _LIB_IMAGING = (
"Reduce",
"Bands",
"BcnDecode",
"BcnEncode",
"BitDecode",
"Blend",
"Chops",

View File

@ -419,6 +419,14 @@ class DdsImageFile(ImageFile.ImageFile):
self._mode = "RGBA"
self.pixel_format = "BC1"
n = 1
elif dxgi_format in (DXGI_FORMAT.BC2_TYPELESS, DXGI_FORMAT.BC2_UNORM):
self._mode = "RGBA"
self.pixel_format = "BC2"
n = 2
elif dxgi_format in (DXGI_FORMAT.BC3_TYPELESS, DXGI_FORMAT.BC3_UNORM):
self._mode = "RGBA"
self.pixel_format = "BC3"
n = 3
elif dxgi_format in (DXGI_FORMAT.BC4_TYPELESS, DXGI_FORMAT.BC4_UNORM):
self._mode = "L"
self.pixel_format = "BC4"
@ -518,30 +526,68 @@ def _save(im: Image.Image, fp: IO[bytes], filename: str | bytes) -> None:
msg = f"cannot write mode {im.mode} as DDS"
raise OSError(msg)
alpha = im.mode[-1] == "A"
if im.mode[0] == "L":
pixel_flags = DDPF.LUMINANCE
rawmode = im.mode
if alpha:
rgba_mask = [0x000000FF, 0x000000FF, 0x000000FF]
else:
rgba_mask = [0xFF000000, 0xFF000000, 0xFF000000]
else:
pixel_flags = DDPF.RGB
rawmode = im.mode[::-1]
rgba_mask = [0x00FF0000, 0x0000FF00, 0x000000FF]
if alpha:
r, g, b, a = im.split()
im = Image.merge("RGBA", (a, r, g, b))
if alpha:
pixel_flags |= DDPF.ALPHAPIXELS
rgba_mask.append(0xFF000000 if alpha else 0)
flags = DDSD.CAPS | DDSD.HEIGHT | DDSD.WIDTH | DDSD.PITCH | DDSD.PIXELFORMAT
flags = DDSD.CAPS | DDSD.HEIGHT | DDSD.WIDTH | DDSD.PIXELFORMAT
bitcount = len(im.getbands()) * 8
pitch = (im.width * bitcount + 7) // 8
pixel_format = im.encoderinfo.get("pixel_format")
args: tuple[int] | str
if pixel_format:
codec_name = "bcn"
flags |= DDSD.LINEARSIZE
pitch = (im.width + 3) * 4
rgba_mask = [0, 0, 0, 0]
pixel_flags = DDPF.FOURCC
if pixel_format == "DXT1":
fourcc = D3DFMT.DXT1
args = (1,)
elif pixel_format == "DXT3":
fourcc = D3DFMT.DXT3
args = (2,)
elif pixel_format == "DXT5":
fourcc = D3DFMT.DXT5
args = (3,)
else:
fourcc = D3DFMT.DX10
if pixel_format == "BC2":
args = (2,)
dxgi_format = DXGI_FORMAT.BC2_TYPELESS
elif pixel_format == "BC3":
args = (3,)
dxgi_format = DXGI_FORMAT.BC3_TYPELESS
elif pixel_format == "BC5":
args = (5,)
dxgi_format = DXGI_FORMAT.BC5_TYPELESS
if im.mode != "RGB":
msg = "only RGB mode can be written as BC5"
raise OSError(msg)
else:
msg = f"cannot write pixel format {pixel_format}"
raise OSError(msg)
else:
codec_name = "raw"
flags |= DDSD.PITCH
pitch = (im.width * bitcount + 7) // 8
alpha = im.mode[-1] == "A"
if im.mode[0] == "L":
pixel_flags = DDPF.LUMINANCE
args = im.mode
if alpha:
rgba_mask = [0x000000FF, 0x000000FF, 0x000000FF]
else:
rgba_mask = [0xFF000000, 0xFF000000, 0xFF000000]
else:
pixel_flags = DDPF.RGB
args = im.mode[::-1]
rgba_mask = [0x00FF0000, 0x0000FF00, 0x000000FF]
if alpha:
r, g, b, a = im.split()
im = Image.merge("RGBA", (a, r, g, b))
if alpha:
pixel_flags |= DDPF.ALPHAPIXELS
rgba_mask.append(0xFF000000 if alpha else 0)
fourcc = D3DFMT.UNKNOWN
fp.write(
o32(DDS_MAGIC)
+ struct.pack(
@ -556,11 +602,16 @@ def _save(im: Image.Image, fp: IO[bytes], filename: str | bytes) -> None:
)
+ struct.pack("11I", *((0,) * 11)) # reserved
# pfsize, pfflags, fourcc, bitcount
+ struct.pack("<4I", 32, pixel_flags, 0, bitcount)
+ struct.pack("<4I", 32, pixel_flags, fourcc, bitcount)
+ struct.pack("<4I", *rgba_mask) # dwRGBABitMask
+ struct.pack("<5I", DDSCAPS.TEXTURE, 0, 0, 0, 0)
)
ImageFile._save(im, fp, [ImageFile._Tile("raw", (0, 0) + im.size, 0, rawmode)])
if fourcc == D3DFMT.DX10:
fp.write(
# dxgi_format, 2D resource, misc, array size, straight alpha
struct.pack("<5I", dxgi_format, 3, 0, 0, 1)
)
ImageFile._save(im, fp, [ImageFile._Tile(codec_name, (0, 0) + im.size, 0, args)])
def _accept(prefix: bytes) -> bool:

View File

@ -4041,6 +4041,8 @@ PyImaging_ZipDecoderNew(PyObject *self, PyObject *args);
/* Encoders (in encode.c) */
extern PyObject *
PyImaging_BcnEncoderNew(PyObject *self, PyObject *args);
extern PyObject *
PyImaging_EpsEncoderNew(PyObject *self, PyObject *args);
extern PyObject *
PyImaging_GifEncoderNew(PyObject *self, PyObject *args);
@ -4109,6 +4111,7 @@ static PyMethodDef functions[] = {
/* Codecs */
{"bcn_decoder", (PyCFunction)PyImaging_BcnDecoderNew, METH_VARARGS},
{"bcn_encoder", (PyCFunction)PyImaging_BcnEncoderNew, METH_VARARGS},
{"bit_decoder", (PyCFunction)PyImaging_BitDecoderNew, METH_VARARGS},
{"eps_encoder", (PyCFunction)PyImaging_EpsEncoderNew, METH_VARARGS},
{"fli_decoder", (PyCFunction)PyImaging_FliDecoderNew, METH_VARARGS},

View File

@ -27,6 +27,7 @@
#include "thirdparty/pythoncapi_compat.h"
#include "libImaging/Imaging.h"
#include "libImaging/Bcn.h"
#include "libImaging/Gif.h"
#ifdef HAVE_UNISTD_H
@ -350,6 +351,31 @@ get_packer(ImagingEncoderObject *encoder, const char *mode, const char *rawmode)
return 0;
}
/* -------------------------------------------------------------------- */
/* BCN */
/* -------------------------------------------------------------------- */
PyObject *
PyImaging_BcnEncoderNew(PyObject *self, PyObject *args) {
ImagingEncoderObject *encoder;
char *mode;
int n;
if (!PyArg_ParseTuple(args, "si", &mode, &n)) {
return NULL;
}
encoder = PyImaging_EncoderNew(0);
if (encoder == NULL) {
return NULL;
}
encoder->encode = ImagingBcnEncode;
encoder->state.state = n;
return (PyObject *)encoder;
}
/* -------------------------------------------------------------------- */
/* EPS */
/* -------------------------------------------------------------------- */

298
src/libImaging/BcnEncode.c Normal file
View File

@ -0,0 +1,298 @@
/*
* The Python Imaging Library
*
* encoder for DXT1-compressed data
*
* Format documentation:
* https://web.archive.org/web/20170802060935/http://oss.sgi.com/projects/ogl-sample/registry/EXT/texture_compression_s3tc.txt
*
*/
#include "Imaging.h"
typedef struct {
UINT8 color[3];
} rgb;
typedef struct {
UINT8 color[4];
} rgba;
static rgb
decode_565(UINT16 x) {
rgb item;
int r, g, b;
r = (x & 0xf800) >> 8;
r |= r >> 5;
item.color[0] = r;
g = (x & 0x7e0) >> 3;
g |= g >> 6;
item.color[1] = g;
b = (x & 0x1f) << 3;
b |= b >> 5;
item.color[2] = b;
return item;
}
static UINT16
encode_565(rgba item) {
UINT8 r, g, b;
r = item.color[0] >> (8 - 5);
g = item.color[1] >> (8 - 6);
b = item.color[2] >> (8 - 5);
return (r << (5 + 6)) | (g << 5) | b;
}
static void
encode_bc1_color(Imaging im, ImagingCodecState state, UINT8 *dst, int separate_alpha) {
int i, j, k;
UINT16 color_min = 0, color_max = 0;
rgb color_min_rgb, color_max_rgb;
rgba block[16], *current_rgba;
// Determine the min and max colors in this 4x4 block
int first = 1;
int transparency = 0;
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
current_rgba = &block[i + j * 4];
int x = state->x + i * im->pixelsize;
int y = state->y + j;
if (x >= state->xsize * im->pixelsize || y >= state->ysize) {
// The 4x4 block extends past the edge of the image
for (k = 0; k < 3; k++) {
current_rgba->color[k] = 0;
}
continue;
}
for (k = 0; k < 3; k++) {
current_rgba->color[k] =
(UINT8)im->image[y][x + (im->pixelsize == 1 ? 0 : k)];
}
if (separate_alpha) {
if ((UINT8)im->image[y][x + 3] == 0) {
current_rgba->color[3] = 0;
transparency = 1;
continue;
} else {
current_rgba->color[3] = 1;
}
}
UINT16 color = encode_565(*current_rgba);
if (first || color < color_min) {
color_min = color;
}
if (first || color > color_max) {
color_max = color;
}
first = 0;
}
}
if (transparency) {
*dst++ = color_min;
*dst++ = color_min >> 8;
}
*dst++ = color_max;
*dst++ = color_max >> 8;
if (!transparency) {
*dst++ = color_min;
*dst++ = color_min >> 8;
}
color_min_rgb = decode_565(color_min);
color_max_rgb = decode_565(color_max);
for (i = 0; i < 4; i++) {
UINT8 l = 0;
for (j = 3; j > -1; j--) {
current_rgba = &block[i * 4 + j];
if (transparency && !current_rgba->color[3]) {
l |= 3 << (j * 2);
continue;
}
float distance = 0;
int total = 0;
for (k = 0; k < 3; k++) {
float denom =
(float)abs(color_max_rgb.color[k] - color_min_rgb.color[k]);
if (denom != 0) {
distance +=
abs(current_rgba->color[k] - color_min_rgb.color[k]) / denom;
total += 1;
}
}
if (total == 0) {
continue;
}
if (transparency) {
distance *= 4 / total;
if (distance < 1) {
// color_max
} else if (distance < 3) {
l |= 2 << (j * 2); // 1/2 * color_min + 1/2 * color_max
} else {
l |= 1 << (j * 2); // color_min
}
} else {
distance *= 6 / total;
if (distance < 1) {
l |= 1 << (j * 2); // color_min
} else if (distance < 3) {
l |= 3 << (j * 2); // 1/3 * color_min + 2/3 * color_max
} else if (distance < 5) {
l |= 2 << (j * 2); // 2/3 * color_min + 1/3 * color_max
} else {
// color_max
}
}
}
*dst++ = l;
}
}
static void
encode_bc2_block(Imaging im, ImagingCodecState state, UINT8 *dst) {
int i, j;
UINT8 block[16], current_alpha;
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
int x = state->x + i * im->pixelsize;
int y = state->y + j;
if (x >= state->xsize * im->pixelsize || y >= state->ysize) {
// The 4x4 block extends past the edge of the image
block[i + j * 4] = 0;
continue;
}
current_alpha = (UINT8)im->image[y][x + 3];
block[i + j * 4] = current_alpha;
}
}
for (i = 0; i < 4; i++) {
UINT16 l = 0;
for (j = 3; j > -1; j--) {
current_alpha = block[i * 4 + j];
l |= current_alpha << (j * 4);
}
*dst++ = l;
*dst++ = l >> 8;
}
}
static void
encode_bc3_alpha(Imaging im, ImagingCodecState state, UINT8 *dst, int o) {
int i, j;
UINT8 alpha_min = 0, alpha_max = 0;
UINT8 block[16], current_alpha;
// Determine the min and max colors in this 4x4 block
int first = 1;
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
int x = state->x + i * im->pixelsize;
int y = state->y + j;
if (x >= state->xsize * im->pixelsize || y >= state->ysize) {
// The 4x4 block extends past the edge of the image
block[i + j * 4] = 0;
continue;
}
current_alpha = (UINT8)im->image[y][x + o];
block[i + j * 4] = current_alpha;
if (first || current_alpha < alpha_min) {
alpha_min = current_alpha;
}
if (first || current_alpha > alpha_max) {
alpha_max = current_alpha;
}
first = 0;
}
}
*dst++ = alpha_min;
*dst++ = alpha_max;
float denom = (float)abs(alpha_max - alpha_min);
for (i = 0; i < 2; i++) {
UINT32 l = 0;
for (j = 7; j > -1; j--) {
current_alpha = block[i * 8 + j];
if (!current_alpha) {
l |= 6 << (j * 3);
continue;
} else if (current_alpha == 255) {
l |= 7 << (j * 3);
continue;
}
float distance =
denom == 0 ? 0 : abs(current_alpha - alpha_min) / denom * 10;
if (distance < 3) {
l |= 2 << (j * 3); // 4/5 * alpha_min + 1/5 * alpha_max
} else if (distance < 5) {
l |= 3 << (j * 3); // 3/5 * alpha_min + 2/5 * alpha_max
} else if (distance < 7) {
l |= 4 << (j * 3); // 2/5 * alpha_min + 3/5 * alpha_max
} else {
l |= 5 << (j * 3); // 1/5 * alpha_min + 4/5 * alpha_max
}
}
*dst++ = l;
*dst++ = l >> 8;
*dst++ = l >> 16;
}
}
int
ImagingBcnEncode(Imaging im, ImagingCodecState state, UINT8 *buf, int bytes) {
int n = state->state;
int has_alpha_channel =
strcmp(im->mode, "RGBA") == 0 || strcmp(im->mode, "LA") == 0;
UINT8 *dst = buf;
for (;;) {
if (n == 5) {
encode_bc3_alpha(im, state, dst, 0);
dst += 8;
encode_bc3_alpha(im, state, dst, 1);
} else {
if (n == 2 || n == 3) {
if (has_alpha_channel) {
if (n == 2) {
encode_bc2_block(im, state, dst);
} else {
encode_bc3_alpha(im, state, dst, 3);
}
dst += 8;
} else {
for (int i = 0; i < 8; i++) {
*dst++ = 0xff;
}
}
}
encode_bc1_color(im, state, dst, n == 1 && has_alpha_channel);
}
dst += 8;
state->x += im->pixelsize * 4;
if (state->x >= state->xsize * im->pixelsize) {
state->x = 0;
state->y += 4;
if (state->y >= state->ysize) {
state->errcode = IMAGING_CODEC_END;
break;
}
}
}
return dst - buf;
}

View File

@ -567,6 +567,8 @@ typedef int (*ImagingCodec)(
extern int
ImagingBcnDecode(Imaging im, ImagingCodecState state, UINT8 *buffer, Py_ssize_t bytes);
extern int
ImagingBcnEncode(Imaging im, ImagingCodecState state, UINT8 *buffer, int bytes);
extern int
ImagingBitDecode(Imaging im, ImagingCodecState state, UINT8 *buffer, Py_ssize_t bytes);
extern int
ImagingEpsEncode(Imaging im, ImagingCodecState state, UINT8 *buffer, int bytes);