mirror of
https://github.com/python-pillow/Pillow.git
synced 2026-02-04 22:39:33 +03:00
Add primary color dithering to ImageOps
This commit is contained in:
parent
8494b06c71
commit
8cb0ce545f
|
|
@ -604,3 +604,34 @@ def test_autocontrast_preserve_one_color(color: tuple[int, int, int]) -> None:
|
|||
img, cutoff=10, preserve_tone=True
|
||||
) # single color 10 cutoff
|
||||
assert_image_equal(img, out)
|
||||
|
||||
from PIL import Image, ImageOps
|
||||
|
||||
|
||||
def test_dither_primary_returns_image():
|
||||
im = Image.new("RGB", (4, 4), (128, 128, 128))
|
||||
out = ImageOps.dither_primary(im)
|
||||
|
||||
assert isinstance(out, Image.Image)
|
||||
assert out.size == im.size
|
||||
assert out.mode == "RGB"
|
||||
|
||||
|
||||
def test_dither_primary_uses_only_primary_colors():
|
||||
im = Image.new("RGB", (4, 4), (200, 100, 50))
|
||||
out = ImageOps.dither_primary(im)
|
||||
|
||||
pixels = out.load()
|
||||
for x in range(out.width):
|
||||
for y in range(out.height):
|
||||
r, g, b = pixels[x, y]
|
||||
assert r in (0, 255)
|
||||
assert g in (0, 255)
|
||||
assert b in (0, 255)
|
||||
|
||||
|
||||
def test_dither_primary_small_image():
|
||||
im = Image.new("RGB", (2, 2), (255, 0, 0))
|
||||
out = ImageOps.dither_primary(im)
|
||||
|
||||
assert out.size == (2, 2)
|
||||
|
|
|
|||
|
|
@ -11,6 +11,7 @@ only work on L and RGB images.
|
|||
.. versionadded:: 1.1.3
|
||||
|
||||
.. autofunction:: autocontrast
|
||||
.. autofunction:: dither_primary
|
||||
.. autofunction:: colorize
|
||||
.. autofunction:: crop
|
||||
.. autofunction:: scale
|
||||
|
|
|
|||
|
|
@ -643,6 +643,68 @@ def mirror(image: Image.Image) -> Image.Image:
|
|||
"""
|
||||
return image.transpose(Image.Transpose.FLIP_LEFT_RIGHT)
|
||||
|
||||
def _dither_saturation(value: float, quadrant: int) -> int:
|
||||
if value > 233:
|
||||
return 255
|
||||
if value > 159:
|
||||
return 255 if quadrant != 1 else 0
|
||||
if value > 95:
|
||||
return 255 if quadrant in (0, 3) else 0
|
||||
if value > 32:
|
||||
return 255 if quadrant == 1 else 0
|
||||
return 0
|
||||
|
||||
def dither_primary(image: Image.Image) -> Image.Image:
|
||||
"""
|
||||
Reduce the image to primary colors and apply ordered dithering.
|
||||
|
||||
This operation first reduces each RGB channel to its primary values
|
||||
(0 or 255), then applies a 2x2 ordered dithering pattern based on the
|
||||
average color intensity.
|
||||
|
||||
:param image: The image to process.
|
||||
:return: An image.
|
||||
"""
|
||||
image = image.convert("RGB")
|
||||
width, height = image.size
|
||||
|
||||
src = image.load()
|
||||
out = Image.new("RGB", (width, height))
|
||||
dst = out.load()
|
||||
|
||||
# Step 1: primary color reduction
|
||||
for x in range(width):
|
||||
for y in range(height):
|
||||
r, g, b = src[x, y]
|
||||
src[x, y] = (
|
||||
255 if r > 127 else 0,
|
||||
255 if g > 127 else 0,
|
||||
255 if b > 127 else 0,
|
||||
)
|
||||
|
||||
# Step 2: ordered dithering (2x2 blocks)
|
||||
for x in range(0, width - 1, 2):
|
||||
for y in range(0, height - 1, 2):
|
||||
p1 = src[x, y]
|
||||
p2 = src[x, y + 1]
|
||||
p3 = src[x + 1, y]
|
||||
p4 = src[x + 1, y + 1]
|
||||
|
||||
red = (p1[0] + p2[0] + p3[0] + p4[0]) / 4
|
||||
green = (p1[1] + p2[1] + p3[1] + p4[1]) / 4
|
||||
blue = (p1[2] + p2[2] + p3[2] + p4[2]) / 4
|
||||
|
||||
r = [_dither_saturation(red, q) for q in range(4)]
|
||||
g = [_dither_saturation(green, q) for q in range(4)]
|
||||
b = [_dither_saturation(blue, q) for q in range(4)]
|
||||
|
||||
dst[x, y] = (r[0], g[0], b[0])
|
||||
dst[x, y + 1] = (r[1], g[1], b[1])
|
||||
dst[x + 1, y] = (r[2], g[2], b[2])
|
||||
dst[x + 1, y + 1] = (r[3], g[3], b[3])
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def posterize(image: Image.Image, bits: int) -> Image.Image:
|
||||
"""
|
||||
|
|
|
|||
Loading…
Reference in New Issue
Block a user