diff --git a/Tests/test_numpy.py b/Tests/test_numpy.py index 3cadd4e1d..29323b45a 100644 --- a/Tests/test_numpy.py +++ b/Tests/test_numpy.py @@ -12,6 +12,7 @@ except ImportError: class TestNumpy(PillowTestCase): + TEST_IMAGE_SIZE = (10, 10) def setUp(self): try: @@ -29,14 +30,14 @@ class TestNumpy(PillowTestCase): else: data = list(range(100)) a = numpy.array(data, dtype=dtype) - a.shape = 10, 10 + a.shape = TestNumpy.TEST_IMAGE_SIZE i = Image.fromarray(a) if list(i.getdata()) != data: print("data mismatch for", dtype) else: data = list(range(100)) a = numpy.array([[x]*bands for x in data], dtype=dtype) - a.shape = 10, 10, bands + a.shape = TestNumpy.TEST_IMAGE_SIZE[0], TestNumpy.TEST_IMAGE_SIZE[1], bands i = Image.fromarray(a) if list(i.split()[0].getdata()) != list(range(100)): print("data mismatch for", dtype) @@ -48,43 +49,48 @@ class TestNumpy(PillowTestCase): self.assertRaises(TypeError, lambda: to_image(numpy.bool8)) # Check supported 8-bit integer formats - self.assert_image(to_image(numpy.uint8), "L", (10, 10)) - self.assert_image(to_image(numpy.uint8, 3), "RGB", (10, 10)) - self.assert_image(to_image(numpy.uint8, 4), "RGBA", (10, 10)) - self.assert_image(to_image(numpy.int8), "I", (10, 10)) + self.assert_image(to_image(numpy.uint8), "L", TestNumpy.TEST_IMAGE_SIZE) + self.assert_image(to_image(numpy.uint8, 3), "RGB", TestNumpy.TEST_IMAGE_SIZE) + self.assert_image(to_image(numpy.uint8, 4), "RGBA", TestNumpy.TEST_IMAGE_SIZE) + self.assert_image(to_image(numpy.int8), "I", TestNumpy.TEST_IMAGE_SIZE) # Check non-fixed-size integer types self.assertRaises(TypeError, lambda: to_image(numpy.uint)) - self.assert_image(to_image(numpy.int), "I", (10, 10)) + self.assert_image(to_image(numpy.int), "I", TestNumpy.TEST_IMAGE_SIZE) # Check 16-bit integer formats if Image._ENDIAN == '<': - self.assert_image(to_image(numpy.uint16), "I;16L", (10, 10)) + self.assert_image(to_image(numpy.uint16), "I;16L", TestNumpy.TEST_IMAGE_SIZE) else: - self.assert_image(to_image(numpy.uint16), "I;16B", (10, 10)) + self.assert_image(to_image(numpy.uint16), "I;16B", TestNumpy.TEST_IMAGE_SIZE) self.assertRaises(TypeError, lambda: to_image(numpy.int16)) # Check 32-bit integer formats self.assertRaises(TypeError, lambda: to_image(numpy.uint32)) - self.assert_image(to_image(numpy.int32), "I", (10, 10)) + self.assert_image(to_image(numpy.int32), "I", TestNumpy.TEST_IMAGE_SIZE) # Check 64-bit integer formats self.assertRaises(TypeError, lambda: to_image(numpy.uint64)) self.assertRaises(TypeError, lambda: to_image(numpy.int64)) # Check floating-point formats - self.assert_image(to_image(numpy.float), "F", (10, 10)) + self.assert_image(to_image(numpy.float), "F", TestNumpy.TEST_IMAGE_SIZE) self.assertRaises(TypeError, lambda: to_image(numpy.float16)) - self.assert_image(to_image(numpy.float32), "F", (10, 10)) - self.assert_image(to_image(numpy.float64), "F", (10, 10)) + self.assert_image(to_image(numpy.float32), "F", TestNumpy.TEST_IMAGE_SIZE) + self.assert_image(to_image(numpy.float64), "F", TestNumpy.TEST_IMAGE_SIZE) # based on an erring example at # http://stackoverflow.com/questions/10854903/what-is-causing-dimension-dependent-attributeerror-in-pil-fromarray-function def test_3d_array(self): - a = numpy.ones((10, 10, 10), dtype=numpy.uint8) - self.assert_image(Image.fromarray(a[1, :, :]), "L", (10, 10)) - self.assert_image(Image.fromarray(a[:, 1, :]), "L", (10, 10)) - self.assert_image(Image.fromarray(a[:, :, 1]), "L", (10, 10)) + size = (5, TestNumpy.TEST_IMAGE_SIZE[0], TestNumpy.TEST_IMAGE_SIZE[1]) + a = numpy.ones(size, dtype=numpy.uint8) + self.assert_image(Image.fromarray(a[1, :, :]), "L", TestNumpy.TEST_IMAGE_SIZE) + size = (TestNumpy.TEST_IMAGE_SIZE[0], 5, TestNumpy.TEST_IMAGE_SIZE[1]) + a = numpy.ones(size, dtype=numpy.uint8) + self.assert_image(Image.fromarray(a[:, 1, :]), "L", TestNumpy.TEST_IMAGE_SIZE) + size = (TestNumpy.TEST_IMAGE_SIZE[0], TestNumpy.TEST_IMAGE_SIZE[1], 5) + a = numpy.ones(size, dtype=numpy.uint8) + self.assert_image(Image.fromarray(a[:, :, 1]), "L", TestNumpy.TEST_IMAGE_SIZE) def _test_img_equals_nparray(self, img, np): np_size = np.shape[1], np.shape[0]