Merge branch 'master' of github.com:python-pillow/Pillow into winbuild-rewrite

# Conflicts:
#	.github/workflows/test-windows.yml
#	winbuild/config.py
#       winbuild/build_prepare.py
This commit is contained in:
nulano 2020-05-25 14:32:21 +02:00
commit 9640b48040
96 changed files with 2718 additions and 1459 deletions

View File

@ -30,3 +30,9 @@ repos:
hooks:
- id: check-merge-conflict
- id: check-yaml
- repo: https://github.com/Lucas-C/pre-commit-hooks
rev: v1.1.7
hooks:
- id: remove-tabs
exclude: (Makefile$|\.bat$|\.cmake$|\.eps$|\.fits$|\.opt$)

View File

@ -5,6 +5,15 @@ Changelog (Pillow)
7.2.0 (unreleased)
------------------
- Fix repeatedly loading .gbr #4620
[ElinksFr, radarhere]
- JPEG: Truncate icclist instead of setting to None #4613
[homm]
- Fixes default offset for Exif #4594
[rodrigob, radarhere]
- Fixed bug when unpickling TIFF images #4565
[radarhere]
@ -5310,22 +5319,22 @@ Pre-fork
+ Added keyword options to the "save" method. The following options
are currently supported:
format option description
Format Option Description
--------------------------------------------------------
JPEG optimize minimize output file at the
JPEG optimize Minimize output file at the
expense of compression speed.
JPEG progressive enable progressive output. the
option value is ignored.
JPEG progressive Enable progressive output.
The option value is ignored.
JPEG quality set compression quality (1-100).
the default value is 75.
JPEG quality Set compression quality (1-100).
The default value is 75.
JPEG smooth smooth dithered images. value
is strength (1-100). default is
off (0).
JPEG smooth Smooth dithered images.
Value is strength (1-100).
Default is off (0).
PNG optimize minimize output file at the
PNG optimize Minimize output file at the
expense of compression speed.
Expect more options in future releases. Also note that

Binary file not shown.

After

Width:  |  Height:  |  Size: 212 B

View File

@ -15,3 +15,11 @@ def test_gbr_file():
with Image.open("Tests/images/gbr.gbr") as im:
with Image.open("Tests/images/gbr.png") as target:
assert_image_equal(target, im)
def test_multiple_load_operations():
with Image.open("Tests/images/gbr.gbr") as im:
im.load()
im.load()
with Image.open("Tests/images/gbr.png") as target:
assert_image_equal(target, im)

View File

@ -500,7 +500,7 @@ class TestFileJpeg:
def test_load_djpeg(self):
with Image.open(TEST_FILE) as img:
img.load_djpeg()
assert_image_similar(img, Image.open(TEST_FILE), 0)
assert_image_similar(img, Image.open(TEST_FILE), 5)
@pytest.mark.skipif(not cjpeg_available(), reason="cjpeg not available")
def test_save_cjpeg(self, tmp_path):
@ -689,6 +689,10 @@ class TestFileJpeg:
apps_13_lengths = [len(v) for k, v in im.applist if k == "APP13"]
assert [65504, 24] == apps_13_lengths
def test_icc_after_SOF(self):
with Image.open("Tests/images/icc-after-SOF.jpg") as im:
assert im.info["icc_profile"] == b"profile"
@pytest.mark.skipif(not is_win32(), reason="Windows only")
@skip_unless_feature("jpg")

View File

@ -174,8 +174,10 @@ def assert_compare_images(a, b, max_average_diff, max_diff=255):
average_diff = sum(i * num for i, num in enumerate(ch_hist)) / (
a.size[0] * a.size[1]
)
msg = "average pixel value difference {:.4f} > expected {:.4f} "
msg = (
"average pixel value difference {:.4f} > expected {:.4f} "
"for '{}' band".format(average_diff, max_average_diff, band)
)
assert max_average_diff >= average_diff, msg
last_diff = [i for i, num in enumerate(ch_hist) if num > 0][-1]

View File

@ -261,9 +261,9 @@ class TestPyDecoder:
with Image.open(out) as reloaded:
reloaded_exif = reloaded.getexif()
assert reloaded_exif[258] == 8
assert 40960 not in exif
assert 40960 not in reloaded_exif
assert reloaded_exif[40963] == 455
assert exif[11] == "Pillow test"
assert reloaded_exif[11] == "Pillow test"
with Image.open("Tests/images/no-dpi-in-exif.jpg") as im: # Big endian
exif = im.getexif()
@ -281,9 +281,9 @@ class TestPyDecoder:
with Image.open(out) as reloaded:
reloaded_exif = reloaded.getexif()
assert reloaded_exif[258] == 8
assert 40960 not in exif
assert 34665 not in reloaded_exif
assert reloaded_exif[40963] == 455
assert exif[305] == "Pillow test"
assert reloaded_exif[305] == "Pillow test"
@skip_unless_feature("webp")
@skip_unless_feature("webp_anim")
@ -302,7 +302,7 @@ class TestPyDecoder:
reloaded_exif = reloaded.getexif()
assert reloaded_exif[258] == 8
assert reloaded_exif[40963] == 455
assert exif[305] == "Pillow test"
assert reloaded_exif[305] == "Pillow test"
im.save(out, exif=exif)
check_exif()

View File

@ -17,8 +17,8 @@ itself. Such plug-ins usually have names like
Pillow decodes files in 2 stages:
1. It loops over the available image plugins in the loaded order, and
calls the plugin's ``accept`` function with the first 16 bytes of
the file. If the ``accept`` function returns true, the plugin's
calls the plugin's ``_accept`` function with the first 16 bytes of
the file. If the ``_accept`` function returns true, the plugin's
``_open`` method is called to set up the image metadata and image
tiles. The ``_open`` method is not for decoding the actual image
data.
@ -53,6 +53,11 @@ true color.
from PIL import Image, ImageFile
def _accept(prefix):
return prefix[:4] == b"SPAM"
class SpamImageFile(ImageFile.ImageFile):
format = "SPAM"
@ -60,12 +65,7 @@ true color.
def _open(self):
# check header
header = self.fp.read(128)
if header[:4] != b"SPAM":
raise SyntaxError("not a SPAM file")
header = header.split()
header = self.fp.read(128).split()
# size in pixels (width, height)
self._size = int(header[1]), int(header[2])
@ -86,7 +86,7 @@ true color.
("raw", (0, 0) + self.size, 128, (self.mode, 0, 1))
]
Image.register_open(SpamImageFile.format, SpamImageFile)
Image.register_open(SpamImageFile.format, SpamImageFile, _accept)
Image.register_extension(SpamImageFile.format, ".spam")
Image.register_extension(SpamImageFile.format, ".spa") # dos version

View File

@ -329,7 +329,7 @@ In Fedora, the command is::
.. Note:: ``redhat-rpm-config`` is required on Fedora 23, but not earlier versions.
Prerequisites are installed on **Ubuntu 16.04 LTS** with::
Prerequisites for **Ubuntu 16.04 LTS - 20.04 LTS** are installed with::
sudo apt-get install libtiff5-dev libjpeg8-dev libopenjp2-7-dev zlib1g-dev \
libfreetype6-dev liblcms2-dev libwebp-dev tcl8.6-dev tk8.6-dev python3-tk \
@ -434,7 +434,7 @@ These platforms have been reported to work at the versions mentioned.
+----------------------------------+------------------------------+--------------------------------+-----------------------+
|**Operating system** |**Tested Python versions** |**Latest tested Pillow version**|**Tested processors** |
+----------------------------------+------------------------------+--------------------------------+-----------------------+
| macOS 10.15 Catalina | 3.5, 3.6, 3.7, 3.8 | 7.0.0 |x86-64 |
| macOS 10.15 Catalina | 3.5, 3.6, 3.7, 3.8 | 7.1.2 |x86-64 |
+----------------------------------+------------------------------+--------------------------------+-----------------------+
| macOS 10.14 Mojave | 2.7, 3.5, 3.6, 3.7 | 6.0.0 |x86-64 |
| +------------------------------+--------------------------------+ +

View File

@ -9,13 +9,14 @@ this class store bitmap fonts, and are used with the
:py:meth:`PIL.ImageDraw.Draw.text` method.
PIL uses its own font file format to store bitmap fonts. You can use the
:command:`pilfont` utility to convert BDF and PCF font descriptors (X window
font formats) to this format.
:command:`pilfont` utility from
`pillow-scripts <https://pypi.org/project/pillow-scripts/>`_
to convert BDF and PCF font descriptors (X window font formats) to this format.
Starting with version 1.1.4, PIL can be configured to support TrueType and
OpenType fonts (as well as other font formats supported by the FreeType
library). For earlier versions, TrueType support is only available as part of
the imToolkit package
the imToolkit package.
Example
-------

View File

@ -10,3 +10,4 @@ multi_line_output = 3
[tool:pytest]
addopts = -rs
testpaths = Tests

View File

@ -730,7 +730,11 @@ class pil_build_ext(build_ext):
if struct.unpack("h", b"\0\1")[0] == 1:
defs.append(("WORDS_BIGENDIAN", None))
if sys.platform == "win32" and not (PLATFORM_PYPY or PLATFORM_MINGW):
if (
sys.platform == "win32"
and sys.version_info < (3, 9)
and not (PLATFORM_PYPY or PLATFORM_MINGW)
):
defs.append(("PILLOW_VERSION", '"\\"%s\\""' % PILLOW_VERSION))
else:
defs.append(("PILLOW_VERSION", '"%s"' % PILLOW_VERSION))

View File

@ -84,6 +84,10 @@ class GbrImageFile(ImageFile.ImageFile):
self._data_size = width * height * color_depth
def load(self):
if self.im:
# Already loaded
return
self.im = Image.core.new(self.mode, self.size)
self.frombytes(self.fp.read(self._data_size))

View File

@ -3281,7 +3281,7 @@ class Exif(MutableMapping):
self._data.update(ifd)
self._ifds[0x8769] = ifd
def tobytes(self, offset=0):
def tobytes(self, offset=8):
from . import TiffImagePlugin
if self.endian == "<":

View File

@ -54,7 +54,7 @@ def invert(image):
def lighter(image1, image2):
"""
Compares the two images, pixel by pixel, and returns a new image containing
the lighter values. At least one of the images must have mode "1".
the lighter values.
.. code-block:: python
@ -71,7 +71,7 @@ def lighter(image1, image2):
def darker(image1, image2):
"""
Compares the two images, pixel by pixel, and returns a new image containing
the darker values. At least one of the images must have mode "1".
the darker values.
.. code-block:: python
@ -88,7 +88,7 @@ def darker(image1, image2):
def difference(image1, image2):
"""
Returns the absolute value of the pixel-by-pixel difference between the two
images. At least one of the images must have mode "1".
images.
.. code-block:: python
@ -107,8 +107,7 @@ def multiply(image1, image2):
Superimposes two images on top of each other.
If you multiply an image with a solid black image, the result is black. If
you multiply with a solid white image, the image is unaffected. At least
one of the images must have mode "1".
you multiply with a solid white image, the image is unaffected.
.. code-block:: python
@ -124,8 +123,7 @@ def multiply(image1, image2):
def screen(image1, image2):
"""
Superimposes two inverted images on top of each other. At least one of the
images must have mode "1".
Superimposes two inverted images on top of each other.
.. code-block:: python
@ -179,7 +177,6 @@ def add(image1, image2, scale=1.0, offset=0):
"""
Adds two images, dividing the result by scale and adding the
offset. If omitted, scale defaults to 1.0, and offset to 0.0.
At least one of the images must have mode "1".
.. code-block:: python
@ -196,8 +193,7 @@ def add(image1, image2, scale=1.0, offset=0):
def subtract(image1, image2, scale=1.0, offset=0):
"""
Subtracts two images, dividing the result by scale and adding the offset.
If omitted, scale defaults to 1.0, and offset to 0.0. At least one of the
images must have mode "1".
If omitted, scale defaults to 1.0, and offset to 0.0.
.. code-block:: python
@ -212,8 +208,7 @@ def subtract(image1, image2, scale=1.0, offset=0):
def add_modulo(image1, image2):
"""Add two images, without clipping the result. At least one of the images
must have mode "1".
"""Add two images, without clipping the result.
.. code-block:: python
@ -228,8 +223,7 @@ def add_modulo(image1, image2):
def subtract_modulo(image1, image2):
"""Subtract two images, without clipping the result. At least one of the
images must have mode "1".
"""Subtract two images, without clipping the result.
.. code-block:: python
@ -244,8 +238,12 @@ def subtract_modulo(image1, image2):
def logical_and(image1, image2):
"""Logical AND between two images. At least one of the images must have
mode "1".
"""Logical AND between two images.
Both of the images must have mode "1". If you would like to perform a
logical AND on an image with a mode other than "1", try
:py:meth:`~PIL.ImageChops.multiply` instead, using a black-and-white mask
as the second image.
.. code-block:: python
@ -260,8 +258,9 @@ def logical_and(image1, image2):
def logical_or(image1, image2):
"""Logical OR between two images. At least one of the images must have
mode "1".
"""Logical OR between two images.
Both of the images must have mode "1".
.. code-block:: python
@ -276,8 +275,9 @@ def logical_or(image1, image2):
def logical_xor(image1, image2):
"""Logical XOR between two images. At least one of the images must have
mode "1".
"""Logical XOR between two images.
Both of the images must have mode "1".
.. code-block:: python

View File

@ -221,7 +221,7 @@ def SOF(self, marker):
else:
icc_profile = None # wrong number of fragments
self.info["icc_profile"] = icc_profile
self.icclist = None
self.icclist = []
for i in range(6, len(s), 3):
t = s[i : i + 3]
@ -593,9 +593,9 @@ def convert_dict_qtables(qtables):
def get_sampling(im):
# There's no subsampling when image have only 1 layer
# There's no subsampling when images have only 1 layer
# (grayscale images) or when they are CMYK (4 layers),
# so set subsampling to default value.
# so set subsampling to the default value.
#
# NOTE: currently Pillow can't encode JPEG to YCCK format.
# If YCCK support is added in the future, subsampling code will have

View File

@ -68,8 +68,9 @@ ImagingFind(const char* name)
#else
id = atol(name);
#endif
if (!id)
if (!id) {
return NULL;
}
return (Imaging) id;
}
@ -119,10 +120,11 @@ PyImagingPhotoPut(ClientData clientdata, Tcl_Interp* interp,
block.offset[0] = 0;
block.offset[1] = 1;
block.offset[2] = 2;
if (strcmp(im->mode, "RGBA") == 0)
if (strcmp(im->mode, "RGBA") == 0) {
block.offset[3] = 3; /* alpha (or reserved, under 8.2) */
else
} else {
block.offset[3] = 0; /* no alpha */
}
} else {
TCL_APPEND_RESULT(interp, "Bad mode", (char*) NULL);
return TCL_ERROR;
@ -136,10 +138,11 @@ PyImagingPhotoPut(ClientData clientdata, Tcl_Interp* interp,
if (TK_LT_85) { /* Tk 8.4 */
TK_PHOTO_PUT_BLOCK_84(photo, &block, 0, 0, block.width, block.height,
TK_PHOTO_COMPOSITE_SET);
if (strcmp(im->mode, "RGBA") == 0)
if (strcmp(im->mode, "RGBA") == 0) {
/* Tk workaround: we need apply ToggleComplexAlphaIfNeeded */
/* (fixed in Tk 8.5a3) */
TK_PHOTO_SET_SIZE_84(photo, block.width, block.height);
}
} else {
/* Tk >=8.5 */
TK_PHOTO_PUT_BLOCK_85(interp, photo, &block, 0, 0, block.width,

File diff suppressed because it is too large Load Diff

View File

@ -88,8 +88,9 @@ cms_profile_new(cmsHPROFILE profile)
CmsProfileObject* self;
self = PyObject_New(CmsProfileObject, &CmsProfile_Type);
if (!self)
if (!self) {
return NULL;
}
self->profile = profile;
@ -102,8 +103,9 @@ cms_profile_open(PyObject* self, PyObject* args)
cmsHPROFILE hProfile;
char* sProfile;
if (!PyArg_ParseTuple(args, "s:profile_open", &sProfile))
if (!PyArg_ParseTuple(args, "s:profile_open", &sProfile)) {
return NULL;
}
hProfile = cmsOpenProfileFromFile(sProfile, "r");
if (!hProfile) {
@ -121,8 +123,9 @@ cms_profile_fromstring(PyObject* self, PyObject* args)
char* pProfile;
Py_ssize_t nProfile;
if (!PyArg_ParseTuple(args, "y#:profile_frombytes", &pProfile, &nProfile))
if (!PyArg_ParseTuple(args, "y#:profile_frombytes", &pProfile, &nProfile)) {
return NULL;
}
hProfile = cmsOpenProfileFromMem(pProfile, nProfile);
if (!hProfile) {
@ -198,8 +201,9 @@ cms_transform_new(cmsHTRANSFORM transform, char* mode_in, char* mode_out)
CmsTransformObject* self;
self = PyObject_New(CmsTransformObject, &CmsTransform_Type);
if (!self)
if (!self) {
return NULL;
}
self->transform = transform;
@ -292,18 +296,20 @@ pyCMSgetAuxChannelChannel (cmsUInt32Number format, int auxChannelNdx)
if (T_SWAPFIRST(format) && T_DOSWAP(format)) {
// reverse order, before anything but last extra is shifted last
if (auxChannelNdx == numExtras - 1)
if (auxChannelNdx == numExtras - 1) {
return numColors + numExtras - 1;
else
} else {
return numExtras - 2 - auxChannelNdx;
}
}
else if (T_SWAPFIRST(format)) {
// in order, after color channels, but last extra is shifted to first
if (auxChannelNdx == numExtras - 1)
if (auxChannelNdx == numExtras - 1) {
return 0;
else
} else {
return numColors + 1 + auxChannelNdx;
}
}
else if (T_DOSWAP(format)) {
// reverse order, before anything
return numExtras - 1 - auxChannelNdx;
@ -330,23 +336,26 @@ pyCMScopyAux (cmsHTRANSFORM hTransform, Imaging imDst, const Imaging imSrc)
int e;
// trivially copied
if (imDst == imSrc)
if (imDst == imSrc) {
return;
}
dstLCMSFormat = cmsGetTransformOutputFormat(hTransform);
srcLCMSFormat = cmsGetTransformInputFormat(hTransform);
// currently, all Pillow formats are chunky formats, but check it anyway
if (T_PLANAR(dstLCMSFormat) || T_PLANAR(srcLCMSFormat))
if (T_PLANAR(dstLCMSFormat) || T_PLANAR(srcLCMSFormat)) {
return;
}
// copy only if channel format is identical, except OPTIMIZED is ignored as it
// does not affect the aux channel
if (T_FLOAT(dstLCMSFormat) != T_FLOAT(srcLCMSFormat)
|| T_FLAVOR(dstLCMSFormat) != T_FLAVOR(srcLCMSFormat)
|| T_ENDIAN16(dstLCMSFormat) != T_ENDIAN16(srcLCMSFormat)
|| T_BYTES(dstLCMSFormat) != T_BYTES(srcLCMSFormat))
|| T_BYTES(dstLCMSFormat) != T_BYTES(srcLCMSFormat)) {
return;
}
numSrcExtras = T_EXTRA(srcLCMSFormat);
numDstExtras = T_EXTRA(dstLCMSFormat);
@ -367,25 +376,28 @@ pyCMScopyAux (cmsHTRANSFORM hTransform, Imaging imDst, const Imaging imSrc)
char* pDstExtras = imDst->image[y] + dstChannel * channelSize;
const char* pSrcExtras = imSrc->image[y] + srcChannel * channelSize;
for (x = 0; x < xSize; x++)
for (x = 0; x < xSize; x++) {
memcpy(pDstExtras + x * dstChunkSize, pSrcExtras + x * srcChunkSize, channelSize);
}
}
}
}
static int
pyCMSdoTransform(Imaging im, Imaging imOut, cmsHTRANSFORM hTransform)
{
int i;
if (im->xsize > imOut->xsize || im->ysize > imOut->ysize)
if (im->xsize > imOut->xsize || im->ysize > imOut->ysize) {
return -1;
}
Py_BEGIN_ALLOW_THREADS
// transform color channels only
for (i = 0; i < im->ysize; i++)
for (i = 0; i < im->ysize; i++) {
cmsDoTransform(hTransform, im->image[i], imOut->image[i], im->xsize);
}
// lcms by default does nothing to the auxiliary channels leaving those
// unchanged. To do "the right thing" here, i.e. maintain identical results
@ -417,8 +429,9 @@ _buildTransform(cmsHPROFILE hInputProfile, cmsHPROFILE hOutputProfile, char *sIn
Py_END_ALLOW_THREADS
if (!hTransform)
if (!hTransform) {
PyErr_SetString(PyExc_ValueError, "cannot build transform");
}
return hTransform; /* if NULL, an exception is set */
}
@ -442,8 +455,9 @@ _buildProofTransform(cmsHPROFILE hInputProfile, cmsHPROFILE hOutputProfile, cmsH
Py_END_ALLOW_THREADS
if (!hTransform)
if (!hTransform) {
PyErr_SetString(PyExc_ValueError, "cannot build proof transform");
}
return hTransform; /* if NULL, an exception is set */
}
@ -462,13 +476,15 @@ buildTransform(PyObject *self, PyObject *args) {
cmsHTRANSFORM transform = NULL;
if (!PyArg_ParseTuple(args, "O!O!ss|ii:buildTransform", &CmsProfile_Type, &pInputProfile, &CmsProfile_Type, &pOutputProfile, &sInMode, &sOutMode, &iRenderingIntent, &cmsFLAGS))
if (!PyArg_ParseTuple(args, "O!O!ss|ii:buildTransform", &CmsProfile_Type, &pInputProfile, &CmsProfile_Type, &pOutputProfile, &sInMode, &sOutMode, &iRenderingIntent, &cmsFLAGS)) {
return NULL;
}
transform = _buildTransform(pInputProfile->profile, pOutputProfile->profile, sInMode, sOutMode, iRenderingIntent, cmsFLAGS);
if (!transform)
if (!transform) {
return NULL;
}
return cms_transform_new(transform, sInMode, sOutMode);
}
@ -487,13 +503,15 @@ buildProofTransform(PyObject *self, PyObject *args)
cmsHTRANSFORM transform = NULL;
if (!PyArg_ParseTuple(args, "O!O!O!ss|iii:buildProofTransform", &CmsProfile_Type, &pInputProfile, &CmsProfile_Type, &pOutputProfile, &CmsProfile_Type, &pProofProfile, &sInMode, &sOutMode, &iRenderingIntent, &iProofIntent, &cmsFLAGS))
if (!PyArg_ParseTuple(args, "O!O!O!ss|iii:buildProofTransform", &CmsProfile_Type, &pInputProfile, &CmsProfile_Type, &pOutputProfile, &CmsProfile_Type, &pProofProfile, &sInMode, &sOutMode, &iRenderingIntent, &iProofIntent, &cmsFLAGS)) {
return NULL;
}
transform = _buildProofTransform(pInputProfile->profile, pOutputProfile->profile, pProofProfile->profile, sInMode, sOutMode, iRenderingIntent, iProofIntent, cmsFLAGS);
if (!transform)
if (!transform) {
return NULL;
}
return cms_transform_new(transform, sInMode, sOutMode);
@ -509,8 +527,9 @@ cms_transform_apply(CmsTransformObject *self, PyObject *args)
int result;
if (!PyArg_ParseTuple(args, "nn:apply", &idIn, &idOut))
if (!PyArg_ParseTuple(args, "nn:apply", &idIn, &idOut)) {
return NULL;
}
im = (Imaging) idIn;
imOut = (Imaging) idOut;
@ -532,8 +551,9 @@ createProfile(PyObject *self, PyObject *args)
cmsCIExyY whitePoint;
cmsBool result;
if (!PyArg_ParseTuple(args, "s|d:createProfile", &sColorSpace, &dColorTemp))
if (!PyArg_ParseTuple(args, "s|d:createProfile", &sColorSpace, &dColorTemp)) {
return NULL;
}
if (strcmp(sColorSpace, "LAB") == 0) {
if (dColorTemp > 0.0) {
@ -575,8 +595,9 @@ cms_profile_is_intent_supported(CmsProfileObject *self, PyObject *args)
int intent;
int direction;
if (!PyArg_ParseTuple(args, "ii:is_intent_supported", &intent, &direction))
if (!PyArg_ParseTuple(args, "ii:is_intent_supported", &intent, &direction)) {
return NULL;
}
result = cmsIsIntentSupported(self->profile, intent, direction);
@ -602,8 +623,9 @@ cms_get_display_profile_win32(PyObject* self, PyObject* args)
HANDLE handle = 0;
int is_dc = 0;
if (!PyArg_ParseTuple(args, "|" F_HANDLE "i:get_display_profile", &handle, &is_dc))
if (!PyArg_ParseTuple(args, "|" F_HANDLE "i:get_display_profile", &handle, &is_dc)) {
return NULL;
}
filename_size = sizeof(filename);
@ -615,8 +637,9 @@ cms_get_display_profile_win32(PyObject* self, PyObject* args)
ReleaseDC((HWND) handle, dc);
}
if (ok)
if (ok) {
return PyUnicode_FromStringAndSize(filename, filename_size-1);
}
Py_INCREF(Py_None);
return Py_None;
@ -745,11 +768,12 @@ _profile_read_ciexyz(CmsProfileObject* self, cmsTagSignature info, int multi)
Py_INCREF(Py_None);
return Py_None;
}
if (multi)
if (multi) {
return _xyz3_py(XYZ);
else
} else {
return _xyz_py(XYZ);
}
}
static PyObject*
_profile_read_ciexyy_triple(CmsProfileObject* self, cmsTagSignature info)
@ -826,8 +850,9 @@ static cmsBool _calculate_rgb_primaries(CmsProfileObject* self, cmsCIEXYZTRIPLE*
// double array of RGB values with max on each identity
hXYZ = cmsCreateXYZProfile();
if (hXYZ == NULL)
if (hXYZ == NULL) {
return 0;
}
// transform from our profile to XYZ using doubles for highest precision
hTransform = cmsCreateTransform(self->profile, TYPE_RGB_DBL,
@ -835,8 +860,9 @@ static cmsBool _calculate_rgb_primaries(CmsProfileObject* self, cmsCIEXYZTRIPLE*
INTENT_RELATIVE_COLORIMETRIC,
cmsFLAGS_NOCACHE | cmsFLAGS_NOOPTIMIZE);
cmsCloseProfile(hXYZ);
if (hTransform == NULL)
if (hTransform == NULL) {
return 0;
}
cmsDoTransform(hTransform, (void*) input, result, 3);
cmsDeleteTransform(hTransform);
@ -881,8 +907,9 @@ _is_intent_supported(CmsProfileObject* self, int clut)
/* Only valid for ICC Intents (otherwise we read invalid memory in lcms cmsio1.c). */
if (!(intent == INTENT_PERCEPTUAL || intent == INTENT_RELATIVE_COLORIMETRIC
|| intent == INTENT_SATURATION || intent == INTENT_ABSOLUTE_COLORIMETRIC))
|| intent == INTENT_SATURATION || intent == INTENT_ABSOLUTE_COLORIMETRIC)) {
continue;
}
id = PyLong_FromLong((long) intent);
entry = Py_BuildValue("(OOO)",
@ -1276,8 +1303,9 @@ cms_profile_getattr_red_primary(CmsProfileObject* self, void* closure)
cmsBool result = 0;
cmsCIEXYZTRIPLE primaries;
if (cmsIsMatrixShaper(self->profile))
if (cmsIsMatrixShaper(self->profile)) {
result = _calculate_rgb_primaries(self, &primaries);
}
if (! result) {
Py_INCREF(Py_None);
return Py_None;
@ -1292,8 +1320,9 @@ cms_profile_getattr_green_primary(CmsProfileObject* self, void* closure)
cmsBool result = 0;
cmsCIEXYZTRIPLE primaries;
if (cmsIsMatrixShaper(self->profile))
if (cmsIsMatrixShaper(self->profile)) {
result = _calculate_rgb_primaries(self, &primaries);
}
if (! result) {
Py_INCREF(Py_None);
return Py_None;
@ -1308,8 +1337,9 @@ cms_profile_getattr_blue_primary(CmsProfileObject* self, void* closure)
cmsBool result = 0;
cmsCIEXYZTRIPLE primaries;
if (cmsIsMatrixShaper(self->profile))
if (cmsIsMatrixShaper(self->profile)) {
result = _calculate_rgb_primaries(self, &primaries);
}
if (! result) {
Py_INCREF(Py_None);
return Py_None;
@ -1387,12 +1417,13 @@ cms_profile_getattr_icc_measurement_condition (CmsProfileObject* self, void* clo
return Py_None;
}
if (mc->Geometry == 1)
if (mc->Geometry == 1) {
geo = "45/0, 0/45";
else if (mc->Geometry == 2)
} else if (mc->Geometry == 2) {
geo = "0d, d/0";
else
} else {
geo = "unknown";
}
return Py_BuildValue("{s:i,s:(ddd),s:s,s:d,s:s}",
"observer", mc->Observer,
@ -1611,8 +1642,9 @@ PyInit__imagingcms(void) {
m = PyModule_Create(&module_def);
if (setup_module(m) < 0)
if (setup_module(m) < 0) {
return NULL;
}
PyDateTime_IMPORT;

View File

@ -137,11 +137,12 @@ geterror(int code)
{
int i;
for (i = 0; ft_errors[i].message; i++)
for (i = 0; ft_errors[i].message; i++) {
if (ft_errors[i].code == code) {
PyErr_SetString(PyExc_OSError, ft_errors[i].message);
return NULL;
}
}
PyErr_SetString(PyExc_OSError, "unknown freetype error");
return NULL;
@ -274,8 +275,9 @@ getfont(PyObject* self_, PyObject* args, PyObject* kw)
self = PyObject_New(FontObject, &Font_Type);
if (!self) {
if (filename)
if (filename) {
PyMem_Free(filename);
}
return NULL;
}
@ -299,8 +301,9 @@ getfont(PyObject* self_, PyObject* args, PyObject* kw)
}
}
if (!error)
if (!error) {
error = FT_Set_Pixel_Sizes(self->face, 0, size);
}
if (!error && encoding && strlen((char*) encoding) == 4) {
FT_Encoding encoding_tag = FT_MAKE_TAG(
@ -308,8 +311,9 @@ getfont(PyObject* self_, PyObject* args, PyObject* kw)
);
error = FT_Select_Charmap(self->face, encoding_tag);
}
if (filename)
if (filename) {
PyMem_Free(filename);
}
if (error) {
if (self->font_bytes) {
@ -327,8 +331,9 @@ static int
font_getchar(PyObject* string, int index, FT_ULong* char_out)
{
if (PyUnicode_Check(string)) {
if (index >= PyUnicode_GET_LENGTH(string))
if (index >= PyUnicode_GET_LENGTH(string)) {
return 0;
}
*char_out = PyUnicode_READ_CHAR(string, index);
return 1;
}
@ -401,11 +406,11 @@ text_layout_raqm(PyObject* string, FontObject* self, const char* dir, PyObject *
direction = RAQM_DIRECTION_DEFAULT;
if (dir) {
if (strcmp(dir, "rtl") == 0)
if (strcmp(dir, "rtl") == 0) {
direction = RAQM_DIRECTION_RTL;
else if (strcmp(dir, "ltr") == 0)
} else if (strcmp(dir, "ltr") == 0) {
direction = RAQM_DIRECTION_LTR;
else if (strcmp(dir, "ttb") == 0) {
} else if (strcmp(dir, "ttb") == 0) {
direction = RAQM_DIRECTION_TTB;
if (p_raqm.version_atleast == NULL || !(*p_raqm.version_atleast)(0, 7, 0)) {
PyErr_SetString(PyExc_ValueError, "libraqm 0.7 or greater required for 'ttb' direction");
@ -443,8 +448,9 @@ text_layout_raqm(PyObject* string, FontObject* self, const char* dir, PyObject *
if (PyUnicode_Check(item)) {
bytes = PyUnicode_AsUTF8String(item);
if (bytes == NULL)
if (bytes == NULL) {
goto failed;
}
feature = PyBytes_AS_STRING(bytes);
size = PyBytes_GET_SIZE(bytes);
}
@ -608,8 +614,9 @@ font_getsize(FontObject* self, PyObject* args)
/* calculate size and bearing for a given string */
PyObject* string;
if (!PyArg_ParseTuple(args, "O|zOz:getsize", &string, &dir, &features, &lang))
if (!PyArg_ParseTuple(args, "O|zOz:getsize", &string, &dir, &features, &lang)) {
return NULL;
}
count = text_layout(string, self, dir, features, lang, &glyph_info, 0);
if (PyErr_Occurred()) {
@ -631,8 +638,9 @@ font_getsize(FontObject* self, PyObject* args)
* Yifu Yu<root@jackyyf.com>, 2014-10-15
*/
error = FT_Load_Glyph(face, index, FT_LOAD_DEFAULT|FT_LOAD_NO_BITMAP);
if (error)
if (error) {
return geterror(error);
}
if (i == 0) {
if (horizontal_dir) {
@ -657,21 +665,26 @@ font_getsize(FontObject* self, PyObject* args)
offset = glyph_info[i].x_advance -
face->glyph->metrics.width -
face->glyph->metrics.horiBearingX;
if (offset < 0)
if (offset < 0) {
x_advanced -= offset;
if (x_advanced > x_max)
}
if (x_advanced > x_max) {
x_max = x_advanced;
}
bbox.yMax += glyph_info[i].y_offset;
bbox.yMin += glyph_info[i].y_offset;
if (bbox.yMax > y_max)
if (bbox.yMax > y_max) {
y_max = bbox.yMax;
if (bbox.yMin < y_min)
}
if (bbox.yMin < y_min) {
y_min = bbox.yMin;
}
// find max distance of baseline from top
if (face->glyph->metrics.horiBearingY > yoffset)
if (face->glyph->metrics.horiBearingY > yoffset) {
yoffset = face->glyph->metrics.horiBearingY;
}
} else {
y_max -= glyph_info[i].y_advance;
@ -681,15 +694,18 @@ font_getsize(FontObject* self, PyObject* args)
offset = -glyph_info[i].y_advance -
face->glyph->metrics.height -
face->glyph->metrics.vertBearingY;
if (offset < 0)
if (offset < 0) {
y_max -= offset;
}
}
if (bbox.xMax > x_max)
if (bbox.xMax > x_max) {
x_max = bbox.xMax;
if (i == 0 || bbox.xMin < x_min)
}
if (i == 0 || bbox.xMin < x_min) {
x_min = bbox.xMin;
}
}
FT_Done_Glyph(glyph);
}
@ -702,22 +718,24 @@ font_getsize(FontObject* self, PyObject* args)
if (face) {
if (horizontal_dir) {
// left bearing
if (xoffset < 0)
if (xoffset < 0) {
x_max -= xoffset;
else
} else {
xoffset = 0;
}
/* difference between the font ascender and the distance of
* the baseline from the top */
yoffset = PIXEL(self->face->size->metrics.ascender - yoffset);
} else {
// top bearing
if (yoffset < 0)
if (yoffset < 0) {
y_max -= yoffset;
else
} else {
yoffset = 0;
}
}
}
return Py_BuildValue(
"(ii)(ii)",
@ -800,9 +818,10 @@ font_render(FontObject* self, PyObject* args)
temp = bitmap.rows - glyph_slot->bitmap_top;
temp -= PIXEL(glyph_info[i].y_offset);
if (temp > ascender)
if (temp > ascender) {
ascender = temp;
}
}
if (stroker == NULL) {
load_flags |= FT_LOAD_RENDER;
@ -855,10 +874,12 @@ font_render(FontObject* self, PyObject* args)
x0 = 0;
x1 = bitmap.width;
if (xx < 0)
if (xx < 0) {
x0 = -xx;
if (xx + x1 > im->xsize)
}
if (xx + x1 > im->xsize) {
x1 = im->xsize - xx;
}
source = (unsigned char*) bitmap.buffer;
for (bitmap_y = 0; bitmap_y < bitmap.rows; bitmap_y++) {
@ -876,8 +897,9 @@ font_render(FontObject* self, PyObject* args)
// use monochrome mask (on palette images, etc)
int j, k, m = 128;
for (j = k = 0; j < x1; j++) {
if (j >= x0 && (source[k] & m))
if (j >= x0 && (source[k] & m)) {
target[j] = 255;
}
if (!(m >>= 1)) {
m = 128;
k++;
@ -887,11 +909,12 @@ font_render(FontObject* self, PyObject* args)
// use antialiased rendering
int k;
for (k = x0; k < x1; k++) {
if (target[k] < source[k])
if (target[k] < source[k]) {
target[k] = source[k];
}
}
}
}
source += bitmap.pitch;
}
x += glyph_info[i].x_advance;
@ -919,8 +942,9 @@ font_render(FontObject* self, PyObject* args)
PyObject *list_names, *list_name;
error = FT_Get_MM_Var(self->face, &master);
if (error)
if (error) {
return geterror(error);
}
num_namedstyles = master->num_namedstyles;
list_names = PyList_New(num_namedstyles);
@ -928,12 +952,14 @@ font_render(FontObject* self, PyObject* args)
name_count = FT_Get_Sfnt_Name_Count(self->face);
for (i = 0; i < name_count; i++) {
error = FT_Get_Sfnt_Name(self->face, i, &name);
if (error)
if (error) {
return geterror(error);
}
for (j = 0; j < num_namedstyles; j++) {
if (PyList_GetItem(list_names, j) != NULL)
if (PyList_GetItem(list_names, j) != NULL) {
continue;
}
if (master->namedstyle[j].strid == name.name_id) {
list_name = Py_BuildValue("y#", name.string, name.string_len);
@ -958,8 +984,9 @@ font_render(FontObject* self, PyObject* args)
FT_SfntName name;
PyObject *list_axes, *list_axis, *axis_name;
error = FT_Get_MM_Var(self->face, &master);
if (error)
if (error) {
return geterror(error);
}
num_axis = master->num_axis;
name_count = FT_Get_Sfnt_Name_Count(self->face);
@ -978,8 +1005,9 @@ font_render(FontObject* self, PyObject* args)
for (j = 0; j < name_count; j++) {
error = FT_Get_Sfnt_Name(self->face, j, &name);
if (error)
if (error) {
return geterror(error);
}
if (name.name_id == axis.strid) {
axis_name = Py_BuildValue("y#", name.string, name.string_len);
@ -1002,12 +1030,14 @@ font_render(FontObject* self, PyObject* args)
int error;
int instance_index;
if (!PyArg_ParseTuple(args, "i", &instance_index))
if (!PyArg_ParseTuple(args, "i", &instance_index)) {
return NULL;
}
error = FT_Set_Named_Instance(self->face, instance_index);
if (error)
if (error) {
return geterror(error);
}
Py_INCREF(Py_None);
return Py_None;
@ -1022,8 +1052,9 @@ font_render(FontObject* self, PyObject* args)
Py_ssize_t i, num_coords;
FT_Fixed *coords;
FT_Fixed coord;
if (!PyArg_ParseTuple(args, "O", &axes))
if (!PyArg_ParseTuple(args, "O", &axes)) {
return NULL;
}
if (!PyList_Check(axes)) {
PyErr_SetString(PyExc_TypeError, "argument must be a list");
@ -1037,13 +1068,13 @@ font_render(FontObject* self, PyObject* args)
}
for (i = 0; i < num_coords; i++) {
item = PyList_GET_ITEM(axes, i);
if (PyFloat_Check(item))
if (PyFloat_Check(item)) {
coord = PyFloat_AS_DOUBLE(item);
else if (PyLong_Check(item))
} else if (PyLong_Check(item)) {
coord = (float) PyLong_AS_LONG(item);
else if (PyNumber_Check(item))
} else if (PyNumber_Check(item)) {
coord = PyFloat_AsDouble(item);
else {
} else {
free(coords);
PyErr_SetString(PyExc_TypeError, "list must contain numbers");
return NULL;
@ -1053,8 +1084,9 @@ font_render(FontObject* self, PyObject* args)
error = FT_Set_Var_Design_Coordinates(self->face, num_coords, coords);
free(coords);
if (error)
if (error) {
return geterror(error);
}
Py_INCREF(Py_None);
return Py_None;
@ -1090,16 +1122,18 @@ static PyMethodDef font_methods[] = {
static PyObject*
font_getattr_family(FontObject* self, void* closure)
{
if (self->face->family_name)
if (self->face->family_name) {
return PyUnicode_FromString(self->face->family_name);
}
Py_RETURN_NONE;
}
static PyObject*
font_getattr_style(FontObject* self, void* closure)
{
if (self->face->style_name)
if (self->face->style_name) {
return PyUnicode_FromString(self->face->style_name);
}
Py_RETURN_NONE;
}
@ -1200,8 +1234,9 @@ setup_module(PyObject* m) {
/* Ready object type */
PyType_Ready(&Font_Type);
if (FT_Init_FreeType(&library))
if (FT_Init_FreeType(&library)) {
return 0; /* leave it uninitialized */
}
FT_Library_Version(library, &major, &minor, &patch);
@ -1230,8 +1265,9 @@ PyInit__imagingft(void) {
m = PyModule_Create(&module_def);
if (setup_module(m) < 0)
if (setup_module(m) < 0) {
return NULL;
}
return m;
}

View File

@ -88,12 +88,14 @@ void name(Imaging out, Imaging im1, Imaging im2)\
static int powi(int x, int y)
{
double v = pow(x, y) + 0.5;
if (errno == EDOM)
if (errno == EDOM) {
return 0;
if (v < MIN_INT32)
}
if (v < MIN_INT32) {
v = MIN_INT32;
else if (v > MAX_INT32)
} else if (v > MAX_INT32) {
v = MAX_INT32;
}
return (int) v;
}
@ -167,8 +169,9 @@ _unop(PyObject* self, PyObject* args)
void (*unop)(Imaging, Imaging);
Py_ssize_t op, i0, i1;
if (!PyArg_ParseTuple(args, "nnn", &op, &i0, &i1))
if (!PyArg_ParseTuple(args, "nnn", &op, &i0, &i1)) {
return NULL;
}
out = (Imaging) i0;
im1 = (Imaging) i1;
@ -190,8 +193,9 @@ _binop(PyObject* self, PyObject* args)
void (*binop)(Imaging, Imaging, Imaging);
Py_ssize_t op, i0, i1, i2;
if (!PyArg_ParseTuple(args, "nnnn", &op, &i0, &i1, &i2))
if (!PyArg_ParseTuple(args, "nnnn", &op, &i0, &i1, &i2)) {
return NULL;
}
out = (Imaging) i0;
im1 = (Imaging) i1;
@ -215,8 +219,9 @@ static void
install(PyObject *d, char* name, void* value)
{
PyObject *v = PyLong_FromSsize_t((Py_ssize_t) value);
if (!v || PyDict_SetItemString(d, name, v))
if (!v || PyDict_SetItemString(d, name, v)) {
PyErr_Clear();
}
Py_XDECREF(v);
}
@ -286,8 +291,9 @@ PyInit__imagingmath(void) {
m = PyModule_Create(&module_def);
if (setup_module(m) < 0)
if (setup_module(m) < 0) {
return NULL;
}
return m;
}

View File

@ -85,8 +85,9 @@ apply(PyObject *self, PyObject* args)
/* zero boundary conditions. TBD support other modes */
outrow[0] = outrow[width-1] = 0;
if (row_idx==0 || row_idx == height-1) {
for(col_idx=0; col_idx<width; col_idx++)
for(col_idx=0; col_idx<width; col_idx++) {
outrow[col_idx] = 0;
}
continue;
}
@ -286,8 +287,9 @@ PyInit__imagingmorph(void) {
m = PyModule_Create(&module_def);
if (setup_module(m) < 0)
if (setup_module(m) < 0) {
return NULL;
}
return m;
}

View File

@ -38,12 +38,13 @@ _tkinit(PyObject* self, PyObject* args)
PyObject* arg;
int is_interp;
if (!PyArg_ParseTuple(args, "Oi", &arg, &is_interp))
if (!PyArg_ParseTuple(args, "Oi", &arg, &is_interp)) {
return NULL;
}
if (is_interp)
if (is_interp) {
interp = (Tcl_Interp*)PyLong_AsVoidPtr(arg);
else {
} else {
TkappObject* app;
/* Do it the hard way. This will break if the TkappObject
layout changes */

View File

@ -724,8 +724,9 @@ PyObject* WebPDecode_wrapper(PyObject* self, PyObject* args)
WebPData exif_data = {0};
WebPMux* mux = WebPMuxCreate(&data, copy_data);
if (NULL == mux)
if (NULL == mux) {
goto end;
}
if (WEBP_MUX_OK != WebPMuxGetFrame(mux, 1, &image))
{
@ -738,11 +739,13 @@ PyObject* WebPDecode_wrapper(PyObject* self, PyObject* args)
vp8_status_code = WebPDecode(webp, size, &config);
if (WEBP_MUX_OK == WebPMuxGetChunk(mux, "ICCP", &icc_profile_data))
if (WEBP_MUX_OK == WebPMuxGetChunk(mux, "ICCP", &icc_profile_data)) {
icc_profile = PyBytes_FromStringAndSize((const char*)icc_profile_data.bytes, icc_profile_data.size);
}
if (WEBP_MUX_OK == WebPMuxGetChunk(mux, "EXIF", &exif_data))
if (WEBP_MUX_OK == WebPMuxGetChunk(mux, "EXIF", &exif_data)) {
exif = PyBytes_FromStringAndSize((const char*)exif_data.bytes, exif_data.size);
}
WebPDataClear(&image.bitstream);
WebPMuxDelete(mux);
@ -750,8 +753,9 @@ PyObject* WebPDecode_wrapper(PyObject* self, PyObject* args)
#endif
}
if (vp8_status_code != VP8_STATUS_OK)
if (vp8_status_code != VP8_STATUS_OK) {
goto end;
}
if (config.output.colorspace < MODE_YUV) {
bytes = PyBytes_FromStringAndSize((char*)config.output.u.RGBA.rgba,
@ -777,8 +781,9 @@ end:
Py_XDECREF(icc_profile);
Py_XDECREF(exif);
if (Py_None == ret)
if (Py_None == ret) {
Py_RETURN_NONE;
}
return ret;
}
@ -847,8 +852,9 @@ static int setup_module(PyObject* m) {
#ifdef HAVE_WEBPANIM
/* Ready object types */
if (PyType_Ready(&WebPAnimDecoder_Type) < 0 ||
PyType_Ready(&WebPAnimEncoder_Type) < 0)
PyType_Ready(&WebPAnimEncoder_Type) < 0) {
return -1;
}
#endif
return 0;
}
@ -866,8 +872,9 @@ PyInit__webp(void) {
};
m = PyModule_Create(&module_def);
if (setup_module(m) < 0)
if (setup_module(m) < 0) {
return NULL;
}
return m;
}

View File

@ -63,12 +63,14 @@ PyImaging_DecoderNew(int contextsize)
ImagingDecoderObject *decoder;
void *context;
if(PyType_Ready(&ImagingDecoderType) < 0)
if(PyType_Ready(&ImagingDecoderType) < 0) {
return NULL;
}
decoder = PyObject_New(ImagingDecoderObject, &ImagingDecoderType);
if (decoder == NULL)
if (decoder == NULL) {
return NULL;
}
/* Clear the decoder state */
memset(&decoder->state, 0, sizeof(decoder->state));
@ -81,8 +83,9 @@ PyImaging_DecoderNew(int contextsize)
(void) PyErr_NoMemory();
return NULL;
}
} else
} else {
context = 0;
}
/* Initialize decoder context */
decoder->state.context = context;
@ -104,8 +107,9 @@ PyImaging_DecoderNew(int contextsize)
static void
_dealloc(ImagingDecoderObject* decoder)
{
if (decoder->cleanup)
if (decoder->cleanup) {
decoder->cleanup(&decoder->state);
}
free(decoder->state.buffer);
free(decoder->state.context);
Py_XDECREF(decoder->lock);
@ -121,8 +125,9 @@ _decode(ImagingDecoderObject* decoder, PyObject* args)
int status;
ImagingSectionCookie cookie;
if (!PyArg_ParseTuple(args, "y#", &buffer, &bufsize))
if (!PyArg_ParseTuple(args, "y#", &buffer, &bufsize)) {
return NULL;
}
if (!decoder->pulls_fd) {
ImagingSectionEnter(&cookie);
@ -164,11 +169,13 @@ _setimage(ImagingDecoderObject* decoder, PyObject* args)
x0 = y0 = x1 = y1 = 0;
/* FIXME: should publish the ImagingType descriptor */
if (!PyArg_ParseTuple(args, "O|(iiii)", &op, &x0, &y0, &x1, &y1))
if (!PyArg_ParseTuple(args, "O|(iiii)", &op, &x0, &y0, &x1, &y1)) {
return NULL;
}
im = PyImaging_AsImaging(op);
if (!im)
if (!im) {
return NULL;
}
decoder->im = im;
@ -203,9 +210,10 @@ _setimage(ImagingDecoderObject* decoder, PyObject* args)
}
/* malloc check ok, overflow checked above */
state->buffer = (UINT8*) malloc(state->bytes);
if (!state->buffer)
if (!state->buffer) {
return PyErr_NoMemory();
}
}
/* Keep a reference to the image object, to make sure it doesn't
go away before we do */
@ -223,8 +231,9 @@ _setfd(ImagingDecoderObject* decoder, PyObject* args)
PyObject* fd;
ImagingCodecState state;
if (!PyArg_ParseTuple(args, "O", &fd))
if (!PyArg_ParseTuple(args, "O", &fd)) {
return NULL;
}
state = &decoder->state;
@ -330,8 +339,9 @@ PyImaging_BitDecoderNew(PyObject* self, PyObject* args)
int sign = 0;
int ystep = 1;
if (!PyArg_ParseTuple(args, "s|iiiii", &mode, &bits, &pad, &fill,
&sign, &ystep))
&sign, &ystep)) {
return NULL;
}
if (strcmp(mode, "F") != 0) {
PyErr_SetString(PyExc_ValueError, "bad image mode");
@ -339,8 +349,9 @@ PyImaging_BitDecoderNew(PyObject* self, PyObject* args)
}
decoder = PyImaging_DecoderNew(sizeof(BITSTATE));
if (decoder == NULL)
if (decoder == NULL) {
return NULL;
}
decoder->decode = ImagingBitDecode;
@ -368,8 +379,9 @@ PyImaging_BcnDecoderNew(PyObject* self, PyObject* args)
char* actual;
int n = 0;
int ystep = 1;
if (!PyArg_ParseTuple(args, "s|ii", &mode, &n, &ystep))
if (!PyArg_ParseTuple(args, "s|ii", &mode, &n, &ystep)) {
return NULL;
}
switch (n) {
case 1: /* BC1: 565 color, 1-bit alpha */
@ -394,8 +406,9 @@ PyImaging_BcnDecoderNew(PyObject* self, PyObject* args)
}
decoder = PyImaging_DecoderNew(0);
if (decoder == NULL)
if (decoder == NULL) {
return NULL;
}
decoder->decode = ImagingBcnDecode;
decoder->state.state = n;
@ -415,8 +428,9 @@ PyImaging_FliDecoderNew(PyObject* self, PyObject* args)
ImagingDecoderObject* decoder;
decoder = PyImaging_DecoderNew(0);
if (decoder == NULL)
if (decoder == NULL) {
return NULL;
}
decoder->decode = ImagingFliDecode;
@ -436,8 +450,9 @@ PyImaging_GifDecoderNew(PyObject* self, PyObject* args)
char* mode;
int bits = 8;
int interlace = 0;
if (!PyArg_ParseTuple(args, "s|ii", &mode, &bits, &interlace))
if (!PyArg_ParseTuple(args, "s|ii", &mode, &bits, &interlace)) {
return NULL;
}
if (strcmp(mode, "L") != 0 && strcmp(mode, "P") != 0) {
PyErr_SetString(PyExc_ValueError, "bad image mode");
@ -445,8 +460,9 @@ PyImaging_GifDecoderNew(PyObject* self, PyObject* args)
}
decoder = PyImaging_DecoderNew(sizeof(GIFDECODERSTATE));
if (decoder == NULL)
if (decoder == NULL) {
return NULL;
}
decoder->decode = ImagingGifDecode;
@ -468,15 +484,18 @@ PyImaging_HexDecoderNew(PyObject* self, PyObject* args)
char* mode;
char* rawmode;
if (!PyArg_ParseTuple(args, "ss", &mode, &rawmode))
if (!PyArg_ParseTuple(args, "ss", &mode, &rawmode)) {
return NULL;
}
decoder = PyImaging_DecoderNew(0);
if (decoder == NULL)
if (decoder == NULL) {
return NULL;
}
if (get_unpacker(decoder, mode, rawmode) < 0)
if (get_unpacker(decoder, mode, rawmode) < 0) {
return NULL;
}
decoder->decode = ImagingHexDecode;
@ -504,17 +523,20 @@ PyImaging_LibTiffDecoderNew(PyObject* self, PyObject* args)
int fp;
uint32 ifdoffset;
if (! PyArg_ParseTuple(args, "sssiI", &mode, &rawmode, &compname, &fp, &ifdoffset))
if (! PyArg_ParseTuple(args, "sssiI", &mode, &rawmode, &compname, &fp, &ifdoffset)) {
return NULL;
}
TRACE(("new tiff decoder %s\n", compname));
decoder = PyImaging_DecoderNew(sizeof(TIFFSTATE));
if (decoder == NULL)
if (decoder == NULL) {
return NULL;
}
if (get_unpacker(decoder, mode, rawmode) < 0)
if (get_unpacker(decoder, mode, rawmode) < 0) {
return NULL;
}
if (! ImagingLibTiffInit(&decoder->state, fp, ifdoffset)) {
Py_DECREF(decoder);
@ -541,15 +563,18 @@ PyImaging_PackbitsDecoderNew(PyObject* self, PyObject* args)
char* mode;
char* rawmode;
if (!PyArg_ParseTuple(args, "ss", &mode, &rawmode))
if (!PyArg_ParseTuple(args, "ss", &mode, &rawmode)) {
return NULL;
}
decoder = PyImaging_DecoderNew(0);
if (decoder == NULL)
if (decoder == NULL) {
return NULL;
}
if (get_unpacker(decoder, mode, rawmode) < 0)
if (get_unpacker(decoder, mode, rawmode) < 0) {
return NULL;
}
decoder->decode = ImagingPackbitsDecode;
@ -567,12 +592,14 @@ PyImaging_PcdDecoderNew(PyObject* self, PyObject* args)
ImagingDecoderObject* decoder;
decoder = PyImaging_DecoderNew(0);
if (decoder == NULL)
if (decoder == NULL) {
return NULL;
}
/* Unpack from PhotoYCC to RGB */
if (get_unpacker(decoder, "RGB", "YCC;P") < 0)
if (get_unpacker(decoder, "RGB", "YCC;P") < 0) {
return NULL;
}
decoder->decode = ImagingPcdDecode;
@ -592,15 +619,18 @@ PyImaging_PcxDecoderNew(PyObject* self, PyObject* args)
char* mode;
char* rawmode;
int stride;
if (!PyArg_ParseTuple(args, "ssi", &mode, &rawmode, &stride))
if (!PyArg_ParseTuple(args, "ssi", &mode, &rawmode, &stride)) {
return NULL;
}
decoder = PyImaging_DecoderNew(0);
if (decoder == NULL)
if (decoder == NULL) {
return NULL;
}
if (get_unpacker(decoder, mode, rawmode) < 0)
if (get_unpacker(decoder, mode, rawmode) < 0) {
return NULL;
}
decoder->state.bytes = stride;
@ -623,15 +653,18 @@ PyImaging_RawDecoderNew(PyObject* self, PyObject* args)
char* rawmode;
int stride = 0;
int ystep = 1;
if (!PyArg_ParseTuple(args, "ss|ii", &mode, &rawmode, &stride, &ystep))
if (!PyArg_ParseTuple(args, "ss|ii", &mode, &rawmode, &stride, &ystep)) {
return NULL;
}
decoder = PyImaging_DecoderNew(sizeof(RAWSTATE));
if (decoder == NULL)
if (decoder == NULL) {
return NULL;
}
if (get_unpacker(decoder, mode, rawmode) < 0)
if (get_unpacker(decoder, mode, rawmode) < 0) {
return NULL;
}
decoder->decode = ImagingRawDecode;
@ -656,15 +689,18 @@ PyImaging_SgiRleDecoderNew(PyObject* self, PyObject* args)
char* rawmode;
int ystep = 1;
int bpc = 1;
if (!PyArg_ParseTuple(args, "ss|ii", &mode, &rawmode, &ystep, &bpc))
if (!PyArg_ParseTuple(args, "ss|ii", &mode, &rawmode, &ystep, &bpc)) {
return NULL;
}
decoder = PyImaging_DecoderNew(sizeof(SGISTATE));
if (decoder == NULL)
if (decoder == NULL) {
return NULL;
}
if (get_unpacker(decoder, mode, rawmode) < 0)
if (get_unpacker(decoder, mode, rawmode) < 0) {
return NULL;
}
decoder->pulls_fd = 1;
decoder->decode = ImagingSgiRleDecode;
@ -687,15 +723,18 @@ PyImaging_SunRleDecoderNew(PyObject* self, PyObject* args)
char* mode;
char* rawmode;
if (!PyArg_ParseTuple(args, "ss", &mode, &rawmode))
if (!PyArg_ParseTuple(args, "ss", &mode, &rawmode)) {
return NULL;
}
decoder = PyImaging_DecoderNew(0);
if (decoder == NULL)
if (decoder == NULL) {
return NULL;
}
if (get_unpacker(decoder, mode, rawmode) < 0)
if (get_unpacker(decoder, mode, rawmode) < 0) {
return NULL;
}
decoder->decode = ImagingSunRleDecode;
@ -716,15 +755,18 @@ PyImaging_TgaRleDecoderNew(PyObject* self, PyObject* args)
char* rawmode;
int ystep = 1;
int depth = 8;
if (!PyArg_ParseTuple(args, "ss|ii", &mode, &rawmode, &ystep, &depth))
if (!PyArg_ParseTuple(args, "ss|ii", &mode, &rawmode, &ystep, &depth)) {
return NULL;
}
decoder = PyImaging_DecoderNew(0);
if (decoder == NULL)
if (decoder == NULL) {
return NULL;
}
if (get_unpacker(decoder, mode, rawmode) < 0)
if (get_unpacker(decoder, mode, rawmode) < 0) {
return NULL;
}
decoder->decode = ImagingTgaRleDecode;
@ -745,11 +787,13 @@ PyImaging_XbmDecoderNew(PyObject* self, PyObject* args)
ImagingDecoderObject* decoder;
decoder = PyImaging_DecoderNew(0);
if (decoder == NULL)
if (decoder == NULL) {
return NULL;
}
if (get_unpacker(decoder, "1", "1;R") < 0)
if (get_unpacker(decoder, "1", "1;R") < 0) {
return NULL;
}
decoder->decode = ImagingXbmDecode;
@ -773,15 +817,18 @@ PyImaging_ZipDecoderNew(PyObject* self, PyObject* args)
char* mode;
char* rawmode;
int interlaced = 0;
if (!PyArg_ParseTuple(args, "ss|i", &mode, &rawmode, &interlaced))
if (!PyArg_ParseTuple(args, "ss|i", &mode, &rawmode, &interlaced)) {
return NULL;
}
decoder = PyImaging_DecoderNew(sizeof(ZIPSTATE));
if (decoder == NULL)
if (decoder == NULL) {
return NULL;
}
if (get_unpacker(decoder, mode, rawmode) < 0)
if (get_unpacker(decoder, mode, rawmode) < 0) {
return NULL;
}
decoder->decode = ImagingZipDecode;
decoder->cleanup = ImagingZipDecodeCleanup;
@ -826,15 +873,18 @@ PyImaging_JpegDecoderNew(PyObject* self, PyObject* args)
int draft = 0;
if (!PyArg_ParseTuple(args, "ssz|ii", &mode, &rawmode, &jpegmode,
&scale, &draft))
&scale, &draft)) {
return NULL;
}
if (!jpegmode)
if (!jpegmode) {
jpegmode = "";
}
decoder = PyImaging_DecoderNew(sizeof(JPEGSTATE));
if (decoder == NULL)
if (decoder == NULL) {
return NULL;
}
// libjpeg-turbo supports different output formats.
// We are choosing Pillow's native format (3 color bytes + 1 padding)
@ -843,8 +893,9 @@ PyImaging_JpegDecoderNew(PyObject* self, PyObject* args)
rawmode = "RGBX";
}
if (get_unpacker(decoder, mode, rawmode) < 0)
if (get_unpacker(decoder, mode, rawmode) < 0) {
return NULL;
}
decoder->decode = ImagingJpegDecode;
decoder->cleanup = ImagingJpegDecodeCleanup;
@ -882,21 +933,24 @@ PyImaging_Jpeg2KDecoderNew(PyObject* self, PyObject* args)
PY_LONG_LONG length = -1;
if (!PyArg_ParseTuple(args, "ss|iiiL", &mode, &format,
&reduce, &layers, &fd, &length))
&reduce, &layers, &fd, &length)) {
return NULL;
}
if (strcmp(format, "j2k") == 0)
if (strcmp(format, "j2k") == 0) {
codec_format = OPJ_CODEC_J2K;
else if (strcmp(format, "jpt") == 0)
} else if (strcmp(format, "jpt") == 0) {
codec_format = OPJ_CODEC_JPT;
else if (strcmp(format, "jp2") == 0)
} else if (strcmp(format, "jp2") == 0) {
codec_format = OPJ_CODEC_JP2;
else
} else {
return NULL;
}
decoder = PyImaging_DecoderNew(sizeof(JPEG2KDECODESTATE));
if (decoder == NULL)
if (decoder == NULL) {
return NULL;
}
decoder->pulls_fd = 1;
decoder->decode = ImagingJpeg2KDecode;

View File

@ -52,12 +52,14 @@ _new(const char* mode, int xsize, int ysize)
{
ImagingDisplayObject *display;
if (PyType_Ready(&ImagingDisplayType) < 0)
if (PyType_Ready(&ImagingDisplayType) < 0) {
return NULL;
}
display = PyObject_New(ImagingDisplayObject, &ImagingDisplayType);
if (display == NULL)
if (display == NULL) {
return NULL;
}
display->dib = ImagingNewDIB(mode, xsize, ysize);
if (!display->dib) {
@ -71,8 +73,9 @@ _new(const char* mode, int xsize, int ysize)
static void
_delete(ImagingDisplayObject* display)
{
if (display->dib)
if (display->dib) {
ImagingDeleteDIB(display->dib);
}
PyObject_Del(display);
}
@ -80,8 +83,9 @@ static PyObject*
_expose(ImagingDisplayObject* display, PyObject* args)
{
HDC hdc;
if (!PyArg_ParseTuple(args, F_HANDLE, &hdc))
if (!PyArg_ParseTuple(args, F_HANDLE, &hdc)) {
return NULL;
}
ImagingExposeDIB(display->dib, hdc);
@ -97,8 +101,9 @@ _draw(ImagingDisplayObject* display, PyObject* args)
int src[4];
if (!PyArg_ParseTuple(args, F_HANDLE "(iiii)(iiii)", &hdc,
dst+0, dst+1, dst+2, dst+3,
src+0, src+1, src+2, src+3))
src+0, src+1, src+2, src+3)) {
return NULL;
}
ImagingDrawDIB(display->dib, hdc, dst, src);
@ -116,16 +121,20 @@ _paste(ImagingDisplayObject* display, PyObject* args)
PyObject* op;
int xy[4];
xy[0] = xy[1] = xy[2] = xy[3] = 0;
if (!PyArg_ParseTuple(args, "O|(iiii)", &op, xy+0, xy+1, xy+2, xy+3))
if (!PyArg_ParseTuple(args, "O|(iiii)", &op, xy+0, xy+1, xy+2, xy+3)) {
return NULL;
}
im = PyImaging_AsImaging(op);
if (!im)
if (!im) {
return NULL;
}
if (xy[2] <= xy[0])
if (xy[2] <= xy[0]) {
xy[2] = xy[0] + im->xsize;
if (xy[3] <= xy[1])
}
if (xy[3] <= xy[1]) {
xy[3] = xy[1] + im->ysize;
}
ImagingPasteDIB(display->dib, im, xy);
@ -139,8 +148,9 @@ _query_palette(ImagingDisplayObject* display, PyObject* args)
HDC hdc;
int status;
if (!PyArg_ParseTuple(args, F_HANDLE, &hdc))
if (!PyArg_ParseTuple(args, F_HANDLE, &hdc)) {
return NULL;
}
status = ImagingQueryPaletteDIB(display->dib, hdc);
@ -153,8 +163,9 @@ _getdc(ImagingDisplayObject* display, PyObject* args)
HWND window;
HDC dc;
if (!PyArg_ParseTuple(args, F_HANDLE, &window))
if (!PyArg_ParseTuple(args, F_HANDLE, &window)) {
return NULL;
}
dc = GetDC(window);
if (!dc) {
@ -171,8 +182,9 @@ _releasedc(ImagingDisplayObject* display, PyObject* args)
HWND window;
HDC dc;
if (!PyArg_ParseTuple(args, F_HANDLE F_HANDLE, &window, &dc))
if (!PyArg_ParseTuple(args, F_HANDLE F_HANDLE, &window, &dc)) {
return NULL;
}
ReleaseDC(window, dc);
@ -186,8 +198,9 @@ _frombytes(ImagingDisplayObject* display, PyObject* args)
char* ptr;
int bytes;
if (!PyArg_ParseTuple(args, "y#:frombytes", &ptr, &bytes))
if (!PyArg_ParseTuple(args, "y#:frombytes", &ptr, &bytes)) {
return NULL;
}
if (display->dib->ysize * display->dib->linesize != bytes) {
PyErr_SetString(PyExc_ValueError, "wrong size");
@ -203,8 +216,9 @@ _frombytes(ImagingDisplayObject* display, PyObject* args)
static PyObject*
_tobytes(ImagingDisplayObject* display, PyObject* args)
{
if (!PyArg_ParseTuple(args, ":tobytes"))
if (!PyArg_ParseTuple(args, ":tobytes")) {
return NULL;
}
return PyBytes_FromStringAndSize(
display->dib->bits, display->dib->ysize * display->dib->linesize
@ -284,12 +298,14 @@ PyImaging_DisplayWin32(PyObject* self, PyObject* args)
char *mode;
int xsize, ysize;
if (!PyArg_ParseTuple(args, "s(ii)", &mode, &xsize, &ysize))
if (!PyArg_ParseTuple(args, "s(ii)", &mode, &xsize, &ysize)) {
return NULL;
}
display = _new(mode, xsize, ysize);
if (display == NULL)
if (display == NULL) {
return NULL;
}
return (PyObject*) display;
}
@ -324,8 +340,9 @@ PyImaging_GrabScreenWin32(PyObject* self, PyObject* args)
HMODULE user32;
Func_SetThreadDpiAwarenessContext SetThreadDpiAwarenessContext_function;
if (!PyArg_ParseTuple(args, "|ii", &includeLayeredWindows, &all_screens))
if (!PyArg_ParseTuple(args, "|ii", &includeLayeredWindows, &all_screens)) {
return NULL;
}
/* step 1: create a memory DC large enough to hold the
entire screen */
@ -361,25 +378,30 @@ PyImaging_GrabScreenWin32(PyObject* self, PyObject* args)
FreeLibrary(user32);
bitmap = CreateCompatibleBitmap(screen, width, height);
if (!bitmap)
if (!bitmap) {
goto error;
}
if (!SelectObject(screen_copy, bitmap))
if (!SelectObject(screen_copy, bitmap)) {
goto error;
}
/* step 2: copy bits into memory DC bitmap */
rop = SRCCOPY;
if (includeLayeredWindows)
if (includeLayeredWindows) {
rop |= CAPTUREBLT;
if (!BitBlt(screen_copy, 0, 0, width, height, screen, x, y, rop))
}
if (!BitBlt(screen_copy, 0, 0, width, height, screen, x, y, rop)) {
goto error;
}
/* step 3: extract bits from bitmap */
buffer = PyBytes_FromStringAndSize(NULL, height * ((width*3 + 3) & -4));
if (!buffer)
if (!buffer) {
return NULL;
}
core.bcSize = sizeof(core);
core.bcWidth = width;
@ -387,8 +409,9 @@ PyImaging_GrabScreenWin32(PyObject* self, PyObject* args)
core.bcPlanes = 1;
core.bcBitCount = 24;
if (!GetDIBits(screen_copy, bitmap, 0, height, PyBytes_AS_STRING(buffer),
(BITMAPINFO*) &core, DIB_RGB_COLORS))
(BITMAPINFO*) &core, DIB_RGB_COLORS)) {
goto error;
}
DeleteObject(bitmap);
DeleteDC(screen_copy);
@ -418,12 +441,15 @@ static BOOL CALLBACK list_windows_callback(HWND hwnd, LPARAM lParam)
title_size = GetWindowTextLength(hwnd);
if (title_size > 0) {
title = PyUnicode_FromStringAndSize(NULL, title_size);
if (title)
if (title) {
GetWindowTextW(hwnd, PyUnicode_AS_UNICODE(title), title_size+1);
} else
}
} else {
title = PyUnicode_FromString("");
if (!title)
}
if (!title) {
return 0;
}
/* get bounding boxes */
GetClientRect(hwnd, &inner);
@ -434,15 +460,17 @@ static BOOL CALLBACK list_windows_callback(HWND hwnd, LPARAM lParam)
inner.left, inner.top, inner.right, inner.bottom,
outer.left, outer.top, outer.right, outer.bottom
);
if (!item)
if (!item) {
return 0;
}
status = PyList_Append(window_list, item);
Py_DECREF(item);
if (status < 0)
if (status < 0) {
return 0;
}
return 1;
}
@ -453,8 +481,9 @@ PyImaging_ListWindowsWin32(PyObject* self, PyObject* args)
PyObject* window_list;
window_list = PyList_New(0);
if (!window_list)
if (!window_list) {
return NULL;
}
EnumWindows(list_windows_callback, (LPARAM) window_list);
@ -556,9 +585,10 @@ windowCallback(HWND wnd, UINT message, WPARAM wParam, LPARAM lParam)
GetWindowLongPtr(wnd, sizeof(PyObject*));
current_threadstate = PyThreadState_Swap(NULL);
PyEval_RestoreThread(threadstate);
} else
} else {
return DefWindowProc(wnd, message, wParam, lParam);
}
}
/* process message */
switch (message) {
@ -575,28 +605,31 @@ windowCallback(HWND wnd, UINT message, WPARAM wParam, LPARAM lParam)
ps.rcPaint.left, ps.rcPaint.top,
ps.rcPaint.right, ps.rcPaint.bottom
);
if (result)
if (result) {
Py_DECREF(result);
else
} else {
callback_error("window damage callback");
}
result = PyObject_CallFunction(
callback, "s" F_HANDLE "iiii", "clear", dc,
0, 0, rect.right-rect.left, rect.bottom-rect.top
);
if (result)
if (result) {
Py_DECREF(result);
else
} else {
callback_error("window clear callback");
}
result = PyObject_CallFunction(
callback, "s" F_HANDLE "iiii", "repair", dc,
0, 0, rect.right-rect.left, rect.bottom-rect.top
);
if (result)
if (result) {
Py_DECREF(result);
else
} else {
callback_error("window repair callback");
}
ReleaseDC(wnd, dc);
EndPaint(wnd, &ps);
@ -610,17 +643,19 @@ windowCallback(HWND wnd, UINT message, WPARAM wParam, LPARAM lParam)
if (result) {
InvalidateRect(wnd, NULL, 1);
Py_DECREF(result);
} else
} else {
callback_error("window resize callback");
}
break;
case WM_DESTROY:
/* destroy window */
result = PyObject_CallFunction(callback, "s", "destroy");
if (result)
if (result) {
Py_DECREF(result);
else
} else {
callback_error("window destroy callback");
}
Py_DECREF(callback);
break;
@ -646,13 +681,16 @@ PyImaging_CreateWindowWin32(PyObject* self, PyObject* args)
char* title;
PyObject* callback;
int width = 0, height = 0;
if (!PyArg_ParseTuple(args, "sO|ii", &title, &callback, &width, &height))
if (!PyArg_ParseTuple(args, "sO|ii", &title, &callback, &width, &height)) {
return NULL;
}
if (width <= 0)
if (width <= 0) {
width = CW_USEDEFAULT;
if (height <= 0)
}
if (height <= 0) {
height = CW_USEDEFAULT;
}
/* register toplevel window class */
windowClass.style = CS_CLASSDC;
@ -731,8 +769,9 @@ PyImaging_DrawWmf(PyObject* self, PyObject* args)
int width, height;
int x0, y0, x1, y1;
if (!PyArg_ParseTuple(args, "y#(ii)(iiii):_load", &data, &datasize,
&width, &height, &x0, &x1, &y0, &y1))
&width, &height, &x0, &x1, &y0, &y1)) {
return NULL;
}
/* step 1: copy metafile contents into METAFILE object */
@ -806,8 +845,9 @@ PyImaging_DrawWmf(PyObject* self, PyObject* args)
error:
DeleteEnhMetaFile(meta);
if (bitmap)
if (bitmap) {
DeleteObject(bitmap);
}
DeleteDC(dc);
@ -838,8 +878,9 @@ PyImaging_GrabScreenX11(PyObject* self, PyObject* args)
xcb_generic_error_t* error;
PyObject* buffer = NULL;
if (!PyArg_ParseTuple(args, "|z", &display_name))
if (!PyArg_ParseTuple(args, "|z", &display_name)) {
return NULL;
}
/* connect to X and get screen data */
@ -893,8 +934,9 @@ PyImaging_GrabScreenX11(PyObject* self, PyObject* args)
free(reply);
xcb_disconnect(connection);
if (!buffer)
if (!buffer) {
return NULL;
}
return Py_BuildValue("(ii)N", width, height, buffer);
}

View File

@ -55,12 +55,14 @@ PyImaging_EncoderNew(int contextsize)
ImagingEncoderObject *encoder;
void *context;
if(PyType_Ready(&ImagingEncoderType) < 0)
if(PyType_Ready(&ImagingEncoderType) < 0) {
return NULL;
}
encoder = PyObject_New(ImagingEncoderObject, &ImagingEncoderType);
if (encoder == NULL)
if (encoder == NULL) {
return NULL;
}
/* Clear the encoder state */
memset(&encoder->state, 0, sizeof(encoder->state));
@ -73,8 +75,9 @@ PyImaging_EncoderNew(int contextsize)
(void) PyErr_NoMemory();
return NULL;
}
} else
} else {
context = 0;
}
/* Initialize encoder context */
encoder->state.context = context;
@ -93,8 +96,9 @@ PyImaging_EncoderNew(int contextsize)
static void
_dealloc(ImagingEncoderObject* encoder)
{
if (encoder->cleanup)
if (encoder->cleanup) {
encoder->cleanup(&encoder->state);
}
free(encoder->state.buffer);
free(encoder->state.context);
Py_XDECREF(encoder->lock);
@ -125,19 +129,22 @@ _encode(ImagingEncoderObject* encoder, PyObject* args)
Py_ssize_t bufsize = 16384;
if (!PyArg_ParseTuple(args, "|n", &bufsize))
if (!PyArg_ParseTuple(args, "|n", &bufsize)) {
return NULL;
}
buf = PyBytes_FromStringAndSize(NULL, bufsize);
if (!buf)
if (!buf) {
return NULL;
}
status = encoder->encode(encoder->im, &encoder->state,
(UINT8*) PyBytes_AsString(buf), bufsize);
/* adjust string length to avoid slicing in encoder */
if (_PyBytes_Resize(&buf, (status > 0) ? status : 0) < 0)
if (_PyBytes_Resize(&buf, (status > 0) ? status : 0) < 0) {
return NULL;
}
result = Py_BuildValue("iiO", status, encoder->state.errcode, buf);
@ -179,14 +186,16 @@ _encode_to_file(ImagingEncoderObject* encoder, PyObject* args)
Py_ssize_t fh;
Py_ssize_t bufsize = 16384;
if (!PyArg_ParseTuple(args, "n|n", &fh, &bufsize))
if (!PyArg_ParseTuple(args, "n|n", &fh, &bufsize)) {
return NULL;
}
/* Allocate an encoder buffer */
/* malloc check ok, either constant int, or checked by PyArg_ParseTuple */
buf = (UINT8*) malloc(bufsize);
if (!buf)
if (!buf) {
return PyErr_NoMemory();
}
ImagingSectionEnter(&cookie);
@ -197,12 +206,13 @@ _encode_to_file(ImagingEncoderObject* encoder, PyObject* args)
status = encoder->encode(encoder->im, &encoder->state, buf, bufsize);
if (status > 0)
if (status > 0) {
if (write(fh, buf, status) < 0) {
ImagingSectionLeave(&cookie);
free(buf);
return PyErr_SetFromErrno(PyExc_OSError);
}
}
} while (encoder->state.errcode == 0);
@ -228,11 +238,13 @@ _setimage(ImagingEncoderObject* encoder, PyObject* args)
x0 = y0 = x1 = y1 = 0;
/* FIXME: should publish the ImagingType descriptor */
if (!PyArg_ParseTuple(args, "O|(nnnn)", &op, &x0, &y0, &x1, &y1))
if (!PyArg_ParseTuple(args, "O|(nnnn)", &op, &x0, &y0, &x1, &y1)) {
return NULL;
}
im = PyImaging_AsImaging(op);
if (!im)
if (!im) {
return NULL;
}
encoder->im = im;
@ -264,9 +276,10 @@ _setimage(ImagingEncoderObject* encoder, PyObject* args)
state->bytes = (state->bits * state->xsize+7)/8;
/* malloc check ok, overflow checked above */
state->buffer = (UINT8*) malloc(state->bytes);
if (!state->buffer)
if (!state->buffer) {
return PyErr_NoMemory();
}
}
/* Keep a reference to the image object, to make sure it doesn't
go away before we do */
@ -284,8 +297,9 @@ _setfd(ImagingEncoderObject* encoder, PyObject* args)
PyObject* fd;
ImagingCodecState state;
if (!PyArg_ParseTuple(args, "O", &fd))
if (!PyArg_ParseTuple(args, "O", &fd)) {
return NULL;
}
state = &encoder->state;
@ -386,8 +400,9 @@ PyImaging_EpsEncoderNew(PyObject* self, PyObject* args)
ImagingEncoderObject* encoder;
encoder = PyImaging_EncoderNew(0);
if (encoder == NULL)
if (encoder == NULL) {
return NULL;
}
encoder->encode = ImagingEpsEncode;
@ -408,15 +423,18 @@ PyImaging_GifEncoderNew(PyObject* self, PyObject* args)
char *rawmode;
Py_ssize_t bits = 8;
Py_ssize_t interlace = 0;
if (!PyArg_ParseTuple(args, "ss|nn", &mode, &rawmode, &bits, &interlace))
if (!PyArg_ParseTuple(args, "ss|nn", &mode, &rawmode, &bits, &interlace)) {
return NULL;
}
encoder = PyImaging_EncoderNew(sizeof(GIFENCODERSTATE));
if (encoder == NULL)
if (encoder == NULL) {
return NULL;
}
if (get_packer(encoder, mode, rawmode) < 0)
if (get_packer(encoder, mode, rawmode) < 0) {
return NULL;
}
encoder->encode = ImagingGifEncode;
@ -473,15 +491,18 @@ PyImaging_RawEncoderNew(PyObject* self, PyObject* args)
Py_ssize_t stride = 0;
Py_ssize_t ystep = 1;
if (!PyArg_ParseTuple(args, "ss|nn", &mode, &rawmode, &stride, &ystep))
if (!PyArg_ParseTuple(args, "ss|nn", &mode, &rawmode, &stride, &ystep)) {
return NULL;
}
encoder = PyImaging_EncoderNew(0);
if (encoder == NULL)
if (encoder == NULL) {
return NULL;
}
if (get_packer(encoder, mode, rawmode) < 0)
if (get_packer(encoder, mode, rawmode) < 0) {
return NULL;
}
encoder->encode = ImagingRawEncode;
@ -505,15 +526,18 @@ PyImaging_TgaRleEncoderNew(PyObject* self, PyObject* args)
char *rawmode;
Py_ssize_t ystep = 1;
if (!PyArg_ParseTuple(args, "ss|n", &mode, &rawmode, &ystep))
if (!PyArg_ParseTuple(args, "ss|n", &mode, &rawmode, &ystep)) {
return NULL;
}
encoder = PyImaging_EncoderNew(0);
if (encoder == NULL)
if (encoder == NULL) {
return NULL;
}
if (get_packer(encoder, mode, rawmode) < 0)
if (get_packer(encoder, mode, rawmode) < 0) {
return NULL;
}
encoder->encode = ImagingTgaRleEncode;
@ -534,11 +558,13 @@ PyImaging_XbmEncoderNew(PyObject* self, PyObject* args)
ImagingEncoderObject* encoder;
encoder = PyImaging_EncoderNew(0);
if (encoder == NULL)
if (encoder == NULL) {
return NULL;
}
if (get_packer(encoder, "1", "1;R") < 0)
if (get_packer(encoder, "1", "1;R") < 0) {
return NULL;
}
encoder->encode = ImagingXbmEncode;
@ -569,19 +595,22 @@ PyImaging_ZipEncoderNew(PyObject* self, PyObject* args)
if (!PyArg_ParseTuple(args, "ss|nnny#", &mode, &rawmode,
&optimize,
&compress_level, &compress_type,
&dictionary, &dictionary_size))
&dictionary, &dictionary_size)) {
return NULL;
}
/* Copy to avoid referencing Python's memory */
if (dictionary && dictionary_size > 0) {
/* malloc check ok, size comes from PyArg_ParseTuple */
char* p = malloc(dictionary_size);
if (!p)
if (!p) {
return PyErr_NoMemory();
}
memcpy(p, dictionary, dictionary_size);
dictionary = p;
} else
} else {
dictionary = NULL;
}
encoder = PyImaging_EncoderNew(sizeof(ZIPSTATE));
if (encoder == NULL) {
@ -597,9 +626,10 @@ PyImaging_ZipEncoderNew(PyObject* self, PyObject* args)
encoder->encode = ImagingZipEncode;
encoder->cleanup = ImagingZipEncodeCleanup;
if (rawmode[0] == 'P')
if (rawmode[0] == 'P') {
/* disable filtering */
((ZIPSTATE*)encoder->state.context)->mode = ZIP_PNG_PALETTE;
}
((ZIPSTATE*)encoder->state.context)->optimize = optimize;
((ZIPSTATE*)encoder->state.context)->compress_level = compress_level;
@ -675,11 +705,13 @@ PyImaging_LibTiffEncoderNew(PyObject* self, PyObject* args)
TRACE(("new tiff encoder %s fp: %d, filename: %s \n", compname, fp, filename));
encoder = PyImaging_EncoderNew(sizeof(TIFFSTATE));
if (encoder == NULL)
if (encoder == NULL) {
return NULL;
}
if (get_packer(encoder, mode, rawmode) < 0)
if (get_packer(encoder, mode, rawmode) < 0) {
return NULL;
}
if (! ImagingLibTiffEncodeInit(&encoder->state, filename, fp)) {
Py_DECREF(encoder);
@ -1027,12 +1059,14 @@ PyImaging_JpegEncoderNew(PyObject* self, PyObject* args)
&mode, &rawmode, &quality,
&progressive, &smooth, &optimize, &streamtype,
&xdpi, &ydpi, &subsampling, &qtables, &extra, &extra_size,
&rawExif, &rawExifLen))
&rawExif, &rawExifLen)) {
return NULL;
}
encoder = PyImaging_EncoderNew(sizeof(JPEGENCODERSTATE));
if (encoder == NULL)
if (encoder == NULL) {
return NULL;
}
// libjpeg-turbo supports different output formats.
// We are choosing Pillow's native format (3 color bytes + 1 padding)
@ -1041,8 +1075,9 @@ PyImaging_JpegEncoderNew(PyObject* self, PyObject* args)
rawmode = "RGBX";
}
if (get_packer(encoder, mode, rawmode) < 0)
if (get_packer(encoder, mode, rawmode) < 0) {
return NULL;
}
// Freed in JpegEncode, Case 5
qarrays = get_qtables_arrays(qtables, &qtablesLen);
@ -1050,24 +1085,29 @@ PyImaging_JpegEncoderNew(PyObject* self, PyObject* args)
if (extra && extra_size > 0) {
/* malloc check ok, length is from python parsearg */
char* p = malloc(extra_size); // Freed in JpegEncode, Case 5
if (!p)
if (!p) {
return PyErr_NoMemory();
}
memcpy(p, extra, extra_size);
extra = p;
} else
} else {
extra = NULL;
}
if (rawExif && rawExifLen > 0) {
/* malloc check ok, length is from python parsearg */
char* pp = malloc(rawExifLen); // Freed in JpegEncode, Case 5
if (!pp) {
if (extra) free(extra);
if (extra) {
free(extra);
}
return PyErr_NoMemory();
}
memcpy(pp, rawExif, rawExifLen);
rawExif = pp;
} else
} else {
rawExif = NULL;
}
encoder->encode = ImagingJpegEncode;
@ -1111,12 +1151,14 @@ j2k_decode_coord_tuple(PyObject *tuple, int *x, int *y)
*x = (int)PyLong_AsLong(PyTuple_GET_ITEM(tuple, 0));
*y = (int)PyLong_AsLong(PyTuple_GET_ITEM(tuple, 1));
if (*x < 0)
if (*x < 0) {
*x = 0;
if (*y < 0)
}
if (*y < 0) {
*y = 0;
}
}
}
PyObject*
PyImaging_Jpeg2KEncoderNew(PyObject *self, PyObject *args)
@ -1144,45 +1186,50 @@ PyImaging_Jpeg2KEncoderNew(PyObject *self, PyObject *args)
&quality_mode, &quality_layers, &num_resolutions,
&cblk_size, &precinct_size,
&irreversible, &progression, &cinema_mode,
&fd))
&fd)) {
return NULL;
}
if (strcmp (format, "j2k") == 0)
if (strcmp (format, "j2k") == 0) {
codec_format = OPJ_CODEC_J2K;
else if (strcmp (format, "jpt") == 0)
} else if (strcmp (format, "jpt") == 0) {
codec_format = OPJ_CODEC_JPT;
else if (strcmp (format, "jp2") == 0)
} else if (strcmp (format, "jp2") == 0) {
codec_format = OPJ_CODEC_JP2;
else
} else {
return NULL;
}
if (strcmp(progression, "LRCP") == 0)
if (strcmp(progression, "LRCP") == 0) {
prog_order = OPJ_LRCP;
else if (strcmp(progression, "RLCP") == 0)
} else if (strcmp(progression, "RLCP") == 0) {
prog_order = OPJ_RLCP;
else if (strcmp(progression, "RPCL") == 0)
} else if (strcmp(progression, "RPCL") == 0) {
prog_order = OPJ_RPCL;
else if (strcmp(progression, "PCRL") == 0)
} else if (strcmp(progression, "PCRL") == 0) {
prog_order = OPJ_PCRL;
else if (strcmp(progression, "CPRL") == 0)
} else if (strcmp(progression, "CPRL") == 0) {
prog_order = OPJ_CPRL;
else
} else {
return NULL;
}
if (strcmp(cinema_mode, "no") == 0)
if (strcmp(cinema_mode, "no") == 0) {
cine_mode = OPJ_OFF;
else if (strcmp(cinema_mode, "cinema2k-24") == 0)
} else if (strcmp(cinema_mode, "cinema2k-24") == 0) {
cine_mode = OPJ_CINEMA2K_24;
else if (strcmp(cinema_mode, "cinema2k-48") == 0)
} else if (strcmp(cinema_mode, "cinema2k-48") == 0) {
cine_mode = OPJ_CINEMA2K_48;
else if (strcmp(cinema_mode, "cinema4k-24") == 0)
} else if (strcmp(cinema_mode, "cinema4k-24") == 0) {
cine_mode = OPJ_CINEMA4K_24;
else
} else {
return NULL;
}
encoder = PyImaging_EncoderNew(sizeof(JPEG2KENCODESTATE));
if (!encoder)
if (!encoder) {
return NULL;
}
encoder->encode = ImagingJpeg2KEncode;
encoder->cleanup = ImagingJpeg2KEncodeCleanup;

View File

@ -22,8 +22,9 @@ static inline UINT32
hash(const char* mode)
{
UINT32 i = ACCESS_TABLE_HASH;
while (*mode)
while (*mode) {
i = ((i<<5) + i) ^ (UINT8) *mode++;
}
return i % ACCESS_TABLE_SIZE;
}
@ -149,11 +150,12 @@ get_pixel_32B(Imaging im, int x, int y, void* color)
static void
put_pixel(Imaging im, int x, int y, const void* color)
{
if (im->image8)
if (im->image8) {
im->image8[y][x] = *((UINT8*) color);
else
} else {
memcpy(&im->image32[y][x], color, sizeof(INT32));
}
}
static void
put_pixel_8(Imaging im, int x, int y, const void* color)
@ -237,8 +239,9 @@ ImagingAccess
ImagingAccessNew(Imaging im)
{
ImagingAccess access = &access_table[hash(im->mode)];
if (im->mode[0] != access->mode[0] || strcmp(im->mode, access->mode) != 0)
if (im->mode[0] != access->mode[0] || strcmp(im->mode, access->mode) != 0) {
return NULL;
}
return access;
}

View File

@ -33,19 +33,22 @@ ImagingAlphaComposite(Imaging imDst, Imaging imSrc)
if (!imDst || !imSrc ||
strcmp(imDst->mode, "RGBA") ||
imDst->type != IMAGING_TYPE_UINT8 ||
imDst->bands != 4)
imDst->bands != 4) {
return ImagingError_ModeError();
}
if (strcmp(imDst->mode, imSrc->mode) ||
imDst->type != imSrc->type ||
imDst->bands != imSrc->bands ||
imDst->xsize != imSrc->xsize ||
imDst->ysize != imSrc->ysize)
imDst->ysize != imSrc->ysize) {
return ImagingError_Mismatch();
}
imOut = ImagingNewDirty(imDst->mode, imDst->xsize, imDst->ysize);
if (!imOut)
if (!imOut) {
return NULL;
}
for (y = 0; y < imDst->ysize; y++) {
rgba8* dst = (rgba8*) imDst->image[y];

View File

@ -26,23 +26,28 @@ ImagingGetBand(Imaging imIn, int band)
int x, y;
/* Check arguments */
if (!imIn || imIn->type != IMAGING_TYPE_UINT8)
if (!imIn || imIn->type != IMAGING_TYPE_UINT8) {
return (Imaging) ImagingError_ModeError();
}
if (band < 0 || band >= imIn->bands)
if (band < 0 || band >= imIn->bands) {
return (Imaging) ImagingError_ValueError("band index out of range");
}
/* Shortcuts */
if (imIn->bands == 1)
if (imIn->bands == 1) {
return ImagingCopy(imIn);
}
/* Special case for LXXA etc */
if (imIn->bands == 2 && band == 1)
if (imIn->bands == 2 && band == 1) {
band = 3;
}
imOut = ImagingNewDirty("L", imIn->xsize, imIn->ysize);
if (!imOut)
if (!imOut) {
return NULL;
}
/* Extract band from image */
for (y = 0; y < imIn->ysize; y++) {
@ -173,24 +178,29 @@ ImagingPutBand(Imaging imOut, Imaging imIn, int band)
int x, y;
/* Check arguments */
if (!imIn || imIn->bands != 1 || !imOut)
if (!imIn || imIn->bands != 1 || !imOut) {
return (Imaging) ImagingError_ModeError();
}
if (band < 0 || band >= imOut->bands)
if (band < 0 || band >= imOut->bands) {
return (Imaging) ImagingError_ValueError("band index out of range");
}
if (imIn->type != imOut->type ||
imIn->xsize != imOut->xsize ||
imIn->ysize != imOut->ysize)
imIn->ysize != imOut->ysize) {
return (Imaging) ImagingError_Mismatch();
}
/* Shortcuts */
if (imOut->bands == 1)
if (imOut->bands == 1) {
return ImagingCopy2(imOut, imIn);
}
/* Special case for LXXA etc */
if (imOut->bands == 2 && band == 1)
if (imOut->bands == 2 && band == 1) {
band = 3;
}
/* Insert band into image */
for (y = 0; y < imIn->ysize; y++) {
@ -211,15 +221,18 @@ ImagingFillBand(Imaging imOut, int band, int color)
int x, y;
/* Check arguments */
if (!imOut || imOut->type != IMAGING_TYPE_UINT8)
if (!imOut || imOut->type != IMAGING_TYPE_UINT8) {
return (Imaging) ImagingError_ModeError();
}
if (band < 0 || band >= imOut->bands)
if (band < 0 || band >= imOut->bands) {
return (Imaging) ImagingError_ValueError("band index out of range");
}
/* Special case for LXXA etc */
if (imOut->bands == 2 && band == 1)
if (imOut->bands == 2 && band == 1) {
band = 3;
}
color = CLIP8(color);
@ -263,16 +276,18 @@ ImagingMerge(const char* mode, Imaging bands[4])
bandsCount = i;
imOut = ImagingNewDirty(mode, firstBand->xsize, firstBand->ysize);
if ( ! imOut)
if ( ! imOut) {
return NULL;
}
if (imOut->bands != bandsCount) {
ImagingDelete(imOut);
return (Imaging) ImagingError_ValueError("wrong number of bands");
}
if (imOut->bands == 1)
if (imOut->bands == 1) {
return ImagingCopy2(imOut, firstBand);
}
if (imOut->bands == 2) {
for (y = 0; y < imOut->ysize; y++) {

View File

@ -610,15 +610,21 @@ static int bc6_unquantize(UINT16 v, int prec, int sign) {
int x;
if (!sign) {
x = v;
if (prec >= 15) return x;
if (x == 0) return 0;
if (prec >= 15) {
return x;
}
if (x == 0) {
return 0;
}
if (x == ((1 << prec) - 1)) {
return 0xffff;
}
return ((x << 15) + 0x4000) >> (prec - 1);
} else {
x = (INT16)v;
if (prec >= 16) return x;
if (prec >= 16) {
return x;
}
if (x < 0) {
s = 1;
x = -x;
@ -820,7 +826,9 @@ static int decode_bcn(Imaging im, ImagingCodecState state, const UINT8* src, int
put_block(im, state, (const char *)col, sizeof(col[0]), C); \
ptr += SZ; \
bytes -= SZ; \
if (state->y >= ymax) return -1; \
if (state->y >= ymax) {\
return -1; \
}\
} \
break
@ -836,7 +844,9 @@ static int decode_bcn(Imaging im, ImagingCodecState state, const UINT8* src, int
put_block(im, state, (const char *)col, sizeof(col[0]), C);
ptr += 16;
bytes -= 16;
if (state->y >= ymax) return -1; \
if (state->y >= ymax) {\
return -1; \
}\
}
break;
DECODE_LOOP(7, 16, rgba);

View File

@ -43,15 +43,17 @@ ImagingBitDecode(Imaging im, ImagingCodecState state, UINT8* buf, Py_ssize_t byt
bitstate->mask = (1<<bitstate->bits)-1;
if (bitstate->sign)
if (bitstate->sign) {
bitstate->signmask = (1<<(bitstate->bits-1));
}
/* check image orientation */
if (state->ystep < 0) {
state->y = state->ysize-1;
state->ystep = -1;
} else
} else {
state->ystep = 1;
}
state->state = 1;
@ -67,12 +69,13 @@ ImagingBitDecode(Imaging im, ImagingCodecState state, UINT8* buf, Py_ssize_t byt
bytes--;
/* get a byte from the input stream and insert in the bit buffer */
if (bitstate->fill&1)
if (bitstate->fill&1) {
/* fill MSB first */
bitstate->bitbuffer |= (unsigned long) byte << bitstate->bitcount;
else
} else {
/* fill LSB first */
bitstate->bitbuffer = (bitstate->bitbuffer << 8) | byte;
}
bitstate->bitcount += 8;
@ -85,36 +88,40 @@ ImagingBitDecode(Imaging im, ImagingCodecState state, UINT8* buf, Py_ssize_t byt
if (bitstate->fill&2) {
/* store LSB first */
data = bitstate->bitbuffer & bitstate->mask;
if (bitstate->bitcount > 32)
if (bitstate->bitcount > 32) {
/* bitbuffer overflow; restore it from last input byte */
bitstate->bitbuffer = byte >> (8 - (bitstate->bitcount -
bitstate->bits));
else
} else {
bitstate->bitbuffer >>= bitstate->bits;
} else
}
} else {
/* store MSB first */
data = (bitstate->bitbuffer >> (bitstate->bitcount -
bitstate->bits))
& bitstate->mask;
}
bitstate->bitcount -= bitstate->bits;
if (bitstate->lutsize > 0) {
/* map through lookup table */
if (data <= 0)
if (data <= 0) {
pixel = bitstate->lut[0];
else if (data >= bitstate->lutsize)
} else if (data >= bitstate->lutsize) {
pixel = bitstate->lut[bitstate->lutsize-1];
else
} else {
pixel = bitstate->lut[data];
}
} else {
/* convert */
if (data & bitstate->signmask)
if (data & bitstate->signmask) {
/* image memory contains signed data */
pixel = (FLOAT32) (INT32) (data | ~bitstate->mask);
else
} else {
pixel = (FLOAT32) data;
}
}
*(FLOAT32*)(&im->image32[state->y][state->x]) = pixel;
@ -128,11 +135,12 @@ ImagingBitDecode(Imaging im, ImagingCodecState state, UINT8* buf, Py_ssize_t byt
}
state->x = 0;
/* reset bit buffer */
if (bitstate->pad > 0)
if (bitstate->pad > 0) {
bitstate->bitcount = 0;
}
}
}
}
return ptr - buf;
}

View File

@ -28,24 +28,28 @@ ImagingBlend(Imaging imIn1, Imaging imIn2, float alpha)
/* Check arguments */
if (!imIn1 || !imIn2 || imIn1->type != IMAGING_TYPE_UINT8
|| imIn1->palette || strcmp(imIn1->mode, "1") == 0
|| imIn2->palette || strcmp(imIn2->mode, "1") == 0)
|| imIn2->palette || strcmp(imIn2->mode, "1") == 0) {
return ImagingError_ModeError();
}
if (imIn1->type != imIn2->type ||
imIn1->bands != imIn2->bands ||
imIn1->xsize != imIn2->xsize ||
imIn1->ysize != imIn2->ysize)
imIn1->ysize != imIn2->ysize) {
return ImagingError_Mismatch();
}
/* Shortcuts */
if (alpha == 0.0)
if (alpha == 0.0) {
return ImagingCopy(imIn1);
else if (alpha == 1.0)
} else if (alpha == 1.0) {
return ImagingCopy(imIn2);
}
imOut = ImagingNewDirty(imIn1->mode, imIn1->xsize, imIn1->ysize);
if (!imOut)
if (!imOut) {
return NULL;
}
if (alpha >= 0 && alpha <= 1.0) {
/* Interpolate between bands */
@ -53,10 +57,11 @@ ImagingBlend(Imaging imIn1, Imaging imIn2, float alpha)
UINT8* in1 = (UINT8*) imIn1->image[y];
UINT8* in2 = (UINT8*) imIn2->image[y];
UINT8* out = (UINT8*) imOut->image[y];
for (x = 0; x < imIn1->linesize; x++)
for (x = 0; x < imIn1->linesize; x++) {
out[x] = (UINT8)
((int) in1[x] + alpha * ((int) in2[x] - (int) in1[x]));
}
}
} else {
/* Extrapolation; must make sure to clip resulting values */
for (y = 0; y < imIn1->ysize; y++) {
@ -66,15 +71,16 @@ ImagingBlend(Imaging imIn1, Imaging imIn2, float alpha)
for (x = 0; x < imIn1->linesize; x++) {
float temp = (float)
((int) in1[x] + alpha * ((int) in2[x] - (int) in1[x]));
if (temp <= 0.0)
if (temp <= 0.0) {
out[x] = 0;
else if (temp >= 255.0)
} else if (temp >= 255.0) {
out[x] = 255;
else
} else {
out[x] = (UINT8) temp;
}
}
}
}
return imOut;
}

View File

@ -184,8 +184,9 @@ ImagingHorizontalBoxBlur(Imaging imOut, Imaging imIn, float floatRadius)
int edgeB = MAX(imIn->xsize - radius - 1, 0);
UINT32 *lineOut = calloc(imIn->xsize, sizeof(UINT32));
if (lineOut == NULL)
if (lineOut == NULL) {
return ImagingError_MemoryError();
}
// printf(">>> %d %d %d\n", radius, ww, fw);
@ -248,11 +249,13 @@ ImagingBoxBlur(Imaging imOut, Imaging imIn, float radius, int n)
imIn->type != imOut->type ||
imIn->bands != imOut->bands ||
imIn->xsize != imOut->xsize ||
imIn->ysize != imOut->ysize)
imIn->ysize != imOut->ysize) {
return ImagingError_Mismatch();
}
if (imIn->type != IMAGING_TYPE_UINT8)
if (imIn->type != IMAGING_TYPE_UINT8) {
return ImagingError_ModeError();
}
if (!(strcmp(imIn->mode, "RGB") == 0 ||
strcmp(imIn->mode, "RGBA") == 0 ||
@ -261,12 +264,14 @@ ImagingBoxBlur(Imaging imOut, Imaging imIn, float radius, int n)
strcmp(imIn->mode, "CMYK") == 0 ||
strcmp(imIn->mode, "L") == 0 ||
strcmp(imIn->mode, "LA") == 0 ||
strcmp(imIn->mode, "La") == 0))
strcmp(imIn->mode, "La") == 0)) {
return ImagingError_ModeError();
}
imTransposed = ImagingNewDirty(imIn->mode, imIn->ysize, imIn->xsize);
if (!imTransposed)
if (!imTransposed) {
return NULL;
}
/* Apply blur in one dimension.
Use imOut as a destination at first pass,

View File

@ -23,30 +23,33 @@
int x, y;\
Imaging imOut;\
imOut = create(imIn1, imIn2, mode);\
if (!imOut)\
if (!imOut) {\
return NULL;\
}\
for (y = 0; y < imOut->ysize; y++) {\
UINT8* out = (UINT8*) imOut->image[y];\
UINT8* in1 = (UINT8*) imIn1->image[y];\
UINT8* in2 = (UINT8*) imIn2->image[y];\
for (x = 0; x < imOut->linesize; x++) {\
int temp = operation;\
if (temp <= 0)\
if (temp <= 0) {\
out[x] = 0;\
else if (temp >= 255)\
} else if (temp >= 255) {\
out[x] = 255;\
else\
} else {\
out[x] = temp;\
}\
}\
}\
return imOut;
#define CHOP2(operation, mode)\
int x, y;\
Imaging imOut;\
imOut = create(imIn1, imIn2, mode);\
if (!imOut)\
if (!imOut) {\
return NULL;\
}\
for (y = 0; y < imOut->ysize; y++) {\
UINT8* out = (UINT8*) imOut->image[y];\
UINT8* in1 = (UINT8*) imIn1->image[y];\
@ -63,11 +66,13 @@ create(Imaging im1, Imaging im2, char* mode)
int xsize, ysize;
if (!im1 || !im2 || im1->type != IMAGING_TYPE_UINT8 ||
(mode != NULL && (strcmp(im1->mode, "1") || strcmp(im2->mode, "1"))))
(mode != NULL && (strcmp(im1->mode, "1") || strcmp(im2->mode, "1")))) {
return (Imaging) ImagingError_ModeError();
}
if (im1->type != im2->type ||
im1->bands != im2->bands)
im1->bands != im2->bands) {
return (Imaging) ImagingError_Mismatch();
}
xsize = (im1->xsize < im2->xsize) ? im1->xsize : im2->xsize;
ysize = (im1->ysize < im2->ysize) ? im1->ysize : im2->ysize;

View File

@ -123,9 +123,10 @@ static void
l2bit(UINT8* out, const UINT8* in, int xsize)
{
int x;
for (x = 0; x < xsize; x++)
for (x = 0; x < xsize; x++) {
*out++ = (*in++ >= 128) ? 255 : 0;
}
}
static void
lA2la(UINT8* out, const UINT8* in, int xsize)
@ -206,9 +207,10 @@ static void
la2l(UINT8* out, const UINT8* in, int xsize)
{
int x;
for (x = 0; x < xsize; x++, in += 4)
for (x = 0; x < xsize; x++, in += 4) {
*out++ = in[0];
}
}
static void
la2rgb(UINT8* out, const UINT8* in, int xsize)
@ -240,19 +242,21 @@ static void
rgb2bit(UINT8* out, const UINT8* in, int xsize)
{
int x;
for (x = 0; x < xsize; x++, in += 4)
for (x = 0; x < xsize; x++, in += 4) {
/* ITU-R Recommendation 601-2 (assuming nonlinear RGB) */
*out++ = (L(in) >= 128000) ? 255 : 0;
}
}
static void
rgb2l(UINT8* out, const UINT8* in, int xsize)
{
int x;
for (x = 0; x < xsize; x++, in += 4)
for (x = 0; x < xsize; x++, in += 4) {
/* ITU-R Recommendation 601-2 (assuming nonlinear RGB) */
*out++ = L24(in) >> 16;
}
}
static void
rgb2la(UINT8* out, const UINT8* in, int xsize)
@ -653,14 +657,15 @@ i2l(UINT8* out, const UINT8* in_, int xsize)
for (x = 0; x < xsize; x++, out++, in_ += 4) {
INT32 v;
memcpy(&v, in_, sizeof(v));
if (v <= 0)
if (v <= 0) {
*out = 0;
else if (v >= 255)
} else if (v >= 255) {
*out = 255;
else
} else {
*out = (UINT8) v;
}
}
}
static void
i2f(UINT8* out_, const UINT8* in_, int xsize)
@ -681,12 +686,13 @@ i2rgb(UINT8* out, const UINT8* in_, int xsize)
int x;
INT32* in = (INT32*) in_;
for (x = 0; x < xsize; x++, in++, out+=4) {
if (*in <= 0)
if (*in <= 0) {
out[0] = out[1] = out[2] = 0;
else if (*in >= 255)
} else if (*in >= 255) {
out[0] = out[1] = out[2] = 255;
else
} else {
out[0] = out[1] = out[2] = (UINT8) *in;
}
out[3] = 255;
}
}
@ -741,14 +747,15 @@ f2l(UINT8* out, const UINT8* in_, int xsize)
for (x = 0; x < xsize; x++, out++, in_ += 4) {
FLOAT32 v;
memcpy(&v, in_, sizeof(v));
if (v <= 0.0)
if (v <= 0.0) {
*out = 0;
else if (v >= 255.0)
} else if (v >= 255.0) {
*out = 255;
else
} else {
*out = (UINT8) v;
}
}
}
static void
f2i(UINT8* out_, const UINT8* in_, int xsize)
@ -797,9 +804,10 @@ static void
ycbcr2l(UINT8* out, const UINT8* in, int xsize)
{
int x;
for (x = 0; x < xsize; x++, in += 4)
for (x = 0; x < xsize; x++, in += 4) {
*out++ = in[0];
}
}
static void
ycbcr2la(UINT8* out, const UINT8* in, int xsize)
@ -908,23 +916,27 @@ static void
I16L_L(UINT8* out, const UINT8* in, int xsize)
{
int x;
for (x = 0; x < xsize; x++, in += 2)
if (in[1] != 0)
for (x = 0; x < xsize; x++, in += 2) {
if (in[1] != 0) {
*out++ = 255;
else
} else {
*out++ = in[0];
}
}
}
static void
I16B_L(UINT8* out, const UINT8* in, int xsize)
{
int x;
for (x = 0; x < xsize; x++, in += 2)
if (in[0] != 0)
for (x = 0; x < xsize; x++, in += 2) {
if (in[0] != 0) {
*out++ = 255;
else
} else {
*out++ = in[1];
}
}
}
static struct {
const char* from;
@ -1056,36 +1068,40 @@ p2bit(UINT8* out, const UINT8* in, int xsize, const UINT8* palette)
{
int x;
/* FIXME: precalculate greyscale palette? */
for (x = 0; x < xsize; x++)
for (x = 0; x < xsize; x++) {
*out++ = (L(&palette[in[x]*4]) >= 128000) ? 255 : 0;
}
}
static void
pa2bit(UINT8* out, const UINT8* in, int xsize, const UINT8* palette)
{
int x;
/* FIXME: precalculate greyscale palette? */
for (x = 0; x < xsize; x++, in += 4)
for (x = 0; x < xsize; x++, in += 4) {
*out++ = (L(&palette[in[0]*4]) >= 128000) ? 255 : 0;
}
}
static void
p2l(UINT8* out, const UINT8* in, int xsize, const UINT8* palette)
{
int x;
/* FIXME: precalculate greyscale palette? */
for (x = 0; x < xsize; x++)
for (x = 0; x < xsize; x++) {
*out++ = L(&palette[in[x]*4]) / 1000;
}
}
static void
pa2l(UINT8* out, const UINT8* in, int xsize, const UINT8* palette)
{
int x;
/* FIXME: precalculate greyscale palette? */
for (x = 0; x < xsize; x++, in += 4)
for (x = 0; x < xsize; x++, in += 4) {
*out++ = L(&palette[in[0]*4]) / 1000;
}
}
static void
p2pa(UINT8* out, const UINT8* in, int xsize, const UINT8* palette)
@ -1138,9 +1154,10 @@ pa2i(UINT8* out_, const UINT8* in, int xsize, const UINT8* palette)
{
int x;
INT32* out = (INT32*) out_;
for (x = 0; x < xsize; x++, in += 4)
for (x = 0; x < xsize; x++, in += 4) {
*out++ = L(&palette[in[0]*4]) / 1000;
}
}
static void
p2f(UINT8* out_, const UINT8* in, int xsize, const UINT8* palette)
@ -1157,9 +1174,10 @@ pa2f(UINT8* out_, const UINT8* in, int xsize, const UINT8* palette)
{
int x;
FLOAT32* out = (FLOAT32*) out_;
for (x = 0; x < xsize; x++, in += 4)
for (x = 0; x < xsize; x++, in += 4) {
*out++ = (float) L(&palette[in[0]*4]) / 1000.0F;
}
}
static void
p2rgb(UINT8* out, const UINT8* in, int xsize, const UINT8* palette)
@ -1273,46 +1291,50 @@ frompalette(Imaging imOut, Imaging imIn, const char *mode)
/* Map palette image to L, RGB, RGBA, or CMYK */
if (!imIn->palette)
if (!imIn->palette) {
return (Imaging) ImagingError_ValueError("no palette");
}
alpha = !strcmp(imIn->mode, "PA");
if (strcmp(mode, "1") == 0)
if (strcmp(mode, "1") == 0) {
convert = alpha ? pa2bit : p2bit;
else if (strcmp(mode, "L") == 0)
} else if (strcmp(mode, "L") == 0) {
convert = alpha ? pa2l : p2l;
else if (strcmp(mode, "LA") == 0)
} else if (strcmp(mode, "LA") == 0) {
convert = alpha ? pa2la : p2la;
else if (strcmp(mode, "PA") == 0)
} else if (strcmp(mode, "PA") == 0) {
convert = p2pa;
else if (strcmp(mode, "I") == 0)
} else if (strcmp(mode, "I") == 0) {
convert = alpha ? pa2i : p2i;
else if (strcmp(mode, "F") == 0)
} else if (strcmp(mode, "F") == 0) {
convert = alpha ? pa2f : p2f;
else if (strcmp(mode, "RGB") == 0)
} else if (strcmp(mode, "RGB") == 0) {
convert = alpha ? pa2rgb : p2rgb;
else if (strcmp(mode, "RGBA") == 0)
} else if (strcmp(mode, "RGBA") == 0) {
convert = alpha ? pa2rgba : p2rgba;
else if (strcmp(mode, "RGBX") == 0)
} else if (strcmp(mode, "RGBX") == 0) {
convert = alpha ? pa2rgba : p2rgba;
else if (strcmp(mode, "CMYK") == 0)
} else if (strcmp(mode, "CMYK") == 0) {
convert = alpha ? pa2cmyk : p2cmyk;
else if (strcmp(mode, "YCbCr") == 0)
} else if (strcmp(mode, "YCbCr") == 0) {
convert = alpha ? pa2ycbcr : p2ycbcr;
else if (strcmp(mode, "HSV") == 0)
} else if (strcmp(mode, "HSV") == 0) {
convert = alpha ? pa2hsv : p2hsv;
else
} else {
return (Imaging) ImagingError_ValueError("conversion not supported");
}
imOut = ImagingNew2Dirty(mode, imOut, imIn);
if (!imOut)
if (!imOut) {
return NULL;
}
ImagingSectionEnter(&cookie);
for (y = 0; y < imIn->ysize; y++)
for (y = 0; y < imIn->ysize; y++) {
(*convert)((UINT8*) imOut->image[y], (UINT8*) imIn->image[y],
imIn->xsize, imIn->palette->palette);
}
ImagingSectionLeave(&cookie);
return imOut;
@ -1330,26 +1352,30 @@ topalette(Imaging imOut, Imaging imIn, const char *mode, ImagingPalette inpalett
ImagingPalette palette = inpalette;;
/* Map L or RGB/RGBX/RGBA to palette image */
if (strcmp(imIn->mode, "L") != 0 && strncmp(imIn->mode, "RGB", 3) != 0)
if (strcmp(imIn->mode, "L") != 0 && strncmp(imIn->mode, "RGB", 3) != 0) {
return (Imaging) ImagingError_ValueError("conversion not supported");
}
alpha = !strcmp(mode, "PA");
if (palette == NULL) {
/* FIXME: make user configurable */
if (imIn->bands == 1)
if (imIn->bands == 1) {
palette = ImagingPaletteNew("RGB"); /* Initialised to grey ramp */
else
} else {
palette = ImagingPaletteNewBrowser(); /* Standard colour cube */
}
}
if (!palette)
if (!palette) {
return (Imaging) ImagingError_ValueError("no palette");
}
imOut = ImagingNew2Dirty(mode, imOut, imIn);
if (!imOut) {
if (palette != inpalette)
if (palette != inpalette) {
ImagingPaletteDelete(palette);
}
return NULL;
}
@ -1376,8 +1402,9 @@ topalette(Imaging imOut, Imaging imIn, const char *mode, ImagingPalette inpalett
/* Create mapping cache */
if (ImagingPaletteCachePrepare(palette) < 0) {
ImagingDelete(imOut);
if (palette != inpalette)
if (palette != inpalette) {
ImagingPaletteDelete(palette);
}
return NULL;
}
@ -1415,8 +1442,9 @@ topalette(Imaging imOut, Imaging imIn, const char *mode, ImagingPalette inpalett
/* get closest colour */
cache = &ImagingPaletteCache(palette, r, g, b);
if (cache[0] == 0x100)
if (cache[0] == 0x100) {
ImagingPaletteCacheUpdate(palette, r, g, b);
}
if (alpha) {
out[x*4] = out[x*4+1] = out[x*4+2] = (UINT8) cache[0];
out[x*4+3] = 255;
@ -1464,8 +1492,9 @@ topalette(Imaging imOut, Imaging imIn, const char *mode, ImagingPalette inpalett
/* get closest colour */
cache = &ImagingPaletteCache(palette, r, g, b);
if (cache[0] == 0x100)
if (cache[0] == 0x100) {
ImagingPaletteCacheUpdate(palette, r, g, b);
}
if (alpha) {
out[x*4] = out[x*4+1] = out[x*4+2] = (UINT8) cache[0];
out[x*4+3] = 255;
@ -1477,12 +1506,14 @@ topalette(Imaging imOut, Imaging imIn, const char *mode, ImagingPalette inpalett
ImagingSectionLeave(&cookie);
}
if (inpalette != palette)
if (inpalette != palette) {
ImagingPaletteCacheDelete(palette);
}
}
if (inpalette != palette)
if (inpalette != palette) {
ImagingPaletteDelete(palette);
}
return imOut;
}
@ -1495,12 +1526,14 @@ tobilevel(Imaging imOut, Imaging imIn, int dither)
int* errors;
/* Map L or RGB to dithered 1 image */
if (strcmp(imIn->mode, "L") != 0 && strcmp(imIn->mode, "RGB") != 0)
if (strcmp(imIn->mode, "L") != 0 && strcmp(imIn->mode, "RGB") != 0) {
return (Imaging) ImagingError_ValueError("conversion not supported");
}
imOut = ImagingNew2Dirty("1", imOut, imIn);
if (!imOut)
if (!imOut) {
return NULL;
}
errors = calloc(imIn->xsize + 1, sizeof(int));
if (!errors) {
@ -1582,63 +1615,72 @@ convert(Imaging imOut, Imaging imIn, const char *mode,
ImagingShuffler convert;
int y;
if (!imIn)
if (!imIn) {
return (Imaging) ImagingError_ModeError();
}
if (!mode) {
/* Map palette image to full depth */
if (!imIn->palette)
if (!imIn->palette) {
return (Imaging) ImagingError_ModeError();
}
mode = imIn->palette->mode;
} else
} else {
/* Same mode? */
if (!strcmp(imIn->mode, mode))
if (!strcmp(imIn->mode, mode)) {
return ImagingCopy2(imOut, imIn);
}
}
/* test for special conversions */
if (strcmp(imIn->mode, "P") == 0 || strcmp(imIn->mode, "PA") == 0)
if (strcmp(imIn->mode, "P") == 0 || strcmp(imIn->mode, "PA") == 0) {
return frompalette(imOut, imIn, mode);
}
if (strcmp(mode, "P") == 0 || strcmp(mode, "PA") == 0)
if (strcmp(mode, "P") == 0 || strcmp(mode, "PA") == 0) {
return topalette(imOut, imIn, mode, palette, dither);
}
if (dither && strcmp(mode, "1") == 0)
if (dither && strcmp(mode, "1") == 0) {
return tobilevel(imOut, imIn, dither);
}
/* standard conversion machinery */
convert = NULL;
for (y = 0; converters[y].from; y++)
for (y = 0; converters[y].from; y++) {
if (!strcmp(imIn->mode, converters[y].from) &&
!strcmp(mode, converters[y].to)) {
convert = converters[y].convert;
break;
}
}
if (!convert)
if (!convert) {
#ifdef notdef
return (Imaging) ImagingError_ValueError("conversion not supported");
#else
{
static char buf[256];
/* FIXME: may overflow if mode is too large */
sprintf(buf, "conversion from %s to %s not supported", imIn->mode, mode);
return (Imaging) ImagingError_ValueError(buf);
}
#endif
}
imOut = ImagingNew2Dirty(mode, imOut, imIn);
if (!imOut)
if (!imOut) {
return NULL;
}
ImagingSectionEnter(&cookie);
for (y = 0; y < imIn->ysize; y++)
for (y = 0; y < imIn->ysize; y++) {
(*convert)((UINT8*) imOut->image[y], (UINT8*) imIn->image[y],
imIn->xsize);
}
ImagingSectionLeave(&cookie);
return imOut;
@ -1727,17 +1769,19 @@ ImagingConvertInPlace(Imaging imIn, const char* mode)
int y;
/* limited support for inplace conversion */
if (strcmp(imIn->mode, "L") == 0 && strcmp(mode, "1") == 0)
if (strcmp(imIn->mode, "L") == 0 && strcmp(mode, "1") == 0) {
convert = l2bit;
else if (strcmp(imIn->mode, "1") == 0 && strcmp(mode, "L") == 0)
} else if (strcmp(imIn->mode, "1") == 0 && strcmp(mode, "L") == 0) {
convert = bit2l;
else
} else {
return ImagingError_ModeError();
}
ImagingSectionEnter(&cookie);
for (y = 0; y < imIn->ysize; y++)
for (y = 0; y < imIn->ysize; y++) {
(*convert)((UINT8*) imIn->image[y], (UINT8*) imIn->image[y],
imIn->xsize);
}
ImagingSectionLeave(&cookie);
return imIn;

View File

@ -25,21 +25,25 @@ _copy(Imaging imOut, Imaging imIn)
ImagingSectionCookie cookie;
int y;
if (!imIn)
if (!imIn) {
return (Imaging) ImagingError_ValueError(NULL);
}
imOut = ImagingNew2Dirty(imIn->mode, imOut, imIn);
if (!imOut)
if (!imOut) {
return NULL;
}
ImagingCopyPalette(imOut, imIn);
ImagingSectionEnter(&cookie);
if (imIn->block != NULL && imOut->block != NULL)
if (imIn->block != NULL && imOut->block != NULL) {
memcpy(imOut->block, imIn->block, imIn->ysize * imIn->linesize);
else
for (y = 0; y < imIn->ysize; y++)
} else {
for (y = 0; y < imIn->ysize; y++) {
memcpy(imOut->image[y], imIn->image[y], imIn->linesize);
}
}
ImagingSectionLeave(&cookie);
return imOut;

View File

@ -27,24 +27,29 @@ ImagingCrop(Imaging imIn, int sx0, int sy0, int sx1, int sy1)
int dx0, dy0, dx1, dy1;
INT32 zero = 0;
if (!imIn)
if (!imIn) {
return (Imaging) ImagingError_ModeError();
}
xsize = sx1 - sx0;
if (xsize < 0)
if (xsize < 0) {
xsize = 0;
}
ysize = sy1 - sy0;
if (ysize < 0)
if (ysize < 0) {
ysize = 0;
}
imOut = ImagingNewDirty(imIn->mode, xsize, ysize);
if (!imOut)
if (!imOut) {
return NULL;
}
ImagingCopyPalette(imOut, imIn);
if (sx0 < 0 || sy0 < 0 || sx1 > imIn->xsize || sy1 > imIn->ysize)
if (sx0 < 0 || sy0 < 0 || sx1 > imIn->xsize || sy1 > imIn->ysize) {
(void) ImagingFill(imOut, &zero);
}
dx0 = -sx0;
dy0 = -sy0;

View File

@ -40,9 +40,10 @@ ImagingGetModeDIB(int size_out[2])
mode = "P";
if (!(GetDeviceCaps(dc, RASTERCAPS) & RC_PALETTE)) {
mode = "RGB";
if (GetDeviceCaps(dc, BITSPIXEL) == 1)
if (GetDeviceCaps(dc, BITSPIXEL) == 1) {
mode = "1";
}
}
if (size_out) {
size_out[0] = GetDeviceCaps(dc, HORZRES);
@ -66,14 +67,16 @@ ImagingNewDIB(const char *mode, int xsize, int ysize)
/* Check mode */
if (strcmp(mode, "1") != 0 && strcmp(mode, "L") != 0 &&
strcmp(mode, "RGB") != 0)
strcmp(mode, "RGB") != 0) {
return (ImagingDIB) ImagingError_ModeError();
}
/* Create DIB context and info header */
/* malloc check ok, small constant allocation */
dib = (ImagingDIB) malloc(sizeof(*dib));
if (!dib)
if (!dib) {
return (ImagingDIB) ImagingError_MemoryError();
}
/* malloc check ok, small constant allocation */
dib->info = (BITMAPINFO*) malloc(sizeof(BITMAPINFOHEADER) +
256 * sizeof(RGBQUAD));
@ -113,9 +116,9 @@ ImagingNewDIB(const char *mode, int xsize, int ysize)
dib->pixelsize = strlen(mode);
dib->linesize = (xsize * dib->pixelsize + 3) & -4;
if (dib->pixelsize == 1)
if (dib->pixelsize == 1) {
dib->pack = dib->unpack = (ImagingShuffler) memcpy;
else {
} else {
dib->pack = ImagingPackBGR;
dib->unpack = ImagingPackBGR;
}
@ -174,14 +177,16 @@ ImagingNewDIB(const char *mode, int xsize, int ysize)
* images. */
i = 10;
for (r = 0; r < 256; r += 51)
for (g = 0; g < 256; g += 51)
for (r = 0; r < 256; r += 51) {
for (g = 0; g < 256; g += 51) {
for (b = 0; b < 256; b += 51) {
pal->palPalEntry[i].peRed = r;
pal->palPalEntry[i].peGreen = g;
pal->palPalEntry[i].peBlue = b;
i++;
}
}
}
for (r = 1; r < 22-1; r++) {
/* Black and white are already provided by the cube. */
pal->palPalEntry[i].peRed =
@ -195,14 +200,16 @@ ImagingNewDIB(const char *mode, int xsize, int ysize)
/* Colour DIB. Alternate palette. */
i = 10;
for (r = 0; r < 256; r += 37)
for (g = 0; g < 256; g += 32)
for (r = 0; r < 256; r += 37) {
for (g = 0; g < 256; g += 32) {
for (b = 0; b < 256; b += 64) {
pal->palPalEntry[i].peRed = r;
pal->palPalEntry[i].peGreen = g;
pal->palPalEntry[i].peBlue = b;
i++;
}
}
}
#endif
@ -223,9 +230,10 @@ ImagingPasteDIB(ImagingDIB dib, Imaging im, int xy[4])
/* FIXME: check size! */
int y;
for (y = 0; y < im->ysize; y++)
for (y = 0; y < im->ysize; y++) {
dib->pack(dib->bits + dib->linesize*(dib->ysize-(xy[1]+y)-1) +
xy[0]*dib->pixelsize, im->image[y], im->xsize);
}
}
@ -234,8 +242,9 @@ ImagingExposeDIB(ImagingDIB dib, void *dc)
{
/* Copy bitmap to display */
if (dib->palette != 0)
if (dib->palette != 0) {
SelectPalette((HDC) dc, dib->palette, FALSE);
}
BitBlt((HDC) dc, 0, 0, dib->xsize, dib->ysize, dib->dc, 0, 0, SRCCOPY);
}
@ -251,8 +260,9 @@ ImagingDrawDIB(ImagingDIB dib, void *dc, int dst[4], int src[4])
dib->info, DIB_RGB_COLORS, SRCCOPY);
} else {
/* stretchblt (displays) */
if (dib->palette != 0)
if (dib->palette != 0) {
SelectPalette((HDC) dc, dib->palette, FALSE);
}
StretchBlt((HDC) dc, dst[0], dst[1], dst[2]-dst[0], dst[3]-dst[1],
dib->dc, src[0], src[1], src[2]-src[0], src[3]-src[1],
SRCCOPY);
@ -275,8 +285,9 @@ ImagingQueryPaletteDIB(ImagingDIB dib, void *dc)
/* Restore palette */
SelectPalette((HDC) dc, now, FALSE);
} else
} else {
n = 0;
}
return n; /* number of colours that was changed */
}
@ -286,14 +297,16 @@ ImagingDeleteDIB(ImagingDIB dib)
{
/* Clean up */
if (dib->palette)
if (dib->palette) {
DeleteObject(dib->palette);
}
if (dib->bitmap) {
SelectObject(dib->dc, dib->old_bitmap);
DeleteObject(dib->bitmap);
}
if (dib->dc)
if (dib->dc) {
DeleteDC(dib->dc);
}
free(dib->info);
}

View File

@ -79,9 +79,10 @@ point8(Imaging im, int x, int y, int ink)
static inline void
point32(Imaging im, int x, int y, int ink)
{
if (x >= 0 && x < im->xsize && y >= 0 && y < im->ysize)
if (x >= 0 && x < im->xsize && y >= 0 && y < im->ysize) {
im->image32[y][x] = ink;
}
}
static inline void
point32rgba(Imaging im, int x, int y, int ink)
@ -103,16 +104,19 @@ hline8(Imaging im, int x0, int y0, int x1, int ink)
int tmp, pixelwidth;
if (y0 >= 0 && y0 < im->ysize) {
if (x0 > x1)
if (x0 > x1) {
tmp = x0, x0 = x1, x1 = tmp;
if (x0 < 0)
}
if (x0 < 0) {
x0 = 0;
else if (x0 >= im->xsize)
} else if (x0 >= im->xsize) {
return;
if (x1 < 0)
}
if (x1 < 0) {
return;
else if (x1 >= im->xsize)
} else if (x1 >= im->xsize) {
x1 = im->xsize-1;
}
if (x0 <= x1) {
pixelwidth = strncmp(im->mode, "I;16", 4) == 0 ? 2 : 1;
memset(im->image8[y0] + x0 * pixelwidth, (UINT8) ink,
@ -128,21 +132,25 @@ hline32(Imaging im, int x0, int y0, int x1, int ink)
INT32* p;
if (y0 >= 0 && y0 < im->ysize) {
if (x0 > x1)
if (x0 > x1) {
tmp = x0, x0 = x1, x1 = tmp;
if (x0 < 0)
}
if (x0 < 0) {
x0 = 0;
else if (x0 >= im->xsize)
} else if (x0 >= im->xsize) {
return;
if (x1 < 0)
}
if (x1 < 0) {
return;
else if (x1 >= im->xsize)
} else if (x1 >= im->xsize) {
x1 = im->xsize-1;
}
p = im->image32[y0];
while (x0 <= x1)
while (x0 <= x1) {
p[x0++] = ink;
}
}
}
static inline void
hline32rgba(Imaging im, int x0, int y0, int x1, int ink)
@ -151,16 +159,19 @@ hline32rgba(Imaging im, int x0, int y0, int x1, int ink)
unsigned int tmp1;
if (y0 >= 0 && y0 < im->ysize) {
if (x0 > x1)
if (x0 > x1) {
tmp = x0, x0 = x1, x1 = tmp;
if (x0 < 0)
}
if (x0 < 0) {
x0 = 0;
else if (x0 >= im->xsize)
} else if (x0 >= im->xsize) {
return;
if (x1 < 0)
}
if (x1 < 0) {
return;
else if (x1 >= im->xsize)
} else if (x1 >= im->xsize) {
x1 = im->xsize-1;
}
if (x0 <= x1) {
UINT8* out = (UINT8*) im->image[y0]+x0*4;
UINT8* in = (UINT8*) &ink;
@ -183,19 +194,21 @@ line8(Imaging im, int x0, int y0, int x1, int y1, int ink)
/* normalize coordinates */
dx = x1-x0;
if (dx < 0)
if (dx < 0) {
dx = -dx, xs = -1;
else
} else {
xs = 1;
}
dy = y1-y0;
if (dy < 0)
if (dy < 0) {
dy = -dy, ys = -1;
else
} else {
ys = 1;
}
n = (dx > dy) ? dx : dy;
if (dx == 0)
if (dx == 0) {
/* vertical */
for (i = 0; i < dy; i++) {
@ -203,7 +216,7 @@ line8(Imaging im, int x0, int y0, int x1, int y1, int ink)
y0 += ys;
}
else if (dy == 0)
} else if (dy == 0) {
/* horizontal */
for (i = 0; i < dx; i++) {
@ -211,7 +224,7 @@ line8(Imaging im, int x0, int y0, int x1, int y1, int ink)
x0 += xs;
}
else if (dx > dy) {
} else if (dx > dy) {
/* bresenham, horizontal slope */
n = dx;
@ -259,19 +272,21 @@ line32(Imaging im, int x0, int y0, int x1, int y1, int ink)
/* normalize coordinates */
dx = x1-x0;
if (dx < 0)
if (dx < 0) {
dx = -dx, xs = -1;
else
} else {
xs = 1;
}
dy = y1-y0;
if (dy < 0)
if (dy < 0) {
dy = -dy, ys = -1;
else
} else {
ys = 1;
}
n = (dx > dy) ? dx : dy;
if (dx == 0)
if (dx == 0) {
/* vertical */
for (i = 0; i < dy; i++) {
@ -279,7 +294,7 @@ line32(Imaging im, int x0, int y0, int x1, int y1, int ink)
y0 += ys;
}
else if (dy == 0)
} else if (dy == 0) {
/* horizontal */
for (i = 0; i < dx; i++) {
@ -287,7 +302,7 @@ line32(Imaging im, int x0, int y0, int x1, int y1, int ink)
x0 += xs;
}
else if (dx > dy) {
} else if (dx > dy) {
/* bresenham, horizontal slope */
n = dx;
@ -335,19 +350,21 @@ line32rgba(Imaging im, int x0, int y0, int x1, int y1, int ink)
/* normalize coordinates */
dx = x1-x0;
if (dx < 0)
if (dx < 0) {
dx = -dx, xs = -1;
else
} else {
xs = 1;
}
dy = y1-y0;
if (dy < 0)
if (dy < 0) {
dy = -dy, ys = -1;
else
} else {
ys = 1;
}
n = (dx > dy) ? dx : dy;
if (dx == 0)
if (dx == 0) {
/* vertical */
for (i = 0; i < dy; i++) {
@ -355,7 +372,7 @@ line32rgba(Imaging im, int x0, int y0, int x1, int y1, int ink)
y0 += ys;
}
else if (dy == 0)
} else if (dy == 0) {
/* horizontal */
for (i = 0; i < dx; i++) {
@ -363,7 +380,7 @@ line32rgba(Imaging im, int x0, int y0, int x1, int y1, int ink)
x0 += xs;
}
else if (dx > dy) {
} else if (dx > dy) {
/* bresenham, horizontal slope */
n = dx;
@ -406,13 +423,14 @@ static int
x_cmp(const void *x0, const void *x1)
{
float diff = *((float*)x0) - *((float*)x1);
if (diff < 0)
if (diff < 0) {
return -1;
else if (diff > 0)
} else if (diff > 0) {
return 1;
else
} else {
return 0;
}
}
static void
@ -566,26 +584,29 @@ add_edge(Edge *e, int x0, int y0, int x1, int y1)
{
/* printf("edge %d %d %d %d\n", x0, y0, x1, y1); */
if (x0 <= x1)
if (x0 <= x1) {
e->xmin = x0, e->xmax = x1;
else
} else {
e->xmin = x1, e->xmax = x0;
}
if (y0 <= y1)
if (y0 <= y1) {
e->ymin = y0, e->ymax = y1;
else
} else {
e->ymin = y1, e->ymax = y0;
}
if (y0 == y1) {
e->d = 0;
e->dx = 0.0;
} else {
e->dx = ((float)(x1-x0)) / (y1-y0);
if (y0 == e->ymin)
if (y0 == e->ymin) {
e->d = 1;
else
} else {
e->d = -1;
}
}
e->x0 = x0;
e->y0 = y0;
@ -701,23 +722,27 @@ ImagingDrawRectangle(Imaging im, int x0, int y0, int x1, int y1,
DRAWINIT();
if (y0 > y1)
if (y0 > y1) {
tmp = y0, y0 = y1, y1 = tmp;
}
if (fill) {
if (y0 < 0)
if (y0 < 0) {
y0 = 0;
else if (y0 >= im->ysize)
} else if (y0 >= im->ysize) {
return 0;
}
if (y1 < 0)
if (y1 < 0) {
return 0;
else if (y1 > im->ysize)
} else if (y1 > im->ysize) {
y1 = im->ysize;
}
for (y = y0; y <= y1; y++)
for (y = y0; y <= y1; y++) {
draw->hline(im, x0, y, x1, ink);
}
} else {
/* outline */
@ -743,8 +768,9 @@ ImagingDrawPolygon(Imaging im, int count, int* xy, const void* ink_,
DRAW* draw;
INT32 ink;
if (count <= 0)
if (count <= 0) {
return 0;
}
DRAWINIT();
@ -757,18 +783,21 @@ ImagingDrawPolygon(Imaging im, int count, int* xy, const void* ink_,
(void) ImagingError_MemoryError();
return -1;
}
for (i = n = 0; i < count-1; i++)
for (i = n = 0; i < count-1; i++) {
add_edge(&e[n++], xy[i+i], xy[i+i+1], xy[i+i+2], xy[i+i+3]);
if (xy[i+i] != xy[0] || xy[i+i+1] != xy[1])
}
if (xy[i+i] != xy[0] || xy[i+i+1] != xy[1]) {
add_edge(&e[n++], xy[i+i], xy[i+i+1], xy[0], xy[1]);
}
draw->polygon(im, n, e, ink, 0);
free(e);
} else {
/* Outline */
for (i = 0; i < count-1; i++)
for (i = 0; i < count-1; i++) {
draw->line(im, xy[i+i], xy[i+i+1], xy[i+i+2], xy[i+i+3], ink);
}
draw->line(im, xy[i+i], xy[i+i+1], xy[0], xy[1], ink);
}
@ -838,8 +867,9 @@ ellipse(Imaging im, int x0, int y0, int x1, int y1,
DRAWINIT();
while (end < start)
while (end < start) {
end += 360;
}
if (end - start > 360) {
// no need to go in loops
@ -848,8 +878,9 @@ ellipse(Imaging im, int x0, int y0, int x1, int y1,
w = x1 - x0;
h = y1 - y0;
if (w <= 0 || h <= 0)
if (w <= 0 || h <= 0) {
return 0;
}
cx = (x0 + x1) / 2;
cy = (y0 + y1) / 2;
@ -860,10 +891,11 @@ ellipse(Imaging im, int x0, int y0, int x1, int y1,
i = end;
}
ellipsePoint(cx, cy, w, h, i, &x, &y);
if (i != start)
if (i != start) {
draw->line(im, lx, ly, x, y, ink);
else
} else {
sx = x, sy = y;
}
lx = x, ly = y;
}
@ -874,10 +906,11 @@ ellipse(Imaging im, int x0, int y0, int x1, int y1,
draw->line(im, cx, cy, sx, sy, ink);
}
} else if (mode == CHORD) {
if (x != sx || y != sy)
if (x != sx || y != sy) {
draw->line(im, x, y, sx, sy, ink);
}
}
}
} else {
inner = (mode == ARC || !fill) ? 1 : 0;
@ -908,8 +941,9 @@ ellipse(Imaging im, int x0, int y0, int x1, int y1,
}
lx = x, ly = y;
}
if (n == 0)
if (n == 0) {
return 0;
}
if (inner) {
// Inner circle
@ -930,10 +964,11 @@ ellipse(Imaging im, int x0, int y0, int x1, int y1,
i = end;
}
ellipsePoint(cx, cy, w, h, i, &x, &y);
if (i == start)
if (i == start) {
sx_inner = x, sy_inner = y;
else
} else {
add_edge(&e[n++], lx_inner, ly_inner, x, y);
}
lx_inner = x, ly_inner = y;
}
}
@ -1026,8 +1061,9 @@ ImagingOutlineNew(void)
ImagingOutline outline;
outline = calloc(1, sizeof(struct ImagingOutlineInstance));
if (!outline)
if (!outline) {
return (ImagingOutline) ImagingError_MemoryError();
}
outline->edges = NULL;
outline->count = outline->size = 0;
@ -1040,11 +1076,13 @@ ImagingOutlineNew(void)
void
ImagingOutlineDelete(ImagingOutline outline)
{
if (!outline)
if (!outline) {
return;
}
if (outline->edges)
if (outline->edges) {
free(outline->edges);
}
free(outline);
}
@ -1068,8 +1106,9 @@ allocate(ImagingOutline outline, int extra)
/* malloc check ok, overflow checked above */
e = realloc(outline->edges, outline->size * sizeof(Edge));
}
if (!e)
if (!e) {
return NULL;
}
outline->edges = e;
}
@ -1095,8 +1134,9 @@ ImagingOutlineLine(ImagingOutline outline, float x1, float y1)
Edge* e;
e = allocate(outline, 1);
if (!e)
if (!e) {
return -1; /* out of memory */
}
add_edge(e, (int) outline->x, (int) outline->y, (int) x1, (int) y1);
@ -1117,8 +1157,9 @@ ImagingOutlineCurve(ImagingOutline outline, float x1, float y1,
#define STEPS 32
e = allocate(outline, STEPS);
if (!e)
if (!e) {
return -1; /* out of memory */
}
xo = outline->x;
yo = outline->y;
@ -1153,8 +1194,9 @@ ImagingOutlineCurve(ImagingOutline outline, float x1, float y1,
int
ImagingOutlineClose(ImagingOutline outline)
{
if (outline->x == outline->x0 && outline->y == outline->y0)
if (outline->x == outline->x0 && outline->y == outline->y0) {
return 0;
}
return ImagingOutlineLine(outline, outline->x0, outline->y0);
}
@ -1191,14 +1233,16 @@ ImagingOutlineTransform(ImagingOutline outline, double a[6])
y0 = eIn->y0;
/* FIXME: ouch! */
if (eIn->x0 == eIn->xmin)
if (eIn->x0 == eIn->xmin) {
x1 = eIn->xmax;
else
} else {
x1 = eIn->xmin;
if (eIn->y0 == eIn->ymin)
}
if (eIn->y0 == eIn->ymin) {
y1 = eIn->ymax;
else
} else {
y1 = eIn->ymin;
}
/* full moon tonight! if this doesn't work, you may need to
upgrade your compiler (make sure you have the right service

View File

@ -34,12 +34,14 @@ ImagingEffectMandelbrot(int xsize, int ysize, double extent[4], int quality)
/* Check arguments */
width = extent[2] - extent[0];
height = extent[3] - extent[1];
if (width < 0.0 || height < 0.0 || quality < 2)
if (width < 0.0 || height < 0.0 || quality < 2) {
return (Imaging) ImagingError_ValueError(NULL);
}
im = ImagingNewDirty("L", xsize, ysize);
if (!im)
if (!im) {
return NULL;
}
dr = width/(xsize-1);
di = height/(ysize-1);
@ -82,8 +84,9 @@ ImagingEffectNoise(int xsize, int ysize, float sigma)
double this, next;
imOut = ImagingNewDirty("L", xsize, ysize);
if (!imOut)
if (!imOut) {
return NULL;
}
next = 0.0;
nextok = 0;
@ -123,19 +126,22 @@ ImagingEffectSpread(Imaging imIn, int distance)
imOut = ImagingNewDirty(imIn->mode, imIn->xsize, imIn->ysize);
if (!imOut)
if (!imOut) {
return NULL;
}
#define SPREAD(type, image)\
for (y = 0; y < imOut->ysize; y++)\
for (y = 0; y < imOut->ysize; y++) {\
for (x = 0; x < imOut->xsize; x++) {\
int xx = x + (rand() % distance) - distance/2;\
int yy = y + (rand() % distance) - distance/2;\
if (xx >= 0 && xx < imIn->xsize && yy >= 0 && yy < imIn->ysize) {\
imOut->image[yy][xx] = imIn->image[y][x];\
imOut->image[y][x] = imIn->image[yy][xx];\
} else\
} else {\
imOut->image[y][x] = imIn->image[y][x];\
}\
}\
}
if (imIn->image8) {

View File

@ -40,15 +40,17 @@ ImagingEpsEncode(Imaging im, ImagingCodecState state, UINT8* buf, int bytes)
for (;;) {
if (state->state == NEWLINE) {
if (bytes < 1)
if (bytes < 1) {
break;
}
*ptr++ = '\n';
bytes--;
state->state = HEXBYTE;
}
if (bytes < 2)
if (bytes < 2) {
break;
}
i = in[state->x++];
*ptr++ = hex[(i>>4)&15];
@ -56,8 +58,9 @@ ImagingEpsEncode(Imaging im, ImagingCodecState state, UINT8* buf, int bytes)
bytes -= 2;
/* Skip junk bytes */
if (im->bands == 3 && (state->x & 3) == 3)
if (im->bands == 3 && (state->x & 3) == 3) {
state->x++;
}
if (++state->count >= 79/2) {
state->state = NEWLINE;

View File

@ -56,8 +56,9 @@ ImagingError_Mismatch(void)
void *
ImagingError_ValueError(const char *message)
{
if (!message)
if (!message) {
message = "exception: bad argument to function";
}
fprintf(stderr, "*** %s\n", message);
return NULL;
}

View File

@ -31,15 +31,18 @@ ImagingSaveRaw(Imaging im, FILE* fp)
/* @PIL227: FIXME: for mode "1", map != 0 to 255 */
/* PGM "L" */
for (y = 0; y < im->ysize; y++)
for (y = 0; y < im->ysize; y++) {
fwrite(im->image[y], 1, im->xsize, fp);
}
} else {
/* PPM "RGB" or other internal format */
for (y = 0; y < im->ysize; y++)
for (x = i = 0; x < im->xsize; x++, i += im->pixelsize)
for (y = 0; y < im->ysize; y++) {
for (x = i = 0; x < im->xsize; x++, i += im->pixelsize) {
fwrite(im->image[y]+i, 1, im->bands, fp);
}
}
}

View File

@ -30,28 +30,34 @@ ImagingFill(Imaging im, const void* colour)
/* use generic API */
ImagingAccess access = ImagingAccessNew(im);
if (access) {
for (y = 0; y < im->ysize; y++)
for (x = 0; x < im->xsize; x++)
for (y = 0; y < im->ysize; y++) {
for (x = 0; x < im->xsize; x++) {
access->put_pixel(im, x, y, colour);
}
}
ImagingAccessDelete(im, access);
} else {
/* wipe the image */
for (y = 0; y < im->ysize; y++)
for (y = 0; y < im->ysize; y++) {
memset(im->image[y], 0, im->linesize);
}
}
} else {
INT32 c = 0L;
ImagingSectionEnter(&cookie);
memcpy(&c, colour, im->pixelsize);
if (im->image32 && c != 0L) {
for (y = 0; y < im->ysize; y++)
for (x = 0; x < im->xsize; x++)
for (y = 0; y < im->ysize; y++) {
for (x = 0; x < im->xsize; x++) {
im->image32[y][x] = c;
}
}
} else {
unsigned char cc = (unsigned char) *(UINT8*) colour;
for (y = 0; y < im->ysize; y++)
for (y = 0; y < im->ysize; y++) {
memset(im->image[y], cc, im->linesize);
}
}
ImagingSectionLeave(&cookie);
}

View File

@ -29,10 +29,12 @@
static inline UINT8 clip8(float in)
{
if (in <= 0.0)
if (in <= 0.0) {
return 0;
if (in >= 255.0)
}
if (in >= 255.0) {
return 255;
}
return (UINT8) in;
}
@ -43,31 +45,39 @@ ImagingExpand(Imaging imIn, int xmargin, int ymargin, int mode)
int x, y;
ImagingSectionCookie cookie;
if (xmargin < 0 && ymargin < 0)
if (xmargin < 0 && ymargin < 0) {
return (Imaging) ImagingError_ValueError("bad kernel size");
}
imOut = ImagingNewDirty(
imIn->mode, imIn->xsize+2*xmargin, imIn->ysize+2*ymargin);
if (!imOut)
if (!imOut) {
return NULL;
}
#define EXPAND_LINE(type, image, yin, yout) {\
for (x = 0; x < xmargin; x++)\
for (x = 0; x < xmargin; x++) {\
imOut->image[yout][x] = imIn->image[yin][0];\
for (x = 0; x < imIn->xsize; x++)\
}\
for (x = 0; x < imIn->xsize; x++) {\
imOut->image[yout][x+xmargin] = imIn->image[yin][x];\
for (x = 0; x < xmargin; x++)\
}\
for (x = 0; x < xmargin; x++) {\
imOut->image[yout][xmargin+imIn->xsize+x] =\
imIn->image[yin][imIn->xsize-1];\
}\
}
#define EXPAND(type, image) {\
for (y = 0; y < ymargin; y++)\
for (y = 0; y < ymargin; y++) {\
EXPAND_LINE(type, image, 0, y);\
for (y = 0; y < imIn->ysize; y++)\
}\
for (y = 0; y < imIn->ysize; y++) {\
EXPAND_LINE(type, image, y, y+ymargin);\
for (y = 0; y < ymargin; y++)\
}\
for (y = 0; y < ymargin; y++) {\
EXPAND_LINE(type, image, imIn->ysize-1, ymargin+imIn->ysize+y);\
}\
}
ImagingSectionEnter(&cookie);
@ -330,18 +340,22 @@ ImagingFilter(Imaging im, int xsize, int ysize, const FLOAT32* kernel,
Imaging imOut;
ImagingSectionCookie cookie;
if ( ! im || im->type != IMAGING_TYPE_UINT8)
if ( ! im || im->type != IMAGING_TYPE_UINT8) {
return (Imaging) ImagingError_ModeError();
}
if (im->xsize < xsize || im->ysize < ysize)
if (im->xsize < xsize || im->ysize < ysize) {
return ImagingCopy(im);
}
if ((xsize != 3 && xsize != 5) || xsize != ysize)
if ((xsize != 3 && xsize != 5) || xsize != ysize) {
return (Imaging) ImagingError_ValueError("bad kernel size");
}
imOut = ImagingNewDirty(im->mode, im->xsize, im->ysize);
if (!imOut)
if (!imOut) {
return NULL;
}
ImagingSectionEnter(&cookie);
if (xsize == 3) {

View File

@ -41,8 +41,9 @@ ImagingFliDecode(Imaging im, ImagingCodecState state, UINT8* buf, Py_ssize_t byt
/* If not even the chunk size is present, we'd better leave */
if (bytes < 4)
if (bytes < 4) {
return 0;
}
/* We don't decode anything unless we have a full chunk in the
input buffer */
@ -50,8 +51,9 @@ ImagingFliDecode(Imaging im, ImagingCodecState state, UINT8* buf, Py_ssize_t byt
ptr = buf;
framesize = I32(ptr);
if (framesize < I32(ptr))
if (framesize < I32(ptr)) {
return 0;
}
/* Make sure this is a frame chunk. The Python driver takes
case of other chunk types. */
@ -112,8 +114,9 @@ ImagingFliDecode(Imaging im, ImagingCodecState state, UINT8* buf, Py_ssize_t byt
if (data[1] >= 128) {
ERR_IF_DATA_OOB(4)
i = 256-data[1]; /* run */
if (x + i + i > state->xsize)
if (x + i + i > state->xsize) {
break;
}
for (j = 0; j < i; j++) {
local_buf[x++] = data[2];
local_buf[x++] = data[3];
@ -121,17 +124,19 @@ ImagingFliDecode(Imaging im, ImagingCodecState state, UINT8* buf, Py_ssize_t byt
data += 2 + 2;
} else {
i = 2 * (int) data[1]; /* chunk */
if (x + i > state->xsize)
if (x + i > state->xsize) {
break;
}
ERR_IF_DATA_OOB(2+i)
memcpy(local_buf + x, data + 2, i);
data += 2 + i;
x += i;
}
}
if (p < packets)
if (p < packets) {
break; /* didn't process all packets */
}
}
if (l < lines) {
/* didn't process all lines */
state->errcode = IMAGING_CODEC_OVERRUN;
@ -151,23 +156,26 @@ ImagingFliDecode(Imaging im, ImagingCodecState state, UINT8* buf, Py_ssize_t byt
x += data[0]; /* skip pixels */
if (data[1] & 0x80) {
i = 256-data[1]; /* run */
if (x + i > state->xsize)
if (x + i > state->xsize) {
break;
}
ERR_IF_DATA_OOB(3)
memset(out + x, data[2], i);
data += 3;
} else {
i = data[1]; /* chunk */
if (x + i > state->xsize)
if (x + i > state->xsize) {
break;
}
ERR_IF_DATA_OOB(2+i)
memcpy(out + x, data + 2, i);
data += i + 2;
}
}
if (p < packets)
if (p < packets) {
break; /* didn't process all packets */
}
}
if (y < ymax) {
/* didn't process all lines */
state->errcode = IMAGING_CODEC_OVERRUN;
@ -176,8 +184,9 @@ ImagingFliDecode(Imaging im, ImagingCodecState state, UINT8* buf, Py_ssize_t byt
break;
case 13:
/* FLI BLACK chunk */
for (y = 0; y < state->ysize; y++)
for (y = 0; y < state->ysize; y++) {
memset(im->image[y], 0, state->xsize);
}
break;
case 15:
/* FLI BRUN chunk */
@ -197,8 +206,9 @@ ImagingFliDecode(Imaging im, ImagingCodecState state, UINT8* buf, Py_ssize_t byt
data += i + 1;
} else {
i = data[0];
if (x + i > state->xsize)
if (x + i > state->xsize) {
break; /* safety first */
}
memset(out + x, data[1], i);
data += 2;
}

View File

@ -20,10 +20,12 @@ ImagingFlipLeftRight(Imaging imOut, Imaging imIn)
ImagingSectionCookie cookie;
int x, y, xr;
if (!imOut || !imIn || strcmp(imIn->mode, imOut->mode) != 0)
if (!imOut || !imIn || strcmp(imIn->mode, imOut->mode) != 0) {
return (Imaging) ImagingError_ModeError();
if (imIn->xsize != imOut->xsize || imIn->ysize != imOut->ysize)
}
if (imIn->xsize != imOut->xsize || imIn->ysize != imOut->ysize) {
return (Imaging) ImagingError_Mismatch();
}
ImagingCopyPalette(imOut, imIn);
@ -32,8 +34,9 @@ ImagingFlipLeftRight(Imaging imOut, Imaging imIn)
INT* in = (INT *)imIn->image[y]; \
INT* out = (INT *)imOut->image[y]; \
xr = imIn->xsize-1; \
for (x = 0; x < imIn->xsize; x++, xr--) \
for (x = 0; x < imIn->xsize; x++, xr--) { \
out[xr] = in[x]; \
} \
}
ImagingSectionEnter(&cookie);
@ -62,18 +65,21 @@ ImagingFlipTopBottom(Imaging imOut, Imaging imIn)
ImagingSectionCookie cookie;
int y, yr;
if (!imOut || !imIn || strcmp(imIn->mode, imOut->mode) != 0)
if (!imOut || !imIn || strcmp(imIn->mode, imOut->mode) != 0) {
return (Imaging) ImagingError_ModeError();
if (imIn->xsize != imOut->xsize || imIn->ysize != imOut->ysize)
}
if (imIn->xsize != imOut->xsize || imIn->ysize != imOut->ysize) {
return (Imaging) ImagingError_Mismatch();
}
ImagingCopyPalette(imOut, imIn);
ImagingSectionEnter(&cookie);
yr = imIn->ysize - 1;
for (y = 0; y < imIn->ysize; y++, yr--)
for (y = 0; y < imIn->ysize; y++, yr--) {
memcpy(imOut->image[yr], imIn->image[y], imIn->linesize);
}
ImagingSectionLeave(&cookie);
@ -88,10 +94,12 @@ ImagingRotate90(Imaging imOut, Imaging imIn)
int x, y, xx, yy, xr, xxsize, yysize;
int xxx, yyy, xxxsize, yyysize;
if (!imOut || !imIn || strcmp(imIn->mode, imOut->mode) != 0)
if (!imOut || !imIn || strcmp(imIn->mode, imOut->mode) != 0) {
return (Imaging) ImagingError_ModeError();
if (imIn->xsize != imOut->ysize || imIn->ysize != imOut->xsize)
}
if (imIn->xsize != imOut->ysize || imIn->ysize != imOut->xsize) {
return (Imaging) ImagingError_Mismatch();
}
ImagingCopyPalette(imOut, imIn);
@ -144,10 +152,12 @@ ImagingTranspose(Imaging imOut, Imaging imIn)
int x, y, xx, yy, xxsize, yysize;
int xxx, yyy, xxxsize, yyysize;
if (!imOut || !imIn || strcmp(imIn->mode, imOut->mode) != 0)
if (!imOut || !imIn || strcmp(imIn->mode, imOut->mode) != 0) {
return (Imaging) ImagingError_ModeError();
if (imIn->xsize != imOut->ysize || imIn->ysize != imOut->xsize)
}
if (imIn->xsize != imOut->ysize || imIn->ysize != imOut->xsize) {
return (Imaging) ImagingError_Mismatch();
}
ImagingCopyPalette(imOut, imIn);
@ -199,10 +209,12 @@ ImagingTransverse(Imaging imOut, Imaging imIn)
int x, y, xr, yr, xx, yy, xxsize, yysize;
int xxx, yyy, xxxsize, yyysize;
if (!imOut || !imIn || strcmp(imIn->mode, imOut->mode) != 0)
if (!imOut || !imIn || strcmp(imIn->mode, imOut->mode) != 0) {
return (Imaging) ImagingError_ModeError();
if (imIn->xsize != imOut->ysize || imIn->ysize != imOut->xsize)
}
if (imIn->xsize != imOut->ysize || imIn->ysize != imOut->xsize) {
return (Imaging) ImagingError_Mismatch();
}
ImagingCopyPalette(imOut, imIn);
@ -255,10 +267,12 @@ ImagingRotate180(Imaging imOut, Imaging imIn)
ImagingSectionCookie cookie;
int x, y, xr, yr;
if (!imOut || !imIn || strcmp(imIn->mode, imOut->mode) != 0)
if (!imOut || !imIn || strcmp(imIn->mode, imOut->mode) != 0) {
return (Imaging) ImagingError_ModeError();
if (imIn->xsize != imOut->xsize || imIn->ysize != imOut->ysize)
}
if (imIn->xsize != imOut->xsize || imIn->ysize != imOut->ysize) {
return (Imaging) ImagingError_Mismatch();
}
ImagingCopyPalette(imOut, imIn);
@ -267,8 +281,9 @@ ImagingRotate180(Imaging imOut, Imaging imIn)
INT* in = (INT *)imIn->image[y]; \
INT* out = (INT *)imOut->image[yr]; \
xr = imIn->xsize-1; \
for (x = 0; x < imIn->xsize; x++, xr--) \
for (x = 0; x < imIn->xsize; x++, xr--) { \
out[xr] = in[x]; \
} \
}
ImagingSectionEnter(&cookie);
@ -299,10 +314,12 @@ ImagingRotate270(Imaging imOut, Imaging imIn)
int x, y, xx, yy, yr, xxsize, yysize;
int xxx, yyy, xxxsize, yyysize;
if (!imOut || !imIn || strcmp(imIn->mode, imOut->mode) != 0)
if (!imOut || !imIn || strcmp(imIn->mode, imOut->mode) != 0) {
return (Imaging) ImagingError_ModeError();
if (imIn->xsize != imOut->ysize || imIn->ysize != imOut->xsize)
}
if (imIn->xsize != imOut->ysize || imIn->ysize != imOut->xsize) {
return (Imaging) ImagingError_Mismatch();
}
ImagingCopyPalette(imOut, imIn);
@ -415,8 +432,9 @@ nearest_filter8(void* out, Imaging im, double xin, double yin)
{
int x = COORD(xin);
int y = COORD(yin);
if (x < 0 || x >= im->xsize || y < 0 || y >= im->ysize)
if (x < 0 || x >= im->xsize || y < 0 || y >= im->ysize) {
return 0;
}
((UINT8*)out)[0] = im->image8[y][x];
return 1;
}
@ -426,8 +444,9 @@ nearest_filter16(void* out, Imaging im, double xin, double yin)
{
int x = COORD(xin);
int y = COORD(yin);
if (x < 0 || x >= im->xsize || y < 0 || y >= im->ysize)
if (x < 0 || x >= im->xsize || y < 0 || y >= im->ysize) {
return 0;
}
memcpy(out, im->image8[y] + x * sizeof(INT16), sizeof(INT16));
return 1;
}
@ -437,8 +456,9 @@ nearest_filter32(void* out, Imaging im, double xin, double yin)
{
int x = COORD(xin);
int y = COORD(yin);
if (x < 0 || x >= im->xsize || y < 0 || y >= im->ysize)
if (x < 0 || x >= im->xsize || y < 0 || y >= im->ysize) {
return 0;
}
memcpy(out, &im->image32[y][x], sizeof(INT32));
return 1;
}
@ -455,8 +475,9 @@ nearest_filter32(void* out, Imaging im, double xin, double yin)
double v1, v2;\
double dx, dy;\
type* in;\
if (xin < 0.0 || xin >= im->xsize || yin < 0.0 || yin >= im->ysize)\
if (xin < 0.0 || xin >= im->xsize || yin < 0.0 || yin >= im->ysize) {\
return 0;\
}\
xin -= 0.5;\
yin -= 0.5;\
x = FLOOR(xin);\
@ -472,8 +493,9 @@ nearest_filter32(void* out, Imaging im, double xin, double yin)
if (y+1 >= 0 && y+1 < im->ysize) {\
in = (type*) ((image)[y+1] + offset);\
BILINEAR(v2, in[x0], in[x1], dx);\
} else\
} else {\
v2 = v1;\
}\
BILINEAR(v1, v1, v2, dy);\
}
@ -552,8 +574,9 @@ bilinear_filter32RGB(void* out, Imaging im, double xin, double yin)
double v1, v2, v3, v4;\
double dx, dy;\
type* in;\
if (xin < 0.0 || xin >= im->xsize || yin < 0.0 || yin >= im->ysize)\
if (xin < 0.0 || xin >= im->xsize || yin < 0.0 || yin >= im->ysize) {\
return 0;\
}\
xin -= 0.5;\
yin -= 0.5;\
x = FLOOR(xin);\
@ -572,18 +595,21 @@ bilinear_filter32RGB(void* out, Imaging im, double xin, double yin)
if (y+1 >= 0 && y+1 < im->ysize) {\
in = (type*) ((image)[y+1] + offset);\
BICUBIC(v2, in[x0], in[x1], in[x2], in[x3], dx);\
} else\
} else {\
v2 = v1;\
}\
if (y+2 >= 0 && y+2 < im->ysize) {\
in = (type*) ((image)[y+2] + offset);\
BICUBIC(v3, in[x0], in[x1], in[x2], in[x3], dx);\
} else\
} else {\
v3 = v2;\
}\
if (y+3 >= 0 && y+3 < im->ysize) {\
in = (type*) ((image)[y+3] + offset);\
BICUBIC(v4, in[x0], in[x1], in[x2], in[x3], dx);\
} else\
} else {\
v4 = v3;\
}\
BICUBIC(v1, v1, v2, v3, v4, dy);\
}
@ -593,12 +619,13 @@ bicubic_filter8(void* out, Imaging im, double xin, double yin)
{
BICUBIC_HEAD(UINT8);
BICUBIC_BODY(UINT8, im->image8, 1, 0);
if (v1 <= 0.0)
if (v1 <= 0.0) {
((UINT8*)out)[0] = 0;
else if (v1 >= 255.0)
} else if (v1 >= 255.0) {
((UINT8*)out)[0] = 255;
else
} else {
((UINT8*)out)[0] = (UINT8) v1;
}
return 1;
}
@ -643,12 +670,13 @@ bicubic_filter32LA(void* out, Imaging im, double xin, double yin)
((UINT8*)out)[2] = (UINT8) v1;
}
BICUBIC_BODY(UINT8, im->image, 4, 3);
if (v1 <= 0.0)
if (v1 <= 0.0) {
((UINT8*)out)[3] = 0;
else if (v1 >= 255.0)
} else if (v1 >= 255.0) {
((UINT8*)out)[3] = 255;
else
} else {
((UINT8*)out)[3] = (UINT8) v1;
}
return 1;
}
@ -659,13 +687,14 @@ bicubic_filter32RGB(void* out, Imaging im, double xin, double yin)
BICUBIC_HEAD(UINT8);
for (b = 0; b < im->bands; b++) {
BICUBIC_BODY(UINT8, im->image, 4, b);
if (v1 <= 0.0)
if (v1 <= 0.0) {
((UINT8*)out)[b] = 0;
else if (v1 >= 255.0)
} else if (v1 >= 255.0) {
((UINT8*)out)[b] = 255;
else
} else {
((UINT8*)out)[b] = (UINT8) v1;
}
}
return 1;
}
@ -678,7 +707,7 @@ getfilter(Imaging im, int filterid)
{
switch (filterid) {
case IMAGING_TRANSFORM_NEAREST:
if (im->image8)
if (im->image8) {
switch (im->type) {
case IMAGING_TYPE_UINT8:
return nearest_filter8;
@ -692,19 +721,21 @@ getfilter(Imaging im, int filterid)
return nearest_filter32;
}
}
else
} else {
return nearest_filter32;
}
break;
case IMAGING_TRANSFORM_BILINEAR:
if (im->image8)
if (im->image8) {
return bilinear_filter8;
else if (im->image32) {
} else if (im->image32) {
switch (im->type) {
case IMAGING_TYPE_UINT8:
if (im->bands == 2)
if (im->bands == 2) {
return bilinear_filter32LA;
else
} else {
return bilinear_filter32RGB;
}
case IMAGING_TYPE_INT32:
return bilinear_filter32I;
case IMAGING_TYPE_FLOAT32:
@ -713,15 +744,16 @@ getfilter(Imaging im, int filterid)
}
break;
case IMAGING_TRANSFORM_BICUBIC:
if (im->image8)
if (im->image8) {
return bicubic_filter8;
else if (im->image32) {
} else if (im->image32) {
switch (im->type) {
case IMAGING_TYPE_UINT8:
if (im->bands == 2)
if (im->bands == 2) {
return bicubic_filter32LA;
else
} else {
return bicubic_filter32RGB;
}
case IMAGING_TYPE_INT32:
return bicubic_filter32I;
case IMAGING_TYPE_FLOAT32:
@ -751,33 +783,40 @@ ImagingGenericTransform(
double xx, yy;
ImagingTransformFilter filter = getfilter(imIn, filterid);
if (!filter)
if (!filter) {
return (Imaging) ImagingError_ValueError("bad filter number");
}
if (!imOut || !imIn || strcmp(imIn->mode, imOut->mode) != 0)
if (!imOut || !imIn || strcmp(imIn->mode, imOut->mode) != 0) {
return (Imaging) ImagingError_ModeError();
}
ImagingCopyPalette(imOut, imIn);
ImagingSectionEnter(&cookie);
if (x0 < 0)
if (x0 < 0) {
x0 = 0;
if (y0 < 0)
}
if (y0 < 0) {
y0 = 0;
if (x1 > imOut->xsize)
}
if (x1 > imOut->xsize) {
x1 = imOut->xsize;
if (y1 > imOut->ysize)
}
if (y1 > imOut->ysize) {
y1 = imOut->ysize;
}
for (y = y0; y < y1; y++) {
out = imOut->image[y] + x0*imOut->pixelsize;
for (x = x0; x < x1; x++) {
if ( ! transform(&xx, &yy, x-x0, y-y0, transform_data) ||
! filter(out, imIn, xx, yy)) {
if (fill)
if (fill) {
memset(out, 0, imOut->pixelsize);
}
}
out += imOut->pixelsize;
}
}
@ -801,19 +840,24 @@ ImagingScaleAffine(Imaging imOut, Imaging imIn,
int xmin, xmax;
int *xintab;
if (!imOut || !imIn || strcmp(imIn->mode, imOut->mode) != 0)
if (!imOut || !imIn || strcmp(imIn->mode, imOut->mode) != 0) {
return (Imaging) ImagingError_ModeError();
}
ImagingCopyPalette(imOut, imIn);
if (x0 < 0)
if (x0 < 0) {
x0 = 0;
if (y0 < 0)
}
if (y0 < 0) {
y0 = 0;
if (x1 > imOut->xsize)
}
if (x1 > imOut->xsize) {
x1 = imOut->xsize;
if (y1 > imOut->ysize)
}
if (y1 > imOut->ysize) {
y1 = imOut->ysize;
}
/* malloc check ok, uses calloc for overflow */
xintab = (int*) calloc(imOut->xsize, sizeof(int));
@ -833,8 +877,9 @@ ImagingScaleAffine(Imaging imOut, Imaging imIn,
xin = COORD(xo);
if (xin >= 0 && xin < (int) imIn->xsize) {
xmax = x+1;
if (x < xmin)
if (x < xmin) {
xmin = x;
}
xintab[x] = xin;
}
xo += a[0];
@ -845,13 +890,15 @@ ImagingScaleAffine(Imaging imOut, Imaging imIn,
int yi = COORD(yo);\
pixel *in, *out;\
out = imOut->image[y];\
if (fill && x1 > x0)\
if (fill && x1 > x0) {\
memset(out+x0, 0, (x1-x0)*sizeof(pixel));\
}\
if (yi >= 0 && yi < imIn->ysize) {\
in = imIn->image[yi];\
for (x = xmin; x < xmax; x++)\
for (x = xmin; x < xmax; x++) {\
out[x] = in[xintab[x]];\
}\
}\
yo += a[4];\
}
@ -915,15 +962,17 @@ affine_fixed(Imaging imOut, Imaging imIn,
xx = a2;\
yy = a5;\
out = imOut->image[y];\
if (fill && x1 > x0)\
if (fill && x1 > x0) {\
memset(out+x0, 0, (x1-x0)*sizeof(pixel));\
}\
for (x = x0; x < x1; x++, out++) {\
xin = xx >> 16;\
if (xin >= 0 && xin < xsize) {\
yin = yy >> 16;\
if (yin >= 0 && yin < ysize)\
if (yin >= 0 && yin < ysize) {\
*out = imIn->image[yin][xin];\
}\
}\
xx += a0;\
yy += a3;\
}\
@ -933,10 +982,11 @@ affine_fixed(Imaging imOut, Imaging imIn,
ImagingSectionEnter(&cookie);
if (imIn->image8)
if (imIn->image8) {
AFFINE_TRANSFORM_FIXED(UINT8, image8)
else
} else {
AFFINE_TRANSFORM_FIXED(INT32, image32)
}
ImagingSectionLeave(&cookie);
@ -973,24 +1023,30 @@ ImagingTransformAffine(Imaging imOut, Imaging imIn,
return ImagingScaleAffine(imOut, imIn, x0, y0, x1, y1, a, fill);
}
if (!imOut || !imIn || strcmp(imIn->mode, imOut->mode) != 0)
if (!imOut || !imIn || strcmp(imIn->mode, imOut->mode) != 0) {
return (Imaging) ImagingError_ModeError();
}
if (x0 < 0)
if (x0 < 0) {
x0 = 0;
if (y0 < 0)
}
if (y0 < 0) {
y0 = 0;
if (x1 > imOut->xsize)
}
if (x1 > imOut->xsize) {
x1 = imOut->xsize;
if (y1 > imOut->ysize)
}
if (y1 > imOut->ysize) {
y1 = imOut->ysize;
}
/* translate all four corners to check if they are within the
range that can be represented by the fixed point arithmetics */
if (check_fixed(a, 0, 0) && check_fixed(a, x1-x0, y1-y0) &&
check_fixed(a, 0, y1-y0) && check_fixed(a, x1-x0, 0))
check_fixed(a, 0, y1-y0) && check_fixed(a, x1-x0, 0)) {
return affine_fixed(imOut, imIn, x0, y0, x1, y1, a, filterid, fill);
}
/* FIXME: cannot really think of any reasonable case when the
following code is used. maybe we should fall back on the slow
@ -1010,15 +1066,17 @@ ImagingTransformAffine(Imaging imOut, Imaging imIn,
xx = xo;\
yy = yo;\
out = imOut->image[y];\
if (fill && x1 > x0)\
if (fill && x1 > x0) {\
memset(out+x0, 0, (x1-x0)*sizeof(pixel));\
}\
for (x = x0; x < x1; x++, out++) {\
xin = COORD(xx);\
if (xin >= 0 && xin < xsize) {\
yin = COORD(yy);\
if (yin >= 0 && yin < ysize)\
if (yin >= 0 && yin < ysize) {\
*out = imIn->image[yin][xin];\
}\
}\
xx += a[0];\
yy += a[3];\
}\
@ -1028,10 +1086,11 @@ ImagingTransformAffine(Imaging imOut, Imaging imIn,
ImagingSectionEnter(&cookie);
if (imIn->image8)
if (imIn->image8) {
AFFINE_TRANSFORM(UINT8, image8)
else
} else {
AFFINE_TRANSFORM(INT32, image32)
}
ImagingSectionLeave(&cookie);

View File

@ -36,17 +36,21 @@ ImagingGetBBox(Imaging im, int bbox[4])
#define GETBBOX(image, mask)\
for (y = 0; y < im->ysize; y++) {\
has_data = 0;\
for (x = 0; x < im->xsize; x++)\
for (x = 0; x < im->xsize; x++) {\
if (im->image[y][x] & mask) {\
has_data = 1;\
if (x < bbox[0])\
if (x < bbox[0]) {\
bbox[0] = x;\
if (x >= bbox[2])\
}\
if (x >= bbox[2]) {\
bbox[2] = x+1;\
}\
}\
}\
if (has_data) {\
if (bbox[1] < 0)\
if (bbox[1] < 0) {\
bbox[1] = y;\
}\
bbox[3] = y+1;\
}\
}
@ -72,8 +76,9 @@ ImagingGetBBox(Imaging im, int bbox[4])
}
/* Check that we got a box */
if (bbox[1] < 0)
if (bbox[1] < 0) {
return 0; /* no data */
}
return 1; /* ok */
}
@ -94,21 +99,24 @@ ImagingGetProjection(Imaging im, UINT8* xproj, UINT8* yproj)
#define GETPROJ(image, mask)\
for (y = 0; y < im->ysize; y++) {\
has_data = 0;\
for (x = 0; x < im->xsize; x++)\
for (x = 0; x < im->xsize; x++) {\
if (im->image[y][x] & mask) {\
has_data = 1;\
xproj[x] = 1;\
}\
if (has_data)\
}\
if (has_data) {\
yproj[y] = 1;\
}\
}
if (im->image8) {
GETPROJ(image8, 0xff);
} else {
INT32 mask = 0xffffffff;
if (im->bands == 3)
if (im->bands == 3) {
((UINT8*) &mask)[3] = 0;
}
GETPROJ(image32, mask);
}
@ -128,8 +136,9 @@ ImagingGetExtrema(Imaging im, void *extrema)
return -1; /* mismatch */
}
if (!im->xsize || !im->ysize)
if (!im->xsize || !im->ysize) {
return 0; /* zero size */
}
switch (im->type) {
case IMAGING_TYPE_UINT8:
@ -137,12 +146,13 @@ ImagingGetExtrema(Imaging im, void *extrema)
for (y = 0; y < im->ysize; y++) {
UINT8* in = im->image8[y];
for (x = 0; x < im->xsize; x++) {
if (imin > in[x])
if (imin > in[x]) {
imin = in[x];
else if (imax < in[x])
} else if (imax < in[x]) {
imax = in[x];
}
}
}
((UINT8*) extrema)[0] = (UINT8) imin;
((UINT8*) extrema)[1] = (UINT8) imax;
break;
@ -151,12 +161,13 @@ ImagingGetExtrema(Imaging im, void *extrema)
for (y = 0; y < im->ysize; y++) {
INT32* in = im->image32[y];
for (x = 0; x < im->xsize; x++) {
if (imin > in[x])
if (imin > in[x]) {
imin = in[x];
else if (imax < in[x])
} else if (imax < in[x]) {
imax = in[x];
}
}
}
memcpy(extrema, &imin, sizeof(imin));
memcpy(((char*)extrema) + sizeof(imin), &imax, sizeof(imax));
break;
@ -165,12 +176,13 @@ ImagingGetExtrema(Imaging im, void *extrema)
for (y = 0; y < im->ysize; y++) {
FLOAT32* in = (FLOAT32*) im->image32[y];
for (x = 0; x < im->xsize; x++) {
if (fmin > in[x])
if (fmin > in[x]) {
fmin = in[x];
else if (fmax < in[x])
} else if (fmax < in[x]) {
fmax = in[x];
}
}
}
memcpy(extrema, &fmin, sizeof(fmin));
memcpy(((char*)extrema) + sizeof(fmin), &fmax, sizeof(fmax));
break;
@ -192,12 +204,13 @@ ImagingGetExtrema(Imaging im, void *extrema)
#else
memcpy(&v, pixel, sizeof(v));
#endif
if (imin > v)
if (imin > v) {
imin = v;
else if (imax < v)
} else if (imax < v) {
imax = v;
}
}
}
v = (UINT16) imin;
memcpy(extrema, &v, sizeof(v));
v = (UINT16) imax;
@ -264,19 +277,23 @@ getcolors32(Imaging im, int maxcolors, int* size)
/* printf("code_size=%d\n", code_size); */
/* printf("code_poly=%d\n", code_poly); */
if (!code_size)
if (!code_size) {
return ImagingError_MemoryError(); /* just give up */
}
if (!im->image32)
if (!im->image32) {
return ImagingError_ModeError();
}
table = calloc(code_size + 1, sizeof(ImagingColorItem));
if (!table)
if (!table) {
return ImagingError_MemoryError();
}
pixel_mask = 0xffffffff;
if (im->bands == 3)
if (im->bands == 3) {
((UINT8*) &pixel_mask)[3] = 0;
}
colors = 0;
@ -289,8 +306,9 @@ getcolors32(Imaging im, int maxcolors, int* size)
v = &table[i];
if (!v->count) {
/* add to table */
if (colors++ == maxcolors)
if (colors++ == maxcolors) {
goto overflow;
}
v->x = x; v->y = y;
v->pixel = pixel;
v->count = 1;
@ -300,15 +318,17 @@ getcolors32(Imaging im, int maxcolors, int* size)
continue;
}
incr = (h ^ (h >> 3)) & code_mask;
if (!incr)
if (!incr) {
incr = code_mask;
}
for (;;) {
i = (i + incr) & code_mask;
v = &table[i];
if (!v->count) {
/* add to table */
if (colors++ == maxcolors)
if (colors++ == maxcolors) {
goto overflow;
}
v->x = x; v->y = y;
v->pixel = pixel;
v->count = 1;
@ -318,19 +338,21 @@ getcolors32(Imaging im, int maxcolors, int* size)
break;
}
incr = incr << 1;
if (incr > code_mask)
if (incr > code_mask) {
incr = incr ^ code_poly;
}
}
}
}
overflow:
/* pack the table */
for (x = y = 0; x < (int) code_size; x++)
if (table[x].count) {
if (x != y)
if (x != y) {
table[y] = table[x];
}
y++;
}
table[y].count = 0; /* mark end of table */

View File

@ -52,8 +52,9 @@
default:\
return -1;\
}\
if (state->y < state->ysize)\
if (state->y < state->ysize) {\
out = im->image8[state->y + state->yoff] + state->xoff;\
}\
}
@ -86,8 +87,9 @@ ImagingGifDecode(Imaging im, ImagingCodecState state, UINT8* buffer, Py_ssize_t
if (context->interlace) {
context->interlace = 1;
context->step = context->repeat = 8;
} else
} else {
context->step = 1;
}
state->state = 1;
}
@ -142,11 +144,13 @@ ImagingGifDecode(Imaging im, ImagingCodecState state, UINT8* buffer, Py_ssize_t
/* New GIF block */
/* We don't start decoding unless we have a full block */
if (bytes < 1)
if (bytes < 1) {
return ptr - buffer;
}
c = *ptr;
if (bytes < c+1)
if (bytes < c+1) {
return ptr - buffer;
}
context->blocksize = c;
@ -167,13 +171,15 @@ ImagingGifDecode(Imaging im, ImagingCodecState state, UINT8* buffer, Py_ssize_t
expanded. */
if (c == context->clear) {
if (state->state != 2)
if (state->state != 2) {
state->state = 1;
}
continue;
}
if (c == context->end)
if (c == context->end) {
break;
}
i = 1;
p = &context->lastdata;

View File

@ -48,13 +48,15 @@ emit(GIFENCODERSTATE *context, int byte)
/* add current block to end of flush queue */
if (context->block) {
block = context->flush;
while (block && block->next)
while (block && block->next) {
block = block->next;
if (block)
}
if (block) {
block->next = context->block;
else
} else {
context->flush = context->block;
}
}
/* get a new block */
if (context->free) {
@ -63,9 +65,10 @@ emit(GIFENCODERSTATE *context, int byte)
} else {
/* malloc check ok, small constant allocation */
block = malloc(sizeof(GIFENCODERBLOCK));
if (!block)
if (!block) {
return 0;
}
}
block->size = 0;
block->next = NULL;
@ -154,14 +157,16 @@ ImagingGifEncode(Imaging im, ImagingCodecState state, UINT8* buf, int bytes)
if (context->interlace) {
context->interlace = 1;
context->step = 8;
} else
} else {
context->step = 1;
}
context->last = -1;
/* sanity check */
if (state->xsize <= 0 || state->ysize <= 0)
if (state->xsize <= 0 || state->ysize <= 0) {
state->state = ENCODE_EOF;
}
}
@ -231,9 +236,9 @@ ImagingGifEncode(Imaging im, ImagingCodecState state, UINT8* buf, int bytes)
this = state->buffer[state->x++];
if (this == context->last)
if (this == context->last) {
context->count++;
else {
} else {
EMIT_RUN(label1);
context->last = this;
context->count = 1;
@ -263,12 +268,14 @@ ImagingGifEncode(Imaging im, ImagingCodecState state, UINT8* buf, int bytes)
if (context->block) {
GIFENCODERBLOCK* block;
block = context->flush;
while (block && block->next)
while (block && block->next) {
block = block->next;
if (block)
}
if (block) {
block->next = context->block;
else
} else {
context->flush = context->block;
}
context->block = NULL;
}
@ -287,8 +294,9 @@ ImagingGifEncode(Imaging im, ImagingCodecState state, UINT8* buf, int bytes)
if (block->size > 0) {
/* make sure it fits into the output buffer */
if (bytes < block->size+1)
if (bytes < block->size+1) {
return ptr - buf;
}
ptr[0] = block->size;
memcpy(ptr+1, block->data, block->size);
@ -300,16 +308,18 @@ ImagingGifEncode(Imaging im, ImagingCodecState state, UINT8* buf, int bytes)
context->flush = block->next;
if (context->free)
if (context->free) {
free(context->free);
}
context->free = block;
}
if (state->state == EXIT) {
/* this was the last block! */
if (context->free)
if (context->free) {
free(context->free);
}
state->errcode = IMAGING_CODEC_END;
return ptr - buf;
}

View File

@ -30,8 +30,9 @@ ImagingHexDecode(Imaging im, ImagingCodecState state, UINT8* buf, Py_ssize_t byt
for (;;) {
if (bytes < 2)
if (bytes < 2) {
return ptr - buf;
}
a = HEX(ptr[0]);
b = HEX(ptr[1]);

View File

@ -29,8 +29,9 @@
void
ImagingHistogramDelete(ImagingHistogram h)
{
if (h->histogram)
if (h->histogram) {
free(h->histogram);
}
free(h);
}
@ -59,16 +60,19 @@ ImagingGetHistogram(Imaging im, Imaging imMask, void* minmax)
INT32 imin, imax;
FLOAT32 fmin, fmax, scale;
if (!im)
if (!im) {
return ImagingError_ModeError();
}
if (imMask) {
/* Validate mask */
if (im->xsize != imMask->xsize || im->ysize != imMask->ysize)
if (im->xsize != imMask->xsize || im->ysize != imMask->ysize) {
return ImagingError_Mismatch();
if (strcmp(imMask->mode, "1") != 0 && strcmp(imMask->mode, "L") != 0)
}
if (strcmp(imMask->mode, "1") != 0 && strcmp(imMask->mode, "L") != 0) {
return ImagingError_ValueError("bad transparency mask");
}
}
h = ImagingHistogramNew(im);
@ -76,10 +80,13 @@ ImagingGetHistogram(Imaging im, Imaging imMask, void* minmax)
/* mask */
if (im->image8) {
ImagingSectionEnter(&cookie);
for (y = 0; y < im->ysize; y++)
for (x = 0; x < im->xsize; x++)
if (imMask->image8[y][x] != 0)
for (y = 0; y < im->ysize; y++) {
for (x = 0; x < im->xsize; x++) {
if (imMask->image8[y][x] != 0) {
h->histogram[im->image8[y][x]]++;
}
}
}
ImagingSectionLeave(&cookie);
} else { /* yes, we need the braces. C isn't Python! */
if (im->type != IMAGING_TYPE_UINT8) {
@ -89,24 +96,28 @@ ImagingGetHistogram(Imaging im, Imaging imMask, void* minmax)
ImagingSectionEnter(&cookie);
for (y = 0; y < im->ysize; y++) {
UINT8* in = (UINT8*) im->image32[y];
for (x = 0; x < im->xsize; x++)
for (x = 0; x < im->xsize; x++) {
if (imMask->image8[y][x] != 0) {
h->histogram[(*in++)]++;
h->histogram[(*in++)+256]++;
h->histogram[(*in++)+512]++;
h->histogram[(*in++)+768]++;
} else
} else {
in += 4;
}
}
}
ImagingSectionLeave(&cookie);
}
} else {
/* mask not given; process pixels in image */
if (im->image8) {
ImagingSectionEnter(&cookie);
for (y = 0; y < im->ysize; y++)
for (x = 0; x < im->xsize; x++)
for (y = 0; y < im->ysize; y++) {
for (x = 0; x < im->xsize; x++) {
h->histogram[im->image8[y][x]]++;
}
}
ImagingSectionLeave(&cookie);
} else {
switch (im->type) {
@ -128,22 +139,25 @@ ImagingGetHistogram(Imaging im, Imaging imMask, void* minmax)
ImagingHistogramDelete(h);
return ImagingError_ValueError("min/max not given");
}
if (!im->xsize || !im->ysize)
if (!im->xsize || !im->ysize) {
break;
}
memcpy(&imin, minmax, sizeof(imin));
memcpy(&imax, ((char*)minmax) + sizeof(imin), sizeof(imax));
if (imin >= imax)
if (imin >= imax) {
break;
}
ImagingSectionEnter(&cookie);
scale = 255.0F / (imax - imin);
for (y = 0; y < im->ysize; y++) {
INT32* in = im->image32[y];
for (x = 0; x < im->xsize; x++) {
i = (int) (((*in++)-imin)*scale);
if (i >= 0 && i < 256)
if (i >= 0 && i < 256) {
h->histogram[i]++;
}
}
}
ImagingSectionLeave(&cookie);
break;
case IMAGING_TYPE_FLOAT32:
@ -151,22 +165,25 @@ ImagingGetHistogram(Imaging im, Imaging imMask, void* minmax)
ImagingHistogramDelete(h);
return ImagingError_ValueError("min/max not given");
}
if (!im->xsize || !im->ysize)
if (!im->xsize || !im->ysize) {
break;
}
memcpy(&fmin, minmax, sizeof(fmin));
memcpy(&fmax, ((char*)minmax) + sizeof(fmin), sizeof(fmax));
if (fmin >= fmax)
if (fmin >= fmax) {
break;
}
ImagingSectionEnter(&cookie);
scale = 255.0F / (fmax - fmin);
for (y = 0; y < im->ysize; y++) {
FLOAT32* in = (FLOAT32*) im->image32[y];
for (x = 0; x < im->xsize; x++) {
i = (int) (((*in++)-fmin)*scale);
if (i >= 0 && i < 256)
if (i >= 0 && i < 256) {
h->histogram[i]++;
}
}
}
ImagingSectionLeave(&cookie);
break;
}

View File

@ -84,11 +84,12 @@ struct j2k_decode_unpacker {
static inline
unsigned j2ku_shift(unsigned x, int n)
{
if (n < 0)
if (n < 0) {
return x >> -n;
else
} else {
return x << n;
}
}
static void
j2ku_gray_l(opj_image_t *in, const JPEG2KTILEINFO *tileinfo,
@ -104,11 +105,13 @@ j2ku_gray_l(opj_image_t *in, const JPEG2KTILEINFO *tileinfo,
unsigned x, y;
if (csiz == 3)
if (csiz == 3) {
csiz = 4;
}
if (shift < 0)
if (shift < 0) {
offset += 1 << (-shift - 1);
}
/* csiz*h*w + offset = tileinfo.datasize */
switch (csiz) {
@ -116,25 +119,28 @@ j2ku_gray_l(opj_image_t *in, const JPEG2KTILEINFO *tileinfo,
for (y = 0; y < h; ++y) {
const UINT8 *data = &tiledata[y * w];
UINT8 *row = (UINT8 *)im->image[y0 + y] + x0;
for (x = 0; x < w; ++x)
for (x = 0; x < w; ++x) {
*row++ = j2ku_shift(offset + *data++, shift);
}
}
break;
case 2:
for (y = 0; y < h; ++y) {
const UINT16 *data = (const UINT16 *)&tiledata[2 * y * w];
UINT8 *row = (UINT8 *)im->image[y0 + y] + x0;
for (x = 0; x < w; ++x)
for (x = 0; x < w; ++x) {
*row++ = j2ku_shift(offset + *data++, shift);
}
}
break;
case 4:
for (y = 0; y < h; ++y) {
const UINT32 *data = (const UINT32 *)&tiledata[4 * y * w];
UINT8 *row = (UINT8 *)im->image[y0 + y] + x0;
for (x = 0; x < w; ++x)
for (x = 0; x < w; ++x) {
*row++ = j2ku_shift(offset + *data++, shift);
}
}
break;
}
}
@ -154,36 +160,41 @@ j2ku_gray_i(opj_image_t *in, const JPEG2KTILEINFO *tileinfo,
unsigned x, y;
if (csiz == 3)
if (csiz == 3) {
csiz = 4;
}
if (shift < 0)
if (shift < 0) {
offset += 1 << (-shift - 1);
}
switch (csiz) {
case 1:
for (y = 0; y < h; ++y) {
const UINT8 *data = &tiledata[y * w];
UINT16 *row = (UINT16 *)im->image[y0 + y] + x0;
for (x = 0; x < w; ++x)
for (x = 0; x < w; ++x) {
*row++ = j2ku_shift(offset + *data++, shift);
}
}
break;
case 2:
for (y = 0; y < h; ++y) {
const UINT16 *data = (const UINT16 *)&tiledata[2 * y * w];
UINT16 *row = (UINT16 *)im->image[y0 + y] + x0;
for (x = 0; x < w; ++x)
for (x = 0; x < w; ++x) {
*row++ = j2ku_shift(offset + *data++, shift);
}
}
break;
case 4:
for (y = 0; y < h; ++y) {
const UINT32 *data = (const UINT32 *)&tiledata[4 * y * w];
UINT16 *row = (UINT16 *)im->image[y0 + y] + x0;
for (x = 0; x < w; ++x)
for (x = 0; x < w; ++x) {
*row++ = j2ku_shift(offset + *data++, shift);
}
}
break;
}
}
@ -203,11 +214,13 @@ j2ku_gray_rgb(opj_image_t *in, const JPEG2KTILEINFO *tileinfo,
unsigned x, y;
if (shift < 0)
if (shift < 0) {
offset += 1 << (-shift - 1);
}
if (csiz == 3)
if (csiz == 3) {
csiz = 4;
}
switch (csiz) {
case 1:
@ -267,15 +280,19 @@ j2ku_graya_la(opj_image_t *in, const JPEG2KTILEINFO *tileinfo,
unsigned x, y;
if (csiz == 3)
if (csiz == 3) {
csiz = 4;
if (acsiz == 3)
}
if (acsiz == 3) {
acsiz = 4;
}
if (shift < 0)
if (shift < 0) {
offset += 1 << (-shift - 1);
if (ashift < 0)
}
if (ashift < 0) {
aoffset += 1 << (-ashift - 1);
}
atiledata = tiledata + csiz * w * h;
@ -325,11 +342,13 @@ j2ku_srgb_rgb(opj_image_t *in, const JPEG2KTILEINFO *tileinfo,
offsets[n] = in->comps[n].sgnd ? 1 << (in->comps[n].prec - 1) : 0;
csiz[n] = (in->comps[n].prec + 7) >> 3;
if (csiz[n] == 3)
if (csiz[n] == 3) {
csiz[n] = 4;
}
if (shifts[n] < 0)
if (shifts[n] < 0) {
offsets[n] += 1 << (-shifts[n] - 1);
}
cptr += csiz[n] * w * h;
}
@ -337,8 +356,9 @@ j2ku_srgb_rgb(opj_image_t *in, const JPEG2KTILEINFO *tileinfo,
for (y = 0; y < h; ++y) {
const UINT8 *data[3];
UINT8 *row = (UINT8 *)im->image[y0 + y] + x0 * 4;
for (n = 0; n < 3; ++n)
for (n = 0; n < 3; ++n) {
data[n] = &cdata[n][csiz[n] * y * w];
}
for (x = 0; x < w; ++x) {
for (n = 0; n < 3; ++n) {
@ -377,11 +397,13 @@ j2ku_sycc_rgb(opj_image_t *in, const JPEG2KTILEINFO *tileinfo,
offsets[n] = in->comps[n].sgnd ? 1 << (in->comps[n].prec - 1) : 0;
csiz[n] = (in->comps[n].prec + 7) >> 3;
if (csiz[n] == 3)
if (csiz[n] == 3) {
csiz[n] = 4;
}
if (shifts[n] < 0)
if (shifts[n] < 0) {
offsets[n] += 1 << (-shifts[n] - 1);
}
cptr += csiz[n] * w * h;
}
@ -390,8 +412,9 @@ j2ku_sycc_rgb(opj_image_t *in, const JPEG2KTILEINFO *tileinfo,
const UINT8 *data[3];
UINT8 *row = (UINT8 *)im->image[y0 + y] + x0 * 4;
UINT8 *row_start = row;
for (n = 0; n < 3; ++n)
for (n = 0; n < 3; ++n) {
data[n] = &cdata[n][csiz[n] * y * w];
}
for (x = 0; x < w; ++x) {
for (n = 0; n < 3; ++n) {
@ -432,11 +455,13 @@ j2ku_srgba_rgba(opj_image_t *in, const JPEG2KTILEINFO *tileinfo,
offsets[n] = in->comps[n].sgnd ? 1 << (in->comps[n].prec - 1) : 0;
csiz[n] = (in->comps[n].prec + 7) >> 3;
if (csiz[n] == 3)
if (csiz[n] == 3) {
csiz[n] = 4;
}
if (shifts[n] < 0)
if (shifts[n] < 0) {
offsets[n] += 1 << (-shifts[n] - 1);
}
cptr += csiz[n] * w * h;
}
@ -444,8 +469,9 @@ j2ku_srgba_rgba(opj_image_t *in, const JPEG2KTILEINFO *tileinfo,
for (y = 0; y < h; ++y) {
const UINT8 *data[4];
UINT8 *row = (UINT8 *)im->image[y0 + y] + x0 * 4;
for (n = 0; n < 4; ++n)
for (n = 0; n < 4; ++n) {
data[n] = &cdata[n][csiz[n] * y * w];
}
for (x = 0; x < w; ++x) {
for (n = 0; n < 4; ++n) {
@ -483,11 +509,13 @@ j2ku_sycca_rgba(opj_image_t *in, const JPEG2KTILEINFO *tileinfo,
offsets[n] = in->comps[n].sgnd ? 1 << (in->comps[n].prec - 1) : 0;
csiz[n] = (in->comps[n].prec + 7) >> 3;
if (csiz[n] == 3)
if (csiz[n] == 3) {
csiz[n] = 4;
}
if (shifts[n] < 0)
if (shifts[n] < 0) {
offsets[n] += 1 << (-shifts[n] - 1);
}
cptr += csiz[n] * w * h;
}
@ -496,8 +524,9 @@ j2ku_sycca_rgba(opj_image_t *in, const JPEG2KTILEINFO *tileinfo,
const UINT8 *data[4];
UINT8 *row = (UINT8 *)im->image[y0 + y] + x0 * 4;
UINT8 *row_start = row;
for (n = 0; n < 4; ++n)
for (n = 0; n < 4; ++n) {
data[n] = &cdata[n][csiz[n] * y * w];
}
for (x = 0; x < w; ++x) {
for (n = 0; n < 4; ++n) {
@ -584,10 +613,11 @@ j2k_decode_entry(Imaging im, ImagingCodecState state)
possibly support is 4GB. We can't go larger than this, because
OpenJPEG truncates this value for the final box in the file, and
the box lengths in OpenJPEG are currently 32 bit. */
if (context->length < 0)
if (context->length < 0) {
opj_stream_set_user_data_length(stream, 0xffffffff);
else
} else {
opj_stream_set_user_data_length(stream, context->length);
}
#endif
/* Setup decompression context */
@ -696,8 +726,9 @@ j2k_decode_entry(Imaging im, ImagingCodecState state)
goto quick_exit;
}
if (!should_continue)
if (!should_continue) {
break;
}
/* Adjust the tile co-ordinates based on the reduction (OpenJPEG
doesn't do this for us) */
@ -784,12 +815,15 @@ j2k_decode_entry(Imaging im, ImagingCodecState state)
}
quick_exit:
if (codec)
if (codec) {
opj_destroy_codec(codec);
if (image)
}
if (image) {
opj_image_destroy(image);
if (stream)
}
if (stream) {
opj_stream_destroy(stream);
}
return -1;
}
@ -804,8 +838,9 @@ ImagingJpeg2KDecode(Imaging im, ImagingCodecState state, UINT8* buf, Py_ssize_t
return -1;
}
if (state->state == J2K_STATE_DONE || state->state == J2K_STATE_FAILED)
if (state->state == J2K_STATE_DONE || state->state == J2K_STATE_FAILED) {
return -1;
}
if (state->state == J2K_STATE_START) {
state->state = J2K_STATE_DECODING;

View File

@ -106,10 +106,11 @@ j2k_pack_l(Imaging im, UINT8 *buf,
unsigned x,y;
for (y = 0; y < h; ++y) {
UINT8 *data = (UINT8 *)(im->image[y + y0] + x0);
for (x = 0; x < w; ++x)
for (x = 0; x < w; ++x) {
*ptr++ = *data++;
}
}
}
static void
j2k_pack_i16(Imaging im, UINT8 *buf,
@ -240,10 +241,11 @@ j2k_set_cinema_params(Imaging im, int components, opj_cparameters_t *params)
} else {
rate = ((float)(components * im->xsize * im->ysize * 8)
/ (params->tcp_rates[n] * 8));
if (rate > CINEMA_24_CS_LENGTH)
if (rate > CINEMA_24_CS_LENGTH) {
params->tcp_rates[n] = max_rate;
}
}
}
params->max_comp_size = COMP_24_CS_MAX_LENGTH;
} else {
@ -257,10 +259,11 @@ j2k_set_cinema_params(Imaging im, int components, opj_cparameters_t *params)
} else {
rate = ((float)(components * im->xsize * im->ysize * 8)
/ (params->tcp_rates[n] * 8));
if (rate > CINEMA_48_CS_LENGTH)
if (rate > CINEMA_48_CS_LENGTH) {
params->tcp_rates[n] = max_rate;
}
}
}
params->max_comp_size = COMP_48_CS_MAX_LENGTH;
}
@ -397,8 +400,9 @@ j2k_encode_entry(Imaging im, ImagingCodecState state)
float *pq;
if (len) {
if (len > sizeof(params.tcp_rates) / sizeof(params.tcp_rates[0]))
if (len > sizeof(params.tcp_rates) / sizeof(params.tcp_rates[0])) {
len = sizeof(params.tcp_rates)/sizeof(params.tcp_rates[0]);
}
params.tcp_numlayers = (int)len;
@ -423,8 +427,9 @@ j2k_encode_entry(Imaging im, ImagingCodecState state)
params.cp_disto_alloc = 1;
}
if (context->num_resolutions)
if (context->num_resolutions) {
params.numresolution = context->num_resolutions;
}
if (context->cblk_width >= 4 && context->cblk_width <= 1024
&& context->cblk_height >= 4 && context->cblk_height <= 1024
@ -455,18 +460,21 @@ j2k_encode_entry(Imaging im, ImagingCodecState state)
case OPJ_CINEMA2K_24:
case OPJ_CINEMA2K_48:
params.cp_rsiz = OPJ_CINEMA2K;
if (params.numresolution > 6)
if (params.numresolution > 6) {
params.numresolution = 6;
}
break;
case OPJ_CINEMA4K_24:
params.cp_rsiz = OPJ_CINEMA4K;
if (params.numresolution > 7)
if (params.numresolution > 7) {
params.numresolution = 7;
}
break;
}
if (context->cinema_mode != OPJ_OFF)
if (context->cinema_mode != OPJ_OFF) {
j2k_set_cinema_params(im, components, &params);
}
/* Set up the reference grid in the image */
image->x0 = params.image_offset_x0;
@ -526,10 +534,12 @@ j2k_encode_entry(Imaging im, ImagingCodecState state)
unsigned ty1 = ty0 + tile_height;
unsigned pixy, pixh;
if (ty0 < params.image_offset_y0)
if (ty0 < params.image_offset_y0) {
ty0 = params.image_offset_y0;
if (ty1 > ysiz)
}
if (ty1 > ysiz) {
ty1 = ysiz;
}
pixy = ty0 - params.image_offset_y0;
pixh = ty1 - ty0;
@ -540,10 +550,12 @@ j2k_encode_entry(Imaging im, ImagingCodecState state)
unsigned pixx, pixw;
unsigned data_size;
if (tx0 < params.image_offset_x0)
if (tx0 < params.image_offset_x0) {
tx0 = params.image_offset_x0;
if (tx1 > xsiz)
}
if (tx1 > xsiz) {
tx1 = xsiz;
}
pixx = tx0 - params.image_offset_x0;
pixw = tx1 - tx0;
@ -572,12 +584,15 @@ j2k_encode_entry(Imaging im, ImagingCodecState state)
ret = -1;
quick_exit:
if (codec)
if (codec) {
opj_destroy_codec(codec);
if (image)
}
if (image) {
opj_image_destroy(image);
if (stream)
}
if (stream) {
opj_stream_destroy(stream);
}
return ret;
}
@ -585,8 +600,9 @@ j2k_encode_entry(Imaging im, ImagingCodecState state)
int
ImagingJpeg2KEncode(Imaging im, ImagingCodecState state, UINT8 *buf, int bytes)
{
if (state->state == J2K_STATE_FAILED)
if (state->state == J2K_STATE_FAILED) {
return -1;
}
if (state->state == J2K_STATE_START) {
@ -611,8 +627,9 @@ ImagingJpeg2KEncodeCleanup(ImagingCodecState state) {
context->quality_layers = NULL;
}
if (context->error_msg)
if (context->error_msg) {
free ((void *)context->error_msg);
}
context->error_msg = NULL;

View File

@ -176,9 +176,10 @@ ImagingJpegDecode(Imaging im, ImagingCodecState state, UINT8* buf, Py_ssize_t by
if (context->source.skip > 0) {
skip_input_data(&context->cinfo, context->source.skip);
if (context->source.skip > 0)
if (context->source.skip > 0) {
return context->source.pub.next_input_byte - buf;
}
}
switch (state->state) {
@ -193,43 +194,46 @@ ImagingJpegDecode(Imaging im, ImagingCodecState state, UINT8* buf, Py_ssize_t by
} while (ok == JPEG_HEADER_TABLES_ONLY);
if (ok == JPEG_SUSPENDED)
if (ok == JPEG_SUSPENDED) {
break;
}
/* Decoder settings */
/* jpegmode indicates whats in the file; if not set, we'll
trust the decoder */
if (strcmp(context->jpegmode, "L") == 0)
if (strcmp(context->jpegmode, "L") == 0) {
context->cinfo.jpeg_color_space = JCS_GRAYSCALE;
else if (strcmp(context->jpegmode, "RGB") == 0)
} else if (strcmp(context->jpegmode, "RGB") == 0) {
context->cinfo.jpeg_color_space = JCS_RGB;
else if (strcmp(context->jpegmode, "CMYK") == 0)
} else if (strcmp(context->jpegmode, "CMYK") == 0) {
context->cinfo.jpeg_color_space = JCS_CMYK;
else if (strcmp(context->jpegmode, "YCbCr") == 0)
} else if (strcmp(context->jpegmode, "YCbCr") == 0) {
context->cinfo.jpeg_color_space = JCS_YCbCr;
else if (strcmp(context->jpegmode, "YCbCrK") == 0) {
} else if (strcmp(context->jpegmode, "YCbCrK") == 0) {
context->cinfo.jpeg_color_space = JCS_YCCK;
}
/* rawmode indicates what we want from the decoder. if not
set, conversions are disabled */
if (strcmp(context->rawmode, "L") == 0)
if (strcmp(context->rawmode, "L") == 0) {
context->cinfo.out_color_space = JCS_GRAYSCALE;
else if (strcmp(context->rawmode, "RGB") == 0)
} else if (strcmp(context->rawmode, "RGB") == 0) {
context->cinfo.out_color_space = JCS_RGB;
}
#ifdef JCS_EXTENSIONS
else if (strcmp(context->rawmode, "RGBX") == 0)
else if (strcmp(context->rawmode, "RGBX") == 0) {
context->cinfo.out_color_space = JCS_EXT_RGBX;
}
#endif
else if (strcmp(context->rawmode, "CMYK") == 0 ||
strcmp(context->rawmode, "CMYK;I") == 0)
strcmp(context->rawmode, "CMYK;I") == 0) {
context->cinfo.out_color_space = JCS_CMYK;
else if (strcmp(context->rawmode, "YCbCr") == 0)
} else if (strcmp(context->rawmode, "YCbCr") == 0) {
context->cinfo.out_color_space = JCS_YCbCr;
else if (strcmp(context->rawmode, "YCbCrK") == 0)
} else if (strcmp(context->rawmode, "YCbCrK") == 0) {
context->cinfo.out_color_space = JCS_YCCK;
else {
} else {
/* Disable decoder conversions */
context->cinfo.jpeg_color_space = JCS_UNKNOWN;
context->cinfo.out_color_space = JCS_UNKNOWN;
@ -251,8 +255,9 @@ ImagingJpegDecode(Imaging im, ImagingCodecState state, UINT8* buf, Py_ssize_t by
/* Set things up for decompression (this processes the entire
file if necessary to return data line by line) */
if (!jpeg_start_decompress(&context->cinfo))
if (!jpeg_start_decompress(&context->cinfo)) {
break;
}
state->state++;
/* fall through */
@ -263,15 +268,17 @@ ImagingJpegDecode(Imaging im, ImagingCodecState state, UINT8* buf, Py_ssize_t by
ok = 1;
while (state->y < state->ysize) {
ok = jpeg_read_scanlines(&context->cinfo, &state->buffer, 1);
if (ok != 1)
if (ok != 1) {
break;
}
state->shuffle((UINT8*) im->image[state->y + state->yoff] +
state->xoff * im->pixelsize, state->buffer,
state->xsize);
state->y++;
}
if (ok != 1)
if (ok != 1) {
break;
}
state->state++;
/* fall through */
@ -280,9 +287,10 @@ ImagingJpegDecode(Imaging im, ImagingCodecState state, UINT8* buf, Py_ssize_t by
/* Finish decompression */
if (!jpeg_finish_decompress(&context->cinfo)) {
/* FIXME: add strictness mode test */
if (state->y < state->ysize)
if (state->y < state->ysize) {
break;
}
}
/* Clean up */
jpeg_destroy_decompress(&context->cinfo);

View File

@ -127,17 +127,19 @@ ImagingJpegEncode(Imaging im, ImagingCodecState state, UINT8* buf, int bytes)
break;
case 24:
context->cinfo.input_components = 3;
if (strcmp(im->mode, "YCbCr") == 0)
if (strcmp(im->mode, "YCbCr") == 0) {
context->cinfo.in_color_space = JCS_YCbCr;
else
} else {
context->cinfo.in_color_space = JCS_RGB;
}
break;
case 32:
context->cinfo.input_components = 4;
context->cinfo.in_color_space = JCS_CMYK;
#ifdef JCS_EXTENSIONS
if (strcmp(context->rawmode, "RGBX") == 0)
if (strcmp(context->rawmode, "RGBX") == 0) {
context->cinfo.in_color_space = JCS_EXT_RGBX;
}
#endif
break;
default:
@ -214,8 +216,9 @@ ImagingJpegEncode(Imaging im, ImagingCodecState state, UINT8* buf, int bytes)
break;
}
}
if (context->progressive)
if (context->progressive) {
jpeg_simple_progression(&context->cinfo);
}
context->cinfo.smoothing_factor = context->smooth;
context->cinfo.optimize_coding = (boolean) context->optimize;
if (context->xdpi > 0 && context->ydpi > 0) {
@ -261,19 +264,22 @@ ImagingJpegEncode(Imaging im, ImagingCodecState state, UINT8* buf, int bytes)
if (context->extra) {
/* copy extra buffer to output buffer */
unsigned int n = context->extra_size - context->extra_offset;
if (n > context->destination.pub.free_in_buffer)
if (n > context->destination.pub.free_in_buffer) {
n = context->destination.pub.free_in_buffer;
}
memcpy(context->destination.pub.next_output_byte,
context->extra + context->extra_offset, n);
context->destination.pub.next_output_byte += n;
context->destination.pub.free_in_buffer -= n;
context->extra_offset += n;
if (context->extra_offset >= context->extra_size)
if (context->extra_offset >= context->extra_size) {
state->state++;
else
} else {
break;
} else
}
} else {
state->state++;
}
case 4:
if (1024 > context->destination.pub.free_in_buffer){
@ -286,21 +292,24 @@ ImagingJpegEncode(Imaging im, ImagingCodecState state, UINT8* buf, int bytes)
(UINT8*) im->image[state->y + state->yoff] +
state->xoff * im->pixelsize, state->xsize);
ok = jpeg_write_scanlines(&context->cinfo, &state->buffer, 1);
if (ok != 1)
if (ok != 1) {
break;
}
state->y++;
}
if (ok != 1)
if (ok != 1) {
break;
}
state->state++;
/* fall through */
case 5:
/* Finish compression */
if (context->destination.pub.free_in_buffer < 100)
if (context->destination.pub.free_in_buffer < 100) {
break;
}
jpeg_finish_compress(&context->cinfo);
/* Clean up */

View File

@ -27,14 +27,16 @@ ImagingConvertMatrix(Imaging im, const char *mode, float m[])
int x, y;
/* Assume there's enough data in the buffer */
if (!im)
if (!im) {
return (Imaging) ImagingError_ModeError();
}
if (strcmp(mode, "L") == 0 && im->bands == 3) {
imOut = ImagingNewDirty("L", im->xsize, im->ysize);
if (!imOut)
if (!imOut) {
return NULL;
}
for (y = 0; y < im->ysize; y++) {
UINT8* in = (UINT8*) im->image[y];
@ -50,8 +52,9 @@ ImagingConvertMatrix(Imaging im, const char *mode, float m[])
} else if (strlen(mode) == 3 && im->bands == 3) {
imOut = ImagingNewDirty(mode, im->xsize, im->ysize);
if (!imOut)
if (!imOut) {
return NULL;
}
for (y = 0; y < im->ysize; y++) {
UINT8* in = (UINT8*) im->image[y];
@ -67,8 +70,9 @@ ImagingConvertMatrix(Imaging im, const char *mode, float m[])
in += 4; out += 4;
}
}
} else
} else {
return (Imaging) ImagingError_ModeError();
}
return imOut;
}

View File

@ -25,12 +25,14 @@ ImagingModeFilter(Imaging im, int size)
UINT8 maxpixel;
int histogram[256];
if (!im || im->bands != 1 || im->type != IMAGING_TYPE_UINT8)
if (!im || im->bands != 1 || im->type != IMAGING_TYPE_UINT8) {
return (Imaging) ImagingError_ModeError();
}
imOut = ImagingNewDirty(im->mode, im->xsize, im->ysize);
if (!imOut)
if (!imOut) {
return NULL;
}
size = size / 2;
@ -46,27 +48,32 @@ ImagingModeFilter(Imaging im, int size)
the added complexity... */
memset(histogram, 0, sizeof(histogram));
for (yy = y - size; yy <= y + size; yy++)
for (yy = y - size; yy <= y + size; yy++) {
if (yy >= 0 && yy < imOut->ysize) {
UINT8* in = &IMAGING_PIXEL_L(im, 0, yy);
for (xx = x - size; xx <= x + size; xx++)
if (xx >= 0 && xx < imOut->xsize)
for (xx = x - size; xx <= x + size; xx++) {
if (xx >= 0 && xx < imOut->xsize) {
histogram[in[xx]]++;
}
}
}
}
/* find most frequent pixel value in this region */
maxpixel = 0;
maxcount = histogram[maxpixel];
for (i = 1; i < 256; i++)
for (i = 1; i < 256; i++) {
if (histogram[i] > maxcount) {
maxcount = histogram[i];
maxpixel = (UINT8) i;
}
}
if (maxcount > 2)
if (maxcount > 2) {
out[x] = maxpixel;
else
} else {
out[x] = IMAGING_PIXEL_L(im, x, y);
}
}

View File

@ -26,16 +26,20 @@ ImagingNegative(Imaging im)
Imaging imOut;
int x, y;
if (!im)
if (!im) {
return (Imaging) ImagingError_ModeError();
}
imOut = ImagingNewDirty(im->mode, im->xsize, im->ysize);
if (!imOut)
if (!imOut) {
return NULL;
}
for (y = 0; y < im->ysize; y++)
for (x = 0; x < im->linesize; x++)
for (y = 0; y < im->ysize; y++) {
for (x = 0; x < im->linesize; x++) {
imOut->image[y][x] = ~im->image[y][x];
}
}
return imOut;
}

View File

@ -24,38 +24,44 @@ ImagingOffset(Imaging im, int xoffset, int yoffset)
int x, y;
Imaging imOut;
if (!im)
if (!im) {
return (Imaging) ImagingError_ModeError();
}
imOut = ImagingNewDirty(im->mode, im->xsize, im->ysize);
if (!imOut)
if (!imOut) {
return NULL;
}
ImagingCopyPalette(imOut, im);
/* make offsets positive to avoid negative coordinates */
xoffset %= im->xsize;
xoffset = im->xsize - xoffset;
if (xoffset < 0)
if (xoffset < 0) {
xoffset += im->xsize;
}
yoffset %= im->ysize;
yoffset = im->ysize - yoffset;
if (yoffset < 0)
if (yoffset < 0) {
yoffset += im->ysize;
}
#define OFFSET(image)\
for (y = 0; y < im->ysize; y++)\
for (y = 0; y < im->ysize; y++) {\
for (x = 0; x < im->xsize; x++) {\
int yi = (y + yoffset) % im->ysize;\
int xi = (x + xoffset) % im->xsize;\
imOut->image[y][x] = im->image[yi][xi];\
}\
}
if (im->image8)
if (im->image8) {
OFFSET(image8)
else
} else {
OFFSET(image32)
}
return imOut;
}

View File

@ -80,17 +80,19 @@ pack1(UINT8* out, const UINT8* in, int pixels)
/* bilevel (black is 0) */
b = 0; m = 128;
for (i = 0; i < pixels; i++) {
if (in[i] != 0)
if (in[i] != 0) {
b |= m;
}
m >>= 1;
if (m == 0) {
*out++ = b;
b = 0; m = 128;
}
}
if (m != 128)
if (m != 128) {
*out++ = b;
}
}
static void
pack1I(UINT8* out, const UINT8* in, int pixels)
@ -99,17 +101,19 @@ pack1I(UINT8* out, const UINT8* in, int pixels)
/* bilevel (black is 1) */
b = 0; m = 128;
for (i = 0; i < pixels; i++) {
if (in[i] == 0)
if (in[i] == 0) {
b |= m;
}
m >>= 1;
if (m == 0) {
*out++ = b;
b = 0; m = 128;
}
}
if (m != 128)
if (m != 128) {
*out++ = b;
}
}
static void
pack1R(UINT8* out, const UINT8* in, int pixels)
@ -118,17 +122,19 @@ pack1R(UINT8* out, const UINT8* in, int pixels)
/* bilevel, lsb first (black is 0) */
b = 0; m = 1;
for (i = 0; i < pixels; i++) {
if (in[i] != 0)
if (in[i] != 0) {
b |= m;
}
m <<= 1;
if (m == 256){
*out++ = b;
b = 0; m = 1;
}
}
if (m != 1)
if (m != 1) {
*out++ = b;
}
}
static void
pack1IR(UINT8* out, const UINT8* in, int pixels)
@ -137,26 +143,29 @@ pack1IR(UINT8* out, const UINT8* in, int pixels)
/* bilevel, lsb first (black is 1) */
b = 0; m = 1;
for (i = 0; i < pixels; i++) {
if (in[i] == 0)
if (in[i] == 0) {
b |= m;
}
m <<= 1;
if (m == 256){
*out++ = b;
b = 0; m = 1;
}
}
if (m != 1)
if (m != 1) {
*out++ = b;
}
}
static void
pack1L(UINT8* out, const UINT8* in, int pixels)
{
int i;
/* bilevel, stored as bytes */
for (i = 0; i < pixels; i++)
for (i = 0; i < pixels; i++) {
out[i] = (in[i] != 0) ? 255 : 0;
}
}
static void
packP4(UINT8* out, const UINT8* in, int pixels)
@ -167,9 +176,10 @@ packP4(UINT8* out, const UINT8* in, int pixels)
in += 2; pixels -= 2;
}
if (pixels)
if (pixels) {
out[0] = (in[0] << 4);
}
}
static void
packP2(UINT8* out, const UINT8* in, int pixels)
@ -407,12 +417,13 @@ packI16B(UINT8* out, const UINT8* in_, int pixels)
for (i = 0; i < pixels; i++) {
INT32 in;
memcpy(&in, in_, sizeof(in));
if (in <= 0)
if (in <= 0) {
tmp_ = 0;
else if (in > 65535)
} else if (in > 65535) {
tmp_ = 65535;
else
} else {
tmp_ = in;
}
C16B;
out += 2; in_ += sizeof(in);
}
@ -496,41 +507,46 @@ copy4I(UINT8* out, const UINT8* in, int pixels)
{
/* RGBA, CMYK quadruples, inverted */
int i;
for (i = 0; i < pixels*4; i++)
for (i = 0; i < pixels*4; i++) {
out[i] = ~in[i];
}
}
static void
band0(UINT8* out, const UINT8* in, int pixels)
{
int i;
for (i = 0; i < pixels; i++, in += 4)
for (i = 0; i < pixels; i++, in += 4) {
out[i] = in[0];
}
}
static void
band1(UINT8* out, const UINT8* in, int pixels)
{
int i;
for (i = 0; i < pixels; i++, in += 4)
for (i = 0; i < pixels; i++, in += 4) {
out[i] = in[1];
}
}
static void
band2(UINT8* out, const UINT8* in, int pixels)
{
int i;
for (i = 0; i < pixels; i++, in += 4)
for (i = 0; i < pixels; i++, in += 4) {
out[i] = in[2];
}
}
static void
band3(UINT8* out, const UINT8* in, int pixels)
{
int i;
for (i = 0; i < pixels; i++, in += 4)
for (i = 0; i < pixels; i++, in += 4) {
out[i] = in[3];
}
}
static struct {
const char* mode;
@ -673,12 +689,14 @@ ImagingFindPacker(const char* mode, const char* rawmode, int* bits_out)
int i;
/* find a suitable pixel packer */
for (i = 0; packers[i].rawmode; i++)
for (i = 0; packers[i].rawmode; i++) {
if (strcmp(packers[i].mode, mode) == 0 &&
strcmp(packers[i].rawmode, rawmode) == 0) {
if (bits_out)
if (bits_out) {
*bits_out = packers[i].bits;
}
return packers[i].pack;
}
}
return NULL;
}

View File

@ -28,8 +28,9 @@ ImagingPackbitsDecode(Imaging im, ImagingCodecState state,
for (;;) {
if (bytes < 1)
if (bytes < 1) {
return ptr - buf;
}
if (ptr[0] & 0x80) {
@ -40,8 +41,9 @@ ImagingPackbitsDecode(Imaging im, ImagingCodecState state,
}
/* Run */
if (bytes < 2)
if (bytes < 2) {
return ptr - buf;
}
for (n = 257 - ptr[0]; n > 0; n--) {
if (state->x >= state->bytes) {
@ -58,8 +60,9 @@ ImagingPackbitsDecode(Imaging im, ImagingCodecState state,
/* Literal */
n = ptr[0]+2;
if (bytes < n)
if (bytes < n) {
return ptr - buf;
}
for (i = 1; i < n; i++) {
if (state->x >= state->bytes) {

View File

@ -30,12 +30,14 @@ ImagingPaletteNew(const char* mode)
int i;
ImagingPalette palette;
if (strcmp(mode, "RGB") && strcmp(mode, "RGBA"))
if (strcmp(mode, "RGB") && strcmp(mode, "RGBA")) {
return (ImagingPalette) ImagingError_ModeError();
}
palette = calloc(1, sizeof(struct ImagingPaletteInstance));
if (!palette)
if (!palette) {
return (ImagingPalette) ImagingError_MemoryError();
}
strncpy(palette->mode, mode, IMAGING_MODE_LENGTH-1);
palette->mode[IMAGING_MODE_LENGTH-1] = 0;
@ -60,8 +62,9 @@ ImagingPaletteNewBrowser(void)
ImagingPalette palette;
palette = ImagingPaletteNew("RGB");
if (!palette)
if (!palette) {
return NULL;
}
/* Blank out unused entries */
/* FIXME: Add 10-level windows palette here? */
@ -74,14 +77,16 @@ ImagingPaletteNewBrowser(void)
/* Simple 6x6x6 colour cube */
for (b = 0; b < 256; b += 51)
for (g = 0; g < 256; g += 51)
for (b = 0; b < 256; b += 51) {
for (g = 0; g < 256; g += 51) {
for (r = 0; r < 256; r += 51) {
palette->palette[i*4+0] = r;
palette->palette[i*4+1] = g;
palette->palette[i*4+2] = b;
i++;
}
}
}
/* Blank out unused entries */
/* FIXME: add 30-level greyscale wedge here? */
@ -102,12 +107,14 @@ ImagingPaletteDuplicate(ImagingPalette palette)
ImagingPalette new_palette;
if (!palette)
if (!palette) {
return NULL;
}
/* malloc check ok, small constant allocation */
new_palette = malloc(sizeof(struct ImagingPaletteInstance));
if (!new_palette)
if (!new_palette) {
return (ImagingPalette) ImagingError_MemoryError();
}
memcpy(new_palette, palette, sizeof(struct ImagingPaletteInstance));
@ -123,8 +130,9 @@ ImagingPaletteDelete(ImagingPalette palette)
/* Destroy palette object */
if (palette) {
if (palette->cache)
if (palette->cache) {
free(palette->cache);
}
free(palette);
}
}
@ -209,8 +217,9 @@ ImagingPaletteCacheUpdate(ImagingPalette palette, int r, int g, int b)
tmax += (b <= bc) ? BDIST(b, b1) : BDIST(b, b0);
dmin[i] = tmin;
if (tmax < dmax)
if (tmax < dmax) {
dmax = tmax; /* keep the smallest max distance only */
}
}
@ -220,10 +229,11 @@ ImagingPaletteCacheUpdate(ImagingPalette palette, int r, int g, int b)
* all slots in that box. We only check boxes for which the min
* distance is less than or equal the smallest max distance */
for (i = 0; i < BOXVOLUME; i++)
for (i = 0; i < BOXVOLUME; i++) {
d[i] = (unsigned int) ~0;
}
for (i = 0; i < 256; i++)
for (i = 0; i < 256; i++) {
if (dmin[i] <= dmax) {
@ -262,6 +272,7 @@ ImagingPaletteCacheUpdate(ImagingPalette palette, int r, int g, int b)
rx += 2 * RSTEP * RSTEP;
}
}
}
/* Step 3 -- Update cache */
@ -269,11 +280,14 @@ ImagingPaletteCacheUpdate(ImagingPalette palette, int r, int g, int b)
* cache slot in the box. Update the cache. */
j = 0;
for (r = r0; r < r1; r+=4)
for (g = g0; g < g1; g+=4)
for (b = b0; b < b1; b+=4)
for (r = r0; r < r1; r+=4) {
for (g = g0; g < g1; g+=4) {
for (b = b0; b < b1; b+=4) {
ImagingPaletteCache(palette, r, g, b) = c[j++];
}
}
}
}
int
@ -297,8 +311,9 @@ ImagingPaletteCachePrepare(ImagingPalette palette)
}
/* Mark all entries as empty */
for (i = 0; i < entries; i++)
for (i = 0; i < entries; i++) {
palette->cache[i] = 0x100;
}
}

View File

@ -37,9 +37,10 @@ paste(Imaging imOut, Imaging imIn, int dx, int dy, int sx, int sy,
xsize *= pixelsize;
for (y = 0; y < ysize; y++)
for (y = 0; y < ysize; y++) {
memcpy(imOut->image[y+dy]+dx, imIn->image[y+sy]+sx, xsize);
}
}
static inline void
paste_mask_1(Imaging imOut, Imaging imIn, Imaging imMask,
@ -57,8 +58,9 @@ paste_mask_1(Imaging imOut, Imaging imIn, Imaging imMask,
UINT8* in = imIn->image8[y+sy]+sx;
UINT8* mask = imMask->image8[y+sy]+sx;
for (x = 0; x < xsize; x++) {
if (*mask++)
if (*mask++) {
*out = *in;
}
out++, in++;
}
}
@ -70,8 +72,9 @@ paste_mask_1(Imaging imOut, Imaging imIn, Imaging imMask,
INT32* in = imIn->image32[y+sy]+sx;
UINT8* mask = imMask->image8[y+sy]+sx;
for (x = 0; x < xsize; x++) {
if (*mask++)
if (*mask++) {
*out = *in;
}
out++, in++;
}
}
@ -231,17 +234,22 @@ ImagingPaste(Imaging imOut, Imaging imIn, Imaging imMask,
/* Determine which region to copy */
sx0 = sy0 = 0;
if (dx0 < 0)
if (dx0 < 0) {
xsize += dx0, sx0 = -dx0, dx0 = 0;
if (dx0 + xsize > imOut->xsize)
}
if (dx0 + xsize > imOut->xsize) {
xsize = imOut->xsize - dx0;
if (dy0 < 0)
}
if (dy0 < 0) {
ysize += dy0, sy0 = -dy0, dy0 = 0;
if (dy0 + ysize > imOut->ysize)
}
if (dy0 + ysize > imOut->ysize) {
ysize = imOut->ysize - dy0;
}
if (xsize <= 0 || ysize <= 0)
if (xsize <= 0 || ysize <= 0) {
return 0;
}
if (!imMask) {
ImagingSectionEnter(&cookie);
@ -297,16 +305,18 @@ fill(Imaging imOut, const void* ink_, int dx, int dy,
dx *= pixelsize;
xsize *= pixelsize;
for (y = 0; y < ysize; y++)
for (y = 0; y < ysize; y++) {
memset(imOut->image[y+dy]+dx, ink8, xsize);
}
} else {
for (y = 0; y < ysize; y++) {
INT32* out = imOut->image32[y+dy]+dx;
for (x = 0; x < xsize; x++)
for (x = 0; x < xsize; x++) {
out[x] = ink32;
}
}
}
}
@ -331,8 +341,9 @@ fill_mask_1(Imaging imOut, const void* ink_, Imaging imMask,
UINT8* out = imOut->image8[y+dy]+dx;
UINT8* mask = imMask->image8[y+sy]+sx;
for (x = 0; x < xsize; x++) {
if (*mask++)
if (*mask++) {
*out = ink8;
}
out++;
}
}
@ -343,8 +354,9 @@ fill_mask_1(Imaging imOut, const void* ink_, Imaging imMask,
INT32* out = imOut->image32[y+dy]+dx;
UINT8* mask = imMask->image8[y+sy]+sx;
for (x = 0; x < xsize; x++) {
if (*mask++)
if (*mask++) {
*out = ink32;
}
out++;
}
}
@ -494,17 +506,22 @@ ImagingFill2(Imaging imOut, const void* ink, Imaging imMask,
/* Determine which region to fill */
sx0 = sy0 = 0;
if (dx0 < 0)
if (dx0 < 0) {
xsize += dx0, sx0 = -dx0, dx0 = 0;
if (dx0 + xsize > imOut->xsize)
}
if (dx0 + xsize > imOut->xsize) {
xsize = imOut->xsize - dx0;
if (dy0 < 0)
}
if (dy0 < 0) {
ysize += dy0, sy0 = -dy0, dy0 = 0;
if (dy0 + ysize > imOut->ysize)
}
if (dy0 + ysize > imOut->ysize) {
ysize = imOut->ysize - dy0;
}
if (xsize <= 0 || ysize <= 0)
if (xsize <= 0 || ysize <= 0) {
return 0;
}
if (!imMask) {
ImagingSectionEnter(&cookie);

View File

@ -38,8 +38,9 @@ ImagingPcdDecode(Imaging im, ImagingCodecState state, UINT8* buf, Py_ssize_t byt
for (;;) {
/* We need data for two full lines before we can do anything */
if (bytes < chunk)
if (bytes < chunk) {
return ptr - buf;
}
/* Unpack first line */
out = state->buffer;
@ -53,8 +54,9 @@ ImagingPcdDecode(Imaging im, ImagingCodecState state, UINT8* buf, Py_ssize_t byt
state->shuffle((UINT8*) im->image[state->y],
state->buffer, state->xsize);
if (++state->y >= state->ysize)
if (++state->y >= state->ysize) {
return -1; /* This can hardly happen */
}
/* Unpack second line */
out = state->buffer;
@ -68,8 +70,9 @@ ImagingPcdDecode(Imaging im, ImagingCodecState state, UINT8* buf, Py_ssize_t byt
state->shuffle((UINT8*) im->image[state->y],
state->buffer, state->xsize);
if (++state->y >= state->ysize)
if (++state->y >= state->ysize) {
return -1;
}
ptr += chunk;
bytes -= chunk;

View File

@ -31,14 +31,16 @@ ImagingPcxDecode(Imaging im, ImagingCodecState state, UINT8* buf, Py_ssize_t byt
for (;;) {
if (bytes < 1)
if (bytes < 1) {
return ptr - buf;
}
if ((*ptr & 0xC0) == 0xC0) {
/* Run */
if (bytes < 2)
if (bytes < 2) {
return ptr - buf;
}
n = ptr[0] & 0x3F;

View File

@ -35,10 +35,11 @@ im_point_8_8(Imaging imOut, Imaging imIn, im_point_context* context)
for (y = 0; y < imIn->ysize; y++) {
UINT8* in = imIn->image8[y];
UINT8* out = imOut->image8[y];
for (x = 0; x < imIn->xsize; x++)
for (x = 0; x < imIn->xsize; x++) {
out[x] = table[in[x]];
}
}
}
static void
im_point_2x8_2x8(Imaging imOut, Imaging imIn, im_point_context* context)
@ -103,10 +104,11 @@ im_point_8_32(Imaging imOut, Imaging imIn, im_point_context* context)
for (y = 0; y < imIn->ysize; y++) {
UINT8* in = imIn->image8[y];
INT32* out = imOut->image32[y];
for (x = 0; x < imIn->xsize; x++)
for (x = 0; x < imIn->xsize; x++) {
memcpy(out + x, table + in[x] * sizeof(INT32), sizeof(INT32));
}
}
}
static void
im_point_32_8(Imaging imOut, Imaging imIn, im_point_context* context)
@ -119,10 +121,11 @@ im_point_32_8(Imaging imOut, Imaging imIn, im_point_context* context)
UINT8* out = imOut->image8[y];
for (x = 0; x < imIn->xsize; x++) {
int v = in[x];
if (v < 0)
if (v < 0) {
v = 0;
else if (v > 65535)
} else if (v > 65535) {
v = 65535;
}
out[x] = table[v];
}
}
@ -138,21 +141,26 @@ ImagingPoint(Imaging imIn, const char* mode, const void* table)
im_point_context context;
void (*point)(Imaging imIn, Imaging imOut, im_point_context* context);
if (!imIn)
if (!imIn) {
return (Imaging) ImagingError_ModeError();
}
if (!mode)
if (!mode) {
mode = imIn->mode;
}
if (imIn->type != IMAGING_TYPE_UINT8) {
if (imIn->type != IMAGING_TYPE_INT32 || strcmp(mode, "L") != 0)
if (imIn->type != IMAGING_TYPE_INT32 || strcmp(mode, "L") != 0) {
goto mode_mismatch;
} else if (!imIn->image8 && strcmp(imIn->mode, mode) != 0)
}
} else if (!imIn->image8 && strcmp(imIn->mode, mode) != 0) {
goto mode_mismatch;
}
imOut = ImagingNew(mode, imIn->xsize, imIn->ysize);
if (!imOut)
if (!imOut) {
return NULL;
}
/* find appropriate handler */
if (imIn->type == IMAGING_TYPE_UINT8) {
@ -175,10 +183,12 @@ ImagingPoint(Imaging imIn, const char* mode, const void* table)
point = im_point_8_8;
break;
}
} else
} else {
point = im_point_8_32;
} else
}
} else {
point = im_point_32_8;
}
ImagingCopyPalette(imOut, imIn);
@ -209,12 +219,14 @@ ImagingPointTransform(Imaging imIn, double scale, double offset)
if (!imIn || (strcmp(imIn->mode, "I") != 0 &&
strcmp(imIn->mode, "I;16") != 0 &&
strcmp(imIn->mode, "F") != 0))
strcmp(imIn->mode, "F") != 0)) {
return (Imaging) ImagingError_ModeError();
}
imOut = ImagingNew(imIn->mode, imIn->xsize, imIn->ysize);
if (!imOut)
if (!imOut) {
return NULL;
}
switch (imIn->type) {
case IMAGING_TYPE_INT32:
@ -223,9 +235,10 @@ ImagingPointTransform(Imaging imIn, double scale, double offset)
INT32* in = imIn->image32[y];
INT32* out = imOut->image32[y];
/* FIXME: add clipping? */
for (x = 0; x < imIn->xsize; x++)
for (x = 0; x < imIn->xsize; x++) {
out[x] = in[x] * scale + offset;
}
}
ImagingSectionLeave(&cookie);
break;
case IMAGING_TYPE_FLOAT32:
@ -233,9 +246,10 @@ ImagingPointTransform(Imaging imIn, double scale, double offset)
for (y = 0; y < imIn->ysize; y++) {
FLOAT32* in = (FLOAT32*) imIn->image32[y];
FLOAT32* out = (FLOAT32*) imOut->image32[y];
for (x = 0; x < imIn->xsize; x++)
for (x = 0; x < imIn->xsize; x++) {
out[x] = in[x] * scale + offset;
}
}
ImagingSectionLeave(&cookie);
break;
case IMAGING_TYPE_SPECIAL:

View File

@ -157,7 +157,9 @@ create_pixel_hash(Pixel *pixelData,uint32_t nPixels)
/* malloc check ok, small constant allocation */
d=malloc(sizeof(PixelHashData));
if (!d) return NULL;
if (!d) {
return NULL;
}
hash=hashtable_new(pixel_hash,pixel_cmp);
hashtable_set_user_data(hash,d);
d->scale=0;
@ -197,7 +199,9 @@ static void
destroy_pixel_hash(HashTable *hash)
{
PixelHashData *d=(PixelHashData *)hashtable_get_user_data(hash);
if (d) free(d);
if (d) {
free(d);
}
hashtable_free(hash);
}
@ -214,7 +218,9 @@ static int
compute_box_volume(BoxNode *b)
{
unsigned char rl,rh,gl,gh,bl,bh;
if (b->volume>=0) return b->volume;
if (b->volume>=0) {
return b->volume;
}
if (!b->head[0]) {
b->volume=0;
} else {
@ -242,7 +248,9 @@ hash_to_list(const HashTable *h, const Pixel pixel, const uint32_t count, void *
/* malloc check ok, small constant allocation */
p=malloc(sizeof(PixelList));
if (!p) return;
if (!p) {
return;
}
p->flag=0;
p->p=q;
@ -250,7 +258,9 @@ hash_to_list(const HashTable *h, const Pixel pixel, const uint32_t count, void *
for (i=0;i<3;i++) {
p->next[i]=pl[i];
p->prev[i]=NULL;
if (pl[i]) pl[i]->prev[i]=p;
if (pl[i]) {
pl[i]->prev[i]=p;
}
pl[i]=p;
}
}
@ -268,7 +278,9 @@ mergesort_pixels(PixelList *head, int i)
}
for (c=t=head;c&&t;c=c->next[i],t=(t->next[i])?t->next[i]->next[i]:NULL);
if (c) {
if (c->prev[i]) c->prev[i]->next[i]=NULL;
if (c->prev[i]) {
c->prev[i]->next[i]=NULL;
}
c->prev[i]=NULL;
}
a=mergesort_pixels(head,i);
@ -285,9 +297,13 @@ mergesort_pixels(PixelList *head, int i)
}
c->prev[i]=p;
c->next[i]=NULL;
if (p) p->next[i]=c;
if (p) {
p->next[i]=c;
}
p=c;
if (!head) head=c;
if (!head) {
head=c;
}
}
if (a) {
c->next[i]=a;
@ -442,17 +458,29 @@ splitlists(PixelList *h[3],
for (c=h[i];c;c=n) {
n=c->next[i];
if (c->flag) { /* move pixel to right list*/
if (r) r->next[i]=c; else nh[1][i]=c;
if (r) {
r->next[i]=c;
} else {
nh[1][i]=c;
}
c->prev[i]=r;
r=c;
} else { /* move pixel to left list */
if (l) l->next[i]=c; else nh[0][i]=c;
if (l) {
l->next[i]=c;
} else {
nh[0][i]=c;
}
c->prev[i]=l;
l=c;
}
}
if (l) l->next[i]=NULL;
if (r) r->next[i]=NULL;
if (l) {
l->next[i]=NULL;
}
if (r) {
r->next[i]=NULL;
}
nt[0][i]=l;
nt[1][i]=r;
}
@ -661,8 +689,12 @@ static void
free_box_tree(BoxNode *n)
{
PixelList *p,*pp;
if (n->l) free_box_tree(n->l);
if (n->r) free_box_tree(n->r);
if (n->l) {
free_box_tree(n->l);
}
if (n->r) {
free_box_tree(n->r);
}
for (p=n->head[0];p;p=pp) {
pp=p->next[0];
free(p);
@ -720,7 +752,9 @@ annotate_hash_table(BoxNode *n,HashTable *h,uint32_t *box)
return 0;
}
}
if (n->head[0]) (*box)++;
if (n->head[0]) {
(*box)++;
}
return 1;
}
@ -756,7 +790,9 @@ resort_distance_tables(uint32_t *avgDist,
for (k=j;k&&(*(skRow[k-1])>*(skRow[k]));k--) {
skRow[k]=skRow[k-1];
}
if (k!=j) skRow[k]=skElt;
if (k!=j) {
skRow[k]=skElt;
}
}
}
return 1;
@ -976,7 +1012,9 @@ compute_palette_from_median_cut(
/* malloc check ok, using calloc */
if (!(avg[i]=calloc(nPaletteEntries, sizeof(uint32_t)))) {
for(i=0;i<3;i++) {
if (avg[i]) free (avg[i]);
if (avg[i]) {
free (avg[i]);
}
}
free(count);
return 0;
@ -987,7 +1025,9 @@ compute_palette_from_median_cut(
if (!(i%100)) { printf ("%05d\r",i); fflush(stdout); }
if (checkContained(root,pixelData+i)>1) {
printf ("pixel in two boxes\n");
for(i=0;i<3;i++) free (avg[i]);
for(i=0;i<3;i++) {
free (avg[i]);
}
free(count);
return 0;
}
@ -996,7 +1036,9 @@ compute_palette_from_median_cut(
#ifndef NO_OUTPUT
printf ("pixel lookup failed\n");
#endif
for(i=0;i<3;i++) free (avg[i]);
for(i=0;i<3;i++) {
free (avg[i]);
}
free(count);
return 0;
}
@ -1004,7 +1046,9 @@ compute_palette_from_median_cut(
#ifndef NO_OUTPUT
printf ("panic - paletteEntry>=nPaletteEntries (%d>=%d)\n",(int)paletteEntry,(int)nPaletteEntries);
#endif
for(i=0;i<3;i++) free (avg[i]);
for(i=0;i<3;i++) {
free (avg[i]);
}
free(count);
return 0;
}
@ -1016,7 +1060,9 @@ compute_palette_from_median_cut(
/* malloc check ok, using calloc */
p=calloc(nPaletteEntries, sizeof(Pixel));
if (!p) {
for(i=0;i<3;i++) free (avg[i]);
for(i=0;i<3;i++) {
free (avg[i]);
}
free(count);
return 0;
}
@ -1026,7 +1072,9 @@ compute_palette_from_median_cut(
p[i].c.b=(int)(.5+(double)avg[2][i]/(double)count[i]);
}
*palette=p;
for(i=0;i<3;i++) free (avg[i]);
for(i=0;i<3;i++) {
free (avg[i]);
}
free(count);
return 1;
}
@ -1156,24 +1204,46 @@ k_means(Pixel *pixelData,
#ifndef NO_OUTPUT
printf (".(%d)",changes);fflush(stdout);
#endif
if (changes<=threshold) break;
if (changes<=threshold) {
break;
}
}
#ifndef NO_OUTPUT
printf("]\n");
#endif
if (avgDistSortKey) free(avgDistSortKey);
if (avgDist) free(avgDist);
for(i=0;i<3;i++) if (avg[i]) free (avg[i]);
if (count) free(count);
if (avgDistSortKey) {
free(avgDistSortKey);
}
if (avgDist) {
free(avgDist);
}
for(i=0;i<3;i++) {
if (avg[i]) {
free (avg[i]);
}
}
if (count) {
free(count);
}
return 1;
error_3:
if (avgDistSortKey) free(avgDistSortKey);
if (avgDistSortKey) {
free(avgDistSortKey);
}
error_2:
if (avgDist) free(avgDist);
if (avgDist) {
free(avgDist);
}
error_1:
for(i=0;i<3;i++) if (avg[i]) free (avg[i]);
if (count) free(count);
for(i=0;i<3;i++) {
if (avg[i]) {
free (avg[i]);
}
}
if (count) {
free(count);
}
return 0;
}
@ -1345,7 +1415,9 @@ quantize(Pixel *pixelData,
#ifndef NO_OUTPUT
printf ("k means...\n"); fflush(stdout); timer=clock();
#endif
if (kmeans) k_means(pixelData,nPixels,p,nPaletteEntries,qp,kmeans-1);
if (kmeans) {
k_means(pixelData,nPixels,p,nPaletteEntries,qp,kmeans-1);
}
#ifndef NO_OUTPUT
printf ("done (%f)\n",(clock()-timer)/(double)CLOCKS_PER_SEC);
#endif
@ -1357,8 +1429,12 @@ quantize(Pixel *pixelData,
#ifndef NO_OUTPUT
printf ("cleanup..."); fflush(stdout); timer=clock();
#endif
if (avgDist) free(avgDist);
if (avgDistSortKey) free(avgDistSortKey);
if (avgDist) {
free(avgDist);
}
if (avgDistSortKey) {
free(avgDistSortKey);
}
destroy_pixel_hash(h);
#ifndef NO_OUTPUT
printf ("done (%f)\n",(clock()-timer)/(double)CLOCKS_PER_SEC);
@ -1367,15 +1443,25 @@ quantize(Pixel *pixelData,
return 1;
error_7:
if (avgDistSortKey) free(avgDistSortKey);
if (avgDistSortKey) {
free(avgDistSortKey);
}
error_6:
if (avgDist) free(avgDist);
if (avgDist) {
free(avgDist);
}
error_5:
if (qp) free(qp);
if (qp) {
free(qp);
}
error_4:
if (p) free(p);
if (p) {
free(p);
}
error_3:
if (root) free_box_tree(root);
if (root) {
free_box_tree(root);
}
error_1:
destroy_pixel_hash(h);
error_0:
@ -1430,7 +1516,9 @@ quantize2(Pixel *pixelData,
/* malloc check ok, using calloc */
p=calloc(nQuantPixels, sizeof(Pixel));
if (!p) return 0;
if (!p) {
return 0;
}
mean[0]=mean[1]=mean[2]=0;
h=hashtable_new(unshifted_pixel_hash,unshifted_pixel_cmp);
for (i=0;i<nPixels;i++) {
@ -1474,7 +1562,9 @@ quantize2(Pixel *pixelData,
if (!map_image_pixels(pixelData,nPixels,p,nQuantPixels,avgDist,avgDistSortKey,qp)) {
goto error_4;
}
if (kmeans) k_means(pixelData,nPixels,p,nQuantPixels,qp,kmeans-1);
if (kmeans) {
k_means(pixelData,nPixels,p,nQuantPixels,qp,kmeans-1);
}
*paletteLength=nQuantPixels;
*palette=p;
@ -1509,28 +1599,33 @@ ImagingQuantize(Imaging im, int colors, int mode, int kmeans)
int withAlpha = 0;
ImagingSectionCookie cookie;
if (!im)
if (!im) {
return ImagingError_ModeError();
if (colors < 1 || colors > 256)
}
if (colors < 1 || colors > 256) {
/* FIXME: for colors > 256, consider returning an RGB image
instead (see @PIL205) */
return (Imaging) ImagingError_ValueError("bad number of colors");
}
if (strcmp(im->mode, "L") != 0 && strcmp(im->mode, "P") != 0 &&
strcmp(im->mode, "RGB") != 0 && strcmp(im->mode, "RGBA") !=0)
strcmp(im->mode, "RGB") != 0 && strcmp(im->mode, "RGBA") !=0) {
return ImagingError_ModeError();
}
/* only octree and imagequant supports RGBA */
if (!strcmp(im->mode, "RGBA") && mode != 2 && mode != 3)
if (!strcmp(im->mode, "RGBA") && mode != 2 && mode != 3) {
return ImagingError_ModeError();
}
if (im->xsize > INT_MAX / im->ysize) {
return ImagingError_MemoryError();
}
/* malloc check ok, using calloc for final overflow, x*y above */
p = calloc(im->xsize * im->ysize, sizeof(Pixel));
if (!p)
if (!p) {
return ImagingError_MemoryError();
}
/* collect statistics */
@ -1543,18 +1638,19 @@ ImagingQuantize(Imaging im, int colors, int mode, int kmeans)
/* FIXME: converting a "L" image to "P" with 256 colors
should be done by a simple copy... */
for (i = y = 0; y < im->ysize; y++)
for (i = y = 0; y < im->ysize; y++) {
for (x = 0; x < im->xsize; x++, i++) {
p[i].c.r = p[i].c.g = p[i].c.b = im->image8[y][x];
p[i].c.a = 255;
}
}
} else if (!strcmp(im->mode, "P")) {
/* palette */
pp = im->palette->palette;
for (i = y = 0; y < im->ysize; y++)
for (i = y = 0; y < im->ysize; y++) {
for (x = 0; x < im->xsize; x++, i++) {
v = im->image8[y][x];
p[i].c.r = pp[v*4+0];
@ -1562,13 +1658,16 @@ ImagingQuantize(Imaging im, int colors, int mode, int kmeans)
p[i].c.b = pp[v*4+2];
p[i].c.a = pp[v*4+3];
}
}
} else if (!strcmp(im->mode, "RGB") || !strcmp(im->mode, "RGBA")) {
/* true colour */
for (i = y = 0; y < im->ysize; y++)
for (x = 0; x < im->xsize; x++, i++)
for (i = y = 0; y < im->ysize; y++) {
for (x = 0; x < im->xsize; x++, i++) {
p[i].v = im->image32[y][x];
}
}
} else {
free(p);
@ -1647,9 +1746,11 @@ ImagingQuantize(Imaging im, int colors, int mode, int kmeans)
imOut = ImagingNewDirty("P", im->xsize, im->ysize);
ImagingSectionEnter(&cookie);
for (i = y = 0; y < im->ysize; y++)
for (x = 0; x < im->xsize; x++)
for (i = y = 0; y < im->ysize; y++) {
for (x = 0; x < im->xsize; x++) {
imOut->image8[y][x] = (unsigned char) newData[i++];
}
}
free(newData);

View File

@ -67,7 +67,9 @@ static uint32_t _findPrime(uint32_t start,int dir) {
continue;
}
for (t=2;t<sqrt((double)start);t++) {
if (!start%t) break;
if (!start%t) {
break;
}
}
if (t>=sqrt((double)start)) {
break;
@ -144,7 +146,9 @@ static int _hashtable_insert_node(HashTable *h,HashNode *node,int resize,int upd
node->next=*n;
*n=node;
h->count++;
if (resize) _hashtable_resize(h);
if (resize) {
_hashtable_resize(h);
}
return 1;
} else {
return 0;
@ -169,13 +173,17 @@ static int _hashtable_insert(HashTable *h,HashKey_t key,HashVal_t val,int resize
}
if (!update) {
t=malloc(sizeof(HashNode));
if (!t) return 0;
if (!t) {
return 0;
}
t->next=*n;
*n=t;
t->key=key;
t->value=val;
h->count++;
if (resize) _hashtable_resize(h);
if (resize) {
_hashtable_resize(h);
}
return 1;
} else {
return 0;
@ -206,7 +214,9 @@ int hashtable_insert_or_update_computed(HashTable *h,
}
}
t=malloc(sizeof(HashNode));
if (!t) return 0;
if (!t) {
return 0;
}
t->key=key;
t->next=*n;
*n=t;

View File

@ -46,15 +46,21 @@ void ImagingQuantHeapFree(Heap *h) {
static int _heap_grow(Heap *h,unsigned int newsize) {
void *newheap;
if (!newsize) newsize=h->heapsize<<1;
if (newsize<h->heapsize) return 0;
if (!newsize) {
newsize=h->heapsize<<1;
}
if (newsize<h->heapsize) {
return 0;
}
if (newsize > INT_MAX / sizeof(void *)){
return 0;
}
/* malloc check ok, using calloc for overflow, also checking
above due to memcpy below*/
newheap=calloc(newsize, sizeof(void *));
if (!newheap) return 0;
if (!newheap) {
return 0;
}
memcpy(newheap,h->heap,sizeof(void *)*h->heapsize);
free(h->heap);
h->heap=newheap;
@ -140,7 +146,9 @@ Heap *ImagingQuantHeapNew(HeapCmpFunc cf) {
/* malloc check ok, small constant allocation */
h=malloc(sizeof(Heap));
if (!h) return NULL;
if (!h) {
return NULL;
}
h->heapsize=INITIAL_SIZE;
/* malloc check ok, using calloc for overflow */
h->heap=calloc(h->heapsize, sizeof(void *));

View File

@ -56,7 +56,9 @@ new_color_cube(int r, int g, int b, int a) {
/* malloc check ok, small constant allocation */
cube = malloc(sizeof(struct _ColorCube));
if (!cube) return NULL;
if (!cube) {
return NULL;
}
cube->rBits = MAX(r, 0);
cube->gBits = MAX(g, 0);
@ -175,7 +177,9 @@ create_sorted_color_palette(const ColorCube cube) {
}
/* malloc check ok, calloc + overflow check above for memcpy */
buckets = calloc(cube->size, sizeof(struct _ColorBucket));
if (!buckets) return NULL;
if (!buckets) {
return NULL;
}
memcpy(buckets, cube->buckets, sizeof(struct _ColorBucket)*cube->size);
qsort(buckets, cube->size, sizeof(struct _ColorBucket),
@ -203,7 +207,9 @@ static ColorCube copy_color_cube(const ColorCube cube,
ColorCube result;
result = new_color_cube(rBits, gBits, bBits, aBits);
if (!result) return NULL;
if (!result) {
return NULL;
}
if (cube->rBits > rBits) {
dst_reduce[0] = cube->rBits - result->rBits;
@ -268,7 +274,9 @@ subtract_color_buckets(ColorCube cube, ColorBucket buckets, long nBuckets) {
subtrahend = &buckets[i];
// If the subtrahend contains no buckets, there is nothing to subtract.
if (subtrahend->count == 0) continue;
if (subtrahend->count == 0) {
continue;
}
avg_color_from_color_bucket(subtrahend, &p);
minuend = color_bucket_from_cube(cube, &p);
@ -325,7 +333,9 @@ create_palette_array(const ColorBucket palette, unsigned int paletteLength) {
/* malloc check ok, calloc for overflow */
paletteArray = calloc(paletteLength, sizeof(Pixel));
if (!paletteArray) return NULL;
if (!paletteArray) {
return NULL;
}
for (i=0; i<paletteLength; i++) {
avg_color_from_color_bucket(&palette[i], &paletteArray[i]);
@ -393,7 +403,9 @@ int quantize_octree(Pixel *pixelData,
/* create fine cube */
fineCube = new_color_cube(cubeBits[0], cubeBits[1],
cubeBits[2], cubeBits[3]);
if (!fineCube) goto error;
if (!fineCube) {
goto error;
}
for (i=0; i<nPixels; i++) {
add_color_to_color_cube(fineCube, &pixelData[i]);
}
@ -401,19 +413,24 @@ int quantize_octree(Pixel *pixelData,
/* create coarse cube */
coarseCube = copy_color_cube(fineCube, cubeBits[4], cubeBits[5],
cubeBits[6], cubeBits[7]);
if (!coarseCube) goto error;
if (!coarseCube) {
goto error;
}
nCoarseColors = count_used_color_buckets(coarseCube);
/* limit to nQuantPixels */
if (nCoarseColors > nQuantPixels)
if (nCoarseColors > nQuantPixels) {
nCoarseColors = nQuantPixels;
}
/* how many space do we have in our palette for fine colors? */
nFineColors = nQuantPixels - nCoarseColors;
/* create fine color palette */
paletteBucketsFine = create_sorted_color_palette(fineCube);
if (!paletteBucketsFine) goto error;
if (!paletteBucketsFine) {
goto error;
}
/* remove the used fine colors from the coarse cube */
subtract_color_buckets(coarseCube, paletteBucketsFine, nFineColors);
@ -430,7 +447,9 @@ int quantize_octree(Pixel *pixelData,
/* create our palette buckets with fine and coarse combined */
paletteBucketsCoarse = create_sorted_color_palette(coarseCube);
if (!paletteBucketsCoarse) goto error;
if (!paletteBucketsCoarse) {
goto error;
}
paletteBuckets = combined_palette(paletteBucketsCoarse, nCoarseColors,
paletteBucketsFine, nFineColors);
@ -438,19 +457,25 @@ int quantize_octree(Pixel *pixelData,
paletteBucketsFine = NULL;
free(paletteBucketsCoarse);
paletteBucketsCoarse = NULL;
if (!paletteBuckets) goto error;
if (!paletteBuckets) {
goto error;
}
/* add all coarse colors to our coarse lookup cube. */
coarseLookupCube = new_color_cube(cubeBits[4], cubeBits[5],
cubeBits[6], cubeBits[7]);
if (!coarseLookupCube) goto error;
if (!coarseLookupCube) {
goto error;
}
add_lookup_buckets(coarseLookupCube, paletteBuckets, nCoarseColors, 0);
/* expand coarse cube (64) to larger fine cube (4k). the value of each
coarse bucket is then present in the according 64 fine buckets. */
lookupCube = copy_color_cube(coarseLookupCube, cubeBits[0], cubeBits[1],
cubeBits[2], cubeBits[3]);
if (!lookupCube) goto error;
if (!lookupCube) {
goto error;
}
/* add fine colors to the lookup cube */
add_lookup_buckets(lookupCube, paletteBuckets, nFineColors, nCoarseColors);
@ -458,12 +483,16 @@ int quantize_octree(Pixel *pixelData,
/* create result pixels and map palette indices */
/* malloc check ok, calloc for overflow */
qp = calloc(nPixels, sizeof(Pixel));
if (!qp) goto error;
if (!qp) {
goto error;
}
map_image_pixels(pixelData, nPixels, lookupCube, qp);
/* convert palette buckets to RGB pixel palette */
*palette = create_palette_array(paletteBuckets, nQuantPixels);
if (!(*palette)) goto error;
if (!(*palette)) {
goto error;
}
*quantizedPixels = qp;
*paletteLength = nQuantPixels;

View File

@ -95,9 +95,15 @@ quantize_pngquant(
result = 1;
err:
if (attr) liq_attr_destroy(attr);
if (image) liq_image_destroy(image);
if (remap) liq_result_destroy(remap);
if (attr) {
liq_attr_destroy(attr);
}
if (image) {
liq_image_destroy(image);
}
if (remap) {
liq_result_destroy(remap);
}
free(charMatrix);
free(charMatrixRows);
if (!result) {

View File

@ -30,15 +30,23 @@ static type Rank##type(type a[], int n, int k)\
i = l;\
j = m;\
do {\
while (a[i] < x) i++;\
while (x < a[j]) j--;\
while (a[i] < x) {\
i++;\
}\
while (x < a[j]) {\
j--;\
}\
if (i <= j) {\
SWAP(type, a[i], a[j]);\
i++; j--;\
}\
} while (i <= j);\
if (j < k) l = i;\
if (k < i) m = j;\
if (j < k) {\
l = i;\
}\
if (k < i) {\
m = j;\
}\
}\
return a[k];\
}
@ -54,11 +62,13 @@ ImagingRankFilter(Imaging im, int size, int rank)
int x, y;
int i, margin, size2;
if (!im || im->bands != 1 || im->type == IMAGING_TYPE_SPECIAL)
if (!im || im->bands != 1 || im->type == IMAGING_TYPE_SPECIAL) {
return (Imaging) ImagingError_ModeError();
}
if (!(size & 1))
if (!(size & 1)) {
return (Imaging) ImagingError_ValueError("bad filter size");
}
/* malloc check ok, for overflow in the define below */
if (size > INT_MAX / size ||
@ -69,35 +79,40 @@ ImagingRankFilter(Imaging im, int size, int rank)
size2 = size * size;
margin = (size-1) / 2;
if (rank < 0 || rank >= size2)
if (rank < 0 || rank >= size2) {
return (Imaging) ImagingError_ValueError("bad rank value");
}
imOut = ImagingNew(im->mode, im->xsize - 2*margin, im->ysize - 2*margin);
if (!imOut)
if (!imOut) {
return NULL;
}
/* malloc check ok, checked above */
#define RANK_BODY(type) do {\
type* buf = malloc(size2 * sizeof(type));\
if (!buf)\
if (!buf) {\
goto nomemory;\
for (y = 0; y < imOut->ysize; y++)\
}\
for (y = 0; y < imOut->ysize; y++) {\
for (x = 0; x < imOut->xsize; x++) {\
for (i = 0; i < size; i++)\
for (i = 0; i < size; i++) {\
memcpy(buf + i*size, &IMAGING_PIXEL_##type(im, x, y+i),\
size * sizeof(type));\
}\
IMAGING_PIXEL_##type(imOut, x, y) = Rank##type(buf, size2, rank);\
}\
}\
free(buf); \
} while (0)
if (im->image8)
if (im->image8) {
RANK_BODY(UINT8);
else if (im->type == IMAGING_TYPE_INT32)
} else if (im->type == IMAGING_TYPE_INT32) {
RANK_BODY(INT32);
else if (im->type == IMAGING_TYPE_FLOAT32)
} else if (im->type == IMAGING_TYPE_FLOAT32) {
RANK_BODY(FLOAT32);
else {
} else {
/* safety net (we shouldn't end up here) */
ImagingDelete(imOut);
return (Imaging) ImagingError_ModeError();

View File

@ -47,8 +47,9 @@ ImagingRawDecode(Imaging im, ImagingCodecState state, UINT8* buf, Py_ssize_t byt
if (state->ystep < 0) {
state->y = state->ysize-1;
state->ystep = -1;
} else
} else {
state->ystep = 1;
}
state->state = LINE;
@ -62,8 +63,9 @@ ImagingRawDecode(Imaging im, ImagingCodecState state, UINT8* buf, Py_ssize_t byt
/* Skip padding between lines */
if (bytes < rawstate->skip)
if (bytes < rawstate->skip) {
return ptr - buf;
}
ptr += rawstate->skip;
bytes -= rawstate->skip;
@ -72,8 +74,9 @@ ImagingRawDecode(Imaging im, ImagingCodecState state, UINT8* buf, Py_ssize_t byt
}
if (bytes < state->bytes)
if (bytes < state->bytes) {
return ptr - buf;
}
/* Unpack data */
state->shuffle((UINT8*) im->image[state->y + state->yoff] +

View File

@ -41,16 +41,18 @@ ImagingRawEncode(Imaging im, ImagingCodecState state, UINT8* buf, int bytes)
}
state->count = state->bytes;
state->bytes = bytes;
} else
} else {
state->count = state->bytes;
}
/* The "ystep" field specifies the orientation */
if (state->ystep < 0) {
state->y = state->ysize-1;
state->ystep = -1;
} else
} else {
state->ystep = 1;
}
state->state = 1;
@ -68,9 +70,10 @@ ImagingRawEncode(Imaging im, ImagingCodecState state, UINT8* buf, int bytes)
state->shuffle(ptr, (UINT8*) im->image[state->y + state->yoff] +
state->xoff * im->pixelsize, state->xsize);
if (state->bytes > state->count)
if (state->bytes > state->count) {
/* zero-pad the buffer, if necessary */
memset(ptr + state->count, 0, state->bytes - state->count);
}
ptr += state->bytes;
bytes -= state->bytes;

View File

@ -1374,11 +1374,13 @@ ImagingReduce(Imaging imIn, int xscale, int yscale, int box[4])
ImagingSectionCookie cookie;
Imaging imOut = NULL;
if (strcmp(imIn->mode, "P") == 0 || strcmp(imIn->mode, "1") == 0)
if (strcmp(imIn->mode, "P") == 0 || strcmp(imIn->mode, "1") == 0) {
return (Imaging) ImagingError_ModeError();
}
if (imIn->type == IMAGING_TYPE_SPECIAL)
if (imIn->type == IMAGING_TYPE_SPECIAL) {
return (Imaging) ImagingError_ModeError();
}
imOut = ImagingNewDirty(imIn->mode,
(box[2] + xscale - 1) / xscale,

View File

@ -13,28 +13,34 @@ struct filter {
static inline double box_filter(double x)
{
if (x > -0.5 && x <= 0.5)
if (x > -0.5 && x <= 0.5) {
return 1.0;
}
return 0.0;
}
static inline double bilinear_filter(double x)
{
if (x < 0.0)
if (x < 0.0) {
x = -x;
if (x < 1.0)
}
if (x < 1.0) {
return 1.0-x;
}
return 0.0;
}
static inline double hamming_filter(double x)
{
if (x < 0.0)
if (x < 0.0) {
x = -x;
if (x == 0.0)
}
if (x == 0.0) {
return 1.0;
if (x >= 1.0)
}
if (x >= 1.0) {
return 0.0;
}
x = x * M_PI;
return sin(x) / x * (0.54f + 0.46f * cos(x));
}
@ -43,20 +49,24 @@ static inline double bicubic_filter(double x)
{
/* https://en.wikipedia.org/wiki/Bicubic_interpolation#Bicubic_convolution_algorithm */
#define a -0.5
if (x < 0.0)
if (x < 0.0) {
x = -x;
if (x < 1.0)
}
if (x < 1.0) {
return ((a + 2.0) * x - (a + 3.0)) * x*x + 1;
if (x < 2.0)
}
if (x < 2.0) {
return (((x - 5) * x + 8) * x - 4) * a;
}
return 0.0;
#undef a
}
static inline double sinc_filter(double x)
{
if (x == 0.0)
if (x == 0.0) {
return 1.0;
}
x = x * M_PI;
return sin(x) / x;
}
@ -64,8 +74,9 @@ static inline double sinc_filter(double x)
static inline double lanczos_filter(double x)
{
/* truncated sinc */
if (-3.0 <= x && x < 3.0)
if (-3.0 <= x && x < 3.0) {
return sinc_filter(x) * sinc_filter(x/3);
}
return 0.0;
}
@ -224,12 +235,14 @@ precompute_coeffs(int inSize, float in0, float in1, int outSize,
ss = 1.0 / filterscale;
// Round the value
xmin = (int) (center - support + 0.5);
if (xmin < 0)
if (xmin < 0) {
xmin = 0;
}
// Round the value
xmax = (int) (center + support + 0.5);
if (xmax > inSize)
if (xmax > inSize) {
xmax = inSize;
}
xmax -= xmin;
k = &kk[xx * ksize];
for (x = 0; x < xmax; x++) {
@ -238,9 +251,10 @@ precompute_coeffs(int inSize, float in0, float in1, int outSize,
ww += w;
}
for (x = 0; x < xmax; x++) {
if (ww != 0.0)
if (ww != 0.0) {
k[x] /= ww;
}
}
// Remaining values should stay empty if they are used despite of xmax.
for (; x < ksize; x++) {
k[x] = 0;
@ -295,8 +309,9 @@ ImagingResampleHorizontal_8bpc(Imaging imOut, Imaging imIn, int offset,
xmax = bounds[xx * 2 + 1];
k = &kk[xx * ksize];
ss0 = 1 << (PRECISION_BITS -1);
for (x = 0; x < xmax; x++)
for (x = 0; x < xmax; x++) {
ss0 += ((UINT8) imIn->image8[yy + offset][x + xmin]) * k[x];
}
imOut->image8[yy][xx] = clip8(ss0);
}
}
@ -379,8 +394,9 @@ ImagingResampleVertical_8bpc(Imaging imOut, Imaging imIn, int offset,
ymax = bounds[yy * 2 + 1];
for (xx = 0; xx < imOut->xsize; xx++) {
ss0 = 1 << (PRECISION_BITS -1);
for (y = 0; y < ymax; y++)
for (y = 0; y < ymax; y++) {
ss0 += ((UINT8) imIn->image8[y + ymin][xx]) * k[y];
}
imOut->image8[yy][xx] = clip8(ss0);
}
}
@ -460,8 +476,9 @@ ImagingResampleHorizontal_32bpc(Imaging imOut, Imaging imIn, int offset,
xmax = bounds[xx * 2 + 1];
k = &kk[xx * ksize];
ss = 0.0;
for (x = 0; x < xmax; x++)
for (x = 0; x < xmax; x++) {
ss += IMAGING_PIXEL_I(imIn, x + xmin, yy + offset) * k[x];
}
IMAGING_PIXEL_I(imOut, xx, yy) = ROUND_UP(ss);
}
}
@ -474,8 +491,9 @@ ImagingResampleHorizontal_32bpc(Imaging imOut, Imaging imIn, int offset,
xmax = bounds[xx * 2 + 1];
k = &kk[xx * ksize];
ss = 0.0;
for (x = 0; x < xmax; x++)
for (x = 0; x < xmax; x++) {
ss += IMAGING_PIXEL_F(imIn, x + xmin, yy + offset) * k[x];
}
IMAGING_PIXEL_F(imOut, xx, yy) = ss;
}
}
@ -503,8 +521,9 @@ ImagingResampleVertical_32bpc(Imaging imOut, Imaging imIn, int offset,
k = &kk[yy * ksize];
for (xx = 0; xx < imOut->xsize; xx++) {
ss = 0.0;
for (y = 0; y < ymax; y++)
for (y = 0; y < ymax; y++) {
ss += IMAGING_PIXEL_I(imIn, xx, y + ymin) * k[y];
}
IMAGING_PIXEL_I(imOut, xx, yy) = ROUND_UP(ss);
}
}
@ -517,8 +536,9 @@ ImagingResampleVertical_32bpc(Imaging imOut, Imaging imIn, int offset,
k = &kk[yy * ksize];
for (xx = 0; xx < imOut->xsize; xx++) {
ss = 0.0;
for (y = 0; y < ymax; y++)
for (y = 0; y < ymax; y++) {
ss += IMAGING_PIXEL_F(imIn, xx, y + ymin) * k[y];
}
IMAGING_PIXEL_F(imOut, xx, yy) = ss;
}
}
@ -546,8 +566,9 @@ ImagingResample(Imaging imIn, int xsize, int ysize, int filter, float box[4])
ResampleFunction ResampleHorizontal;
ResampleFunction ResampleVertical;
if (strcmp(imIn->mode, "P") == 0 || strcmp(imIn->mode, "1") == 0)
if (strcmp(imIn->mode, "P") == 0 || strcmp(imIn->mode, "1") == 0) {
return (Imaging) ImagingError_ModeError();
}
if (imIn->type == IMAGING_TYPE_SPECIAL) {
return (Imaging) ImagingError_ModeError();

View File

@ -33,11 +33,13 @@ static int expandrow(UINT8* dest, UINT8* src, int n, int z, int xsize)
for (;n > 0; n--)
{
pixel = *src++;
if (n == 1 && pixel != 0)
if (n == 1 && pixel != 0) {
return n;
}
count = pixel & RLE_MAX_RUN;
if (!count)
if (!count) {
return count;
}
if (x + count > xsize) {
return -1;
}
@ -71,11 +73,13 @@ static int expandrow2(UINT8* dest, const UINT8* src, int n, int z, int xsize)
{
pixel = src[1];
src+=2;
if (n == 1 && pixel != 0)
if (n == 1 && pixel != 0) {
return n;
}
count = pixel & RLE_MAX_RUN;
if (!count)
if (!count) {
return count;
}
if (x + count > xsize) {
return -1;
}
@ -151,11 +155,13 @@ ImagingSgiRleDecode(Imaging im, ImagingCodecState state,
goto sgi_finish_decode;
}
/* populate offsets table */
for (c->tabindex = 0, c->bufindex = 0; c->tabindex < c->tablen; c->tabindex++, c->bufindex+=4)
for (c->tabindex = 0, c->bufindex = 0; c->tabindex < c->tablen; c->tabindex++, c->bufindex+=4) {
read4B(&c->starttab[c->tabindex], &ptr[c->bufindex]);
}
/* populate lengths table */
for (c->tabindex = 0, c->bufindex = c->tablen * sizeof(UINT32); c->tabindex < c->tablen; c->tabindex++, c->bufindex+=4)
for (c->tabindex = 0, c->bufindex = c->tablen * sizeof(UINT32); c->tabindex < c->tablen; c->tabindex++, c->bufindex+=4) {
read4B(&c->lengthtab[c->tabindex], &ptr[c->bufindex]);
}
state->count += c->tablen * sizeof(UINT32) * 2;

View File

@ -244,17 +244,21 @@ ImagingNewPrologue(const char *mode, int xsize, int ysize)
void
ImagingDelete(Imaging im)
{
if (!im)
if (!im) {
return;
}
if (im->palette)
if (im->palette) {
ImagingPaletteDelete(im->palette);
}
if (im->destroy)
if (im->destroy) {
im->destroy(im);
}
if (im->image)
if (im->image) {
free(im->image);
}
free(im);
}
@ -399,8 +403,9 @@ ImagingAllocateArray(Imaging im, int dirty, int block_size)
aligned_linesize = (im->linesize + arena->alignment - 1) & -arena->alignment;
lines_per_block = (block_size - (arena->alignment - 1)) / aligned_linesize;
if (lines_per_block == 0)
if (lines_per_block == 0) {
lines_per_block = 1;
}
blocks_count = (im->ysize + lines_per_block - 1) / lines_per_block;
// printf("NEW size: %dx%d, ls: %d, lpb: %d, blocks: %d\n",
// im->xsize, im->ysize, aligned_linesize, lines_per_block, blocks_count);
@ -457,9 +462,10 @@ ImagingAllocateArray(Imaging im, int dirty, int block_size)
static void
ImagingDestroyBlock(Imaging im)
{
if (im->block)
if (im->block) {
free(im->block);
}
}
Imaging
ImagingAllocateBlock(Imaging im)
@ -510,8 +516,9 @@ ImagingNewInternal(const char* mode, int xsize, int ysize, int dirty)
}
im = ImagingNewPrologue(mode, xsize, ysize);
if ( ! im)
if ( ! im) {
return NULL;
}
if (ImagingAllocateArray(im, dirty, ImagingDefaultArena.block_size)) {
return im;
@ -550,8 +557,9 @@ ImagingNewBlock(const char* mode, int xsize, int ysize)
}
im = ImagingNewPrologue(mode, xsize, ysize);
if ( ! im)
if ( ! im) {
return NULL;
}
if (ImagingAllocateBlock(im)) {
return im;
@ -576,9 +584,10 @@ ImagingNew2Dirty(const char* mode, Imaging imOut, Imaging imIn)
} else {
/* create new image */
imOut = ImagingNewDirty(mode, imIn->xsize, imIn->ysize);
if (!imOut)
if (!imOut) {
return NULL;
}
}
return imOut;
}
@ -587,8 +596,9 @@ void
ImagingCopyPalette(Imaging destination, Imaging source)
{
if (source->palette) {
if (destination->palette)
if (destination->palette) {
ImagingPaletteDelete(destination->palette);
}
destination->palette = ImagingPaletteDuplicate(source->palette);
}
}

View File

@ -31,13 +31,15 @@ ImagingSunRleDecode(Imaging im, ImagingCodecState state, UINT8* buf, Py_ssize_t
for (;;) {
if (bytes < 1)
if (bytes < 1) {
return ptr - buf;
}
if (ptr[0] == 0x80) {
if (bytes < 2)
if (bytes < 2) {
break;
}
n = ptr[1];
@ -55,8 +57,9 @@ ImagingSunRleDecode(Imaging im, ImagingCodecState state, UINT8* buf, Py_ssize_t
} else {
/* Run (3 bytes) */
if (bytes < 3)
if (bytes < 3) {
break;
}
/* from (https://www.fileformat.info/format/sunraster/egff.htm)

View File

@ -33,8 +33,9 @@ ImagingTgaRleDecode(Imaging im, ImagingCodecState state,
if (state->ystep < 0) {
state->y = state->ysize-1;
state->ystep = -1;
} else
} else {
state->ystep = 1;
}
state->state = 1;
@ -44,15 +45,17 @@ ImagingTgaRleDecode(Imaging im, ImagingCodecState state,
for (;;) {
if (bytes < 1)
if (bytes < 1) {
return ptr - buf;
}
if (ptr[0] & 0x80) {
/* Run (1 + pixelsize bytes) */
if (bytes < 1 + depth)
if (bytes < 1 + depth) {
break;
}
n = depth * ((ptr[0] & 0x7f) + 1);
@ -61,13 +64,14 @@ ImagingTgaRleDecode(Imaging im, ImagingCodecState state,
return -1;
}
if (depth == 1)
if (depth == 1) {
memset(state->buffer + state->x, ptr[1], n);
else {
} else {
int i;
for (i = 0; i < n; i += depth)
for (i = 0; i < n; i += depth) {
memcpy(state->buffer + state->x + i, ptr+1, depth);
}
}
ptr += 1 + depth;
bytes -= 1 + depth;
@ -77,8 +81,9 @@ ImagingTgaRleDecode(Imaging im, ImagingCodecState state,
/* Literal (1+n+1 bytes block) */
n = depth * (ptr[0] + 1);
if (bytes < 1 + n)
if (bytes < 1 + n) {
break;
}
if (state->x + n > state->bytes) {
state->errcode = IMAGING_CODEC_OVERRUN;

View File

@ -22,8 +22,9 @@ ImagingTgaRleEncode(Imaging im, ImagingCodecState state, UINT8* buf, int bytes)
if (state->ystep < 0) {
state->ystep = -1;
state->y = state->ysize - 1;
} else
} else {
state->ystep = 1;
}
state->state = 1;
}
@ -46,8 +47,9 @@ ImagingTgaRleEncode(Imaging im, ImagingCodecState state, UINT8* buf, int bytes)
assert(state->x <= state->xsize);
/* Make sure we have space for the descriptor. */
if (bytes < 1)
if (bytes < 1) {
break;
}
if (state->x == state->xsize) {
state->x = 0;
@ -59,12 +61,13 @@ ImagingTgaRleEncode(Imaging im, ImagingCodecState state, UINT8* buf, int bytes)
}
}
if (state->x == 0)
if (state->x == 0) {
state->shuffle(
state->buffer,
(UINT8*)im->image[state->y + state->yoff]
+ state->xoff * im->pixelsize,
state->xsize);
}
row = state->buffer;
@ -87,30 +90,34 @@ ImagingTgaRleEncode(Imaging im, ImagingCodecState state, UINT8* buf, int bytes)
*/
maxLookup = state->x + 126;
/* A packet must not span multiple rows. */
if (maxLookup > state->xsize - 1)
if (maxLookup > state->xsize - 1) {
maxLookup = state->xsize - 1;
}
if (isRaw) {
while (state->x < maxLookup)
if (!comparePixels(row, state->x, bytesPerPixel))
while (state->x < maxLookup) {
if (!comparePixels(row, state->x, bytesPerPixel)) {
++state->x;
else {
} else {
/* Two identical pixels will go to RLE packet. */
--state->x;
break;
}
}
state->count += (state->x - startX) * bytesPerPixel;
} else {
descriptor |= 0x80;
while (state->x < maxLookup)
if (comparePixels(row, state->x, bytesPerPixel))
while (state->x < maxLookup) {
if (comparePixels(row, state->x, bytesPerPixel)) {
++state->x;
else
} else {
break;
}
}
}
}
/*
* state->x currently points to the last pixel to be
@ -132,12 +139,14 @@ ImagingTgaRleEncode(Imaging im, ImagingCodecState state, UINT8* buf, int bytes)
assert(state->x > 0);
assert(state->count <= state->x * bytesPerPixel);
if (bytes == 0)
if (bytes == 0) {
break;
}
flushCount = state->count;
if (flushCount > bytes)
if (flushCount > bytes) {
flushCount = bytes;
}
memcpy(
dst,

View File

@ -350,9 +350,10 @@ unpackLI(UINT8* out, const UINT8* in, int pixels)
{
/* negative */
int i;
for (i = 0; i < pixels; i++)
for (i = 0; i < pixels; i++) {
out[i] = ~in[i];
}
}
static void
unpackLR(UINT8* out, const UINT8* in, int pixels)
@ -1115,8 +1116,9 @@ static void NAME(UINT8* out_, const UINT8* in, int pixels)\
{\
int i;\
OUTTYPE* out = (OUTTYPE*) out_;\
for (i = 0; i < pixels; i++, in += sizeof(INTYPE))\
for (i = 0; i < pixels; i++, in += sizeof(INTYPE)) {\
out[i] = (OUTTYPE) ((INTYPE) GET);\
}\
}
#define UNPACK(NAME, COPY, INTYPE, OUTTYPE)\
@ -1521,13 +1523,15 @@ ImagingFindUnpacker(const char* mode, const char* rawmode, int* bits_out)
int i;
/* find a suitable pixel unpacker */
for (i = 0; unpackers[i].rawmode; i++)
for (i = 0; unpackers[i].rawmode; i++) {
if (strcmp(unpackers[i].mode, mode) == 0 &&
strcmp(unpackers[i].rawmode, rawmode) == 0) {
if (bits_out)
if (bits_out) {
*bits_out = unpackers[i].bits;
}
return unpackers[i].unpack;
}
}
/* FIXME: configure a general unpacker based on the type codes... */

View File

@ -14,10 +14,12 @@ typedef UINT8 pixel[4];
static inline UINT8 clip8(int in)
{
if (in >= 255)
if (in >= 255) {
return 255;
if (in <= 0)
}
if (in <= 0) {
return 0;
}
return (UINT8) in;
}
@ -39,8 +41,9 @@ ImagingUnsharpMask(Imaging imOut, Imaging imIn, float radius, int percent,
/* First, do a gaussian blur on the image, putting results in imOut
temporarily. All format checks are in gaussian blur. */
result = ImagingGaussianBlur(imOut, imIn, radius, 3);
if (!result)
if (!result) {
return NULL;
}
/* Now, go through each pixel, compare "normal" pixel to blurred
pixel. If the difference is more than threshold values, apply

View File

@ -27,8 +27,9 @@ ImagingXbmDecode(Imaging im, ImagingCodecState state, UINT8* buf, Py_ssize_t byt
UINT8* ptr;
if (!state->state)
if (!state->state) {
state->state = SKIP;
}
ptr = buf;
@ -39,21 +40,24 @@ ImagingXbmDecode(Imaging im, ImagingCodecState state, UINT8* buf, Py_ssize_t byt
/* Skip forward until next 'x' */
while (bytes > 0) {
if (*ptr == 'x')
if (*ptr == 'x') {
break;
}
ptr++;
bytes--;
}
if (bytes == 0)
if (bytes == 0) {
return ptr - buf;
}
state->state = BYTE;
}
if (bytes < 3)
if (bytes < 3) {
return ptr - buf;
}
state->buffer[state->x] = (HEX(ptr[1])<<4) + HEX(ptr[2]);

View File

@ -90,8 +90,9 @@ ImagingXbmEncode(Imaging im, ImagingCodecState state, UINT8* buf, int bytes)
bytes--;
state->count = 0;
}
} else
} else {
*ptr++ = '\n';
}
bytes -= 5;

View File

@ -53,8 +53,9 @@ ImagingZipDecode(Imaging im, ImagingCodecState state, UINT8* buf, Py_ssize_t byt
if (!state->state) {
/* Initialization */
if (context->mode == ZIP_PNG || context->mode == ZIP_PNG_PALETTE)
if (context->mode == ZIP_PNG || context->mode == ZIP_PNG_PALETTE) {
context->prefix = 1; /* PNG */
}
/* overflow check for malloc */
if (state->bytes > INT_MAX - 1) {
@ -121,12 +122,13 @@ ImagingZipDecode(Imaging im, ImagingCodecState state, UINT8* buf, Py_ssize_t byt
if (err < 0) {
/* Something went wrong inside the compression library */
if (err == Z_DATA_ERROR)
if (err == Z_DATA_ERROR) {
state->errcode = IMAGING_CODEC_BROKEN;
else if (err == Z_MEM_ERROR)
} else if (err == Z_MEM_ERROR) {
state->errcode = IMAGING_CODEC_MEMORY;
else
} else {
state->errcode = IMAGING_CODEC_CONFIG;
}
free(context->previous);
context->previous = NULL;
inflateEnd(&context->z_stream);
@ -149,28 +151,33 @@ ImagingZipDecode(Imaging im, ImagingCodecState state, UINT8* buf, Py_ssize_t byt
case 1:
/* prior */
bpp = (state->bits + 7) / 8;
for (i = bpp+1; i <= row_len; i++)
for (i = bpp+1; i <= row_len; i++) {
state->buffer[i] += state->buffer[i-bpp];
}
break;
case 2:
/* up */
for (i = 1; i <= row_len; i++)
for (i = 1; i <= row_len; i++) {
state->buffer[i] += context->previous[i];
}
break;
case 3:
/* average */
bpp = (state->bits + 7) / 8;
for (i = 1; i <= bpp; i++)
for (i = 1; i <= bpp; i++) {
state->buffer[i] += context->previous[i]/2;
for (; i <= row_len; i++)
}
for (; i <= row_len; i++) {
state->buffer[i] +=
(state->buffer[i-bpp] + context->previous[i])/2;
}
break;
case 4:
/* paeth filtering */
bpp = (state->bits + 7) / 8;
for (i = 1; i <= bpp; i++)
for (i = 1; i <= bpp; i++) {
state->buffer[i] += context->previous[i];
}
for (; i <= row_len; i++) {
int a, b, c;
int pa, pb, pc;
@ -201,8 +208,9 @@ ImagingZipDecode(Imaging im, ImagingCodecState state, UINT8* buf, Py_ssize_t byt
break;
case ZIP_TIFF_PREDICTOR:
bpp = (state->bits + 7) / 8;
for (i = bpp+1; i <= row_len; i++)
for (i = bpp+1; i <= row_len; i++) {
state->buffer[i] += state->buffer[i-bpp];
}
break;
}

View File

@ -128,12 +128,13 @@ ImagingZipEncode(Imaging im, ImagingCodecState state, UINT8* buf, int bytes)
if (err < 0) {
/* Something went wrong inside the compression library */
if (err == Z_DATA_ERROR)
if (err == Z_DATA_ERROR) {
state->errcode = IMAGING_CODEC_BROKEN;
else if (err == Z_MEM_ERROR)
} else if (err == Z_MEM_ERROR) {
state->errcode = IMAGING_CODEC_MEMORY;
else
} else {
state->errcode = IMAGING_CODEC_CONFIG;
}
free(context->paeth);
free(context->average);
free(context->up);
@ -282,12 +283,13 @@ ImagingZipEncode(Imaging im, ImagingCodecState state, UINT8* buf, int bytes)
if (err < 0) {
/* Something went wrong inside the compression library */
if (err == Z_DATA_ERROR)
if (err == Z_DATA_ERROR) {
state->errcode = IMAGING_CODEC_BROKEN;
else if (err == Z_MEM_ERROR)
} else if (err == Z_MEM_ERROR) {
state->errcode = IMAGING_CODEC_MEMORY;
else
} else {
state->errcode = IMAGING_CODEC_CONFIG;
}
free(context->paeth);
free(context->average);
free(context->up);
@ -305,8 +307,9 @@ ImagingZipEncode(Imaging im, ImagingCodecState state, UINT8* buf, int bytes)
}
if (context->z_stream.avail_out == 0)
if (context->z_stream.avail_out == 0) {
break; /* Buffer full */
}
case 2:
@ -331,8 +334,9 @@ ImagingZipEncode(Imaging im, ImagingCodecState state, UINT8* buf, int bytes)
break;
}
if (context->z_stream.avail_out == 0)
if (context->z_stream.avail_out == 0) {
break; /* Buffer full */
}
}

View File

@ -47,12 +47,14 @@ PyImaging_MapperNew(const char* filename, int readonly)
{
ImagingMapperObject *mapper;
if (PyType_Ready(&ImagingMapperType) < 0)
if (PyType_Ready(&ImagingMapperType) < 0) {
return NULL;
}
mapper = PyObject_New(ImagingMapperObject, &ImagingMapperType);
if (mapper == NULL)
if (mapper == NULL) {
return NULL;
}
mapper->base = NULL;
mapper->size = mapper->offset = 0;
@ -101,12 +103,15 @@ static void
mapping_dealloc(ImagingMapperObject* mapper)
{
#ifdef _WIN32
if (mapper->base != 0)
if (mapper->base != 0) {
UnmapViewOfFile(mapper->base);
if (mapper->hMap != (HANDLE)-1)
}
if (mapper->hMap != (HANDLE)-1) {
CloseHandle(mapper->hMap);
if (mapper->hFile != (HANDLE)-1)
}
if (mapper->hFile != (HANDLE)-1) {
CloseHandle(mapper->hFile);
}
mapper->base = 0;
mapper->hMap = mapper->hFile = (HANDLE)-1;
#endif
@ -122,18 +127,22 @@ mapping_read(ImagingMapperObject* mapper, PyObject* args)
PyObject* buf;
int size = -1;
if (!PyArg_ParseTuple(args, "|i", &size))
if (!PyArg_ParseTuple(args, "|i", &size)) {
return NULL;
}
/* check size */
if (size < 0 || mapper->offset + size > mapper->size)
if (size < 0 || mapper->offset + size > mapper->size) {
size = mapper->size - mapper->offset;
if (size < 0)
}
if (size < 0) {
size = 0;
}
buf = PyBytes_FromStringAndSize(NULL, size);
if (!buf)
if (!buf) {
return NULL;
}
if (size > 0) {
memcpy(PyBytes_AsString(buf), mapper->base + mapper->offset, size);
@ -148,8 +157,9 @@ mapping_seek(ImagingMapperObject* mapper, PyObject* args)
{
int offset;
int whence = 0;
if (!PyArg_ParseTuple(args, "i|i", &offset, &whence))
if (!PyArg_ParseTuple(args, "i|i", &offset, &whence)) {
return NULL;
}
switch (whence) {
case 0: /* SEEK_SET */
@ -193,18 +203,20 @@ mapping_readimage(ImagingMapperObject* mapper, PyObject* args)
int stride;
int orientation;
if (!PyArg_ParseTuple(args, "s(ii)ii", &mode, &xsize, &ysize,
&stride, &orientation))
&stride, &orientation)) {
return NULL;
}
if (stride <= 0) {
/* FIXME: maybe we should call ImagingNewPrologue instead */
if (!strcmp(mode, "L") || !strcmp(mode, "P"))
if (!strcmp(mode, "L") || !strcmp(mode, "P")) {
stride = xsize;
else if (!strcmp(mode, "I;16") || !strcmp(mode, "I;16B"))
} else if (!strcmp(mode, "I;16") || !strcmp(mode, "I;16B")) {
stride = xsize * 2;
else
} else {
stride = xsize * 4;
}
}
size = ysize * stride;
@ -214,16 +226,20 @@ mapping_readimage(ImagingMapperObject* mapper, PyObject* args)
}
im = ImagingNewPrologue(mode, xsize, ysize);
if (!im)
if (!im) {
return NULL;
}
/* setup file pointers */
if (orientation > 0)
for (y = 0; y < ysize; y++)
if (orientation > 0) {
for (y = 0; y < ysize; y++) {
im->image[y] = mapper->base + mapper->offset + y * stride;
else
for (y = 0; y < ysize; y++)
}
} else {
for (y = 0; y < ysize; y++) {
im->image[ysize-y-1] = mapper->base + mapper->offset + y * stride;
}
}
im->destroy = ImagingDestroyMap;
@ -279,8 +295,9 @@ PyObject*
PyImaging_Mapper(PyObject* self, PyObject* args)
{
char* filename;
if (!PyArg_ParseTuple(args, "s", &filename))
if (!PyArg_ParseTuple(args, "s", &filename)) {
return NULL;
}
return (PyObject*) PyImaging_MapperNew(filename, 1);
}
@ -319,8 +336,9 @@ PyImaging_MapBuffer(PyObject* self, PyObject* args)
int ystep;
if (!PyArg_ParseTuple(args, "O(ii)sn(sii)", &target, &xsize, &ysize,
&codec, &offset, &mode, &stride, &ystep))
&codec, &offset, &mode, &stride, &ystep)) {
return NULL;
}
if (!PyImaging_CheckBuffer(target)) {
PyErr_SetString(PyExc_TypeError, "expected string or buffer");
@ -328,13 +346,14 @@ PyImaging_MapBuffer(PyObject* self, PyObject* args)
}
if (stride <= 0) {
if (!strcmp(mode, "L") || !strcmp(mode, "P"))
if (!strcmp(mode, "L") || !strcmp(mode, "P")) {
stride = xsize;
else if (!strncmp(mode, "I;16", 4))
} else if (!strncmp(mode, "I;16", 4)) {
stride = xsize * 2;
else
} else {
stride = xsize * 4;
}
}
if (stride > 0 && ysize > PY_SSIZE_T_MAX / stride) {
PyErr_SetString(PyExc_MemoryError, "Integer overflow in ysize");
@ -349,8 +368,9 @@ PyImaging_MapBuffer(PyObject* self, PyObject* args)
}
/* check buffer size */
if (PyImaging_GetBuffer(target, &view) < 0)
if (PyImaging_GetBuffer(target, &view) < 0) {
return NULL;
}
if (view.len < 0) {
PyErr_SetString(PyExc_ValueError, "buffer has negative size");
@ -371,12 +391,15 @@ PyImaging_MapBuffer(PyObject* self, PyObject* args)
}
/* setup file pointers */
if (ystep > 0)
for (y = 0; y < ysize; y++)
if (ystep > 0) {
for (y = 0; y < ysize; y++) {
im->image[y] = (char*)view.buf + offset + y * stride;
else
for (y = 0; y < ysize; y++)
}
} else {
for (y = 0; y < ysize; y++) {
im->image[ysize-y-1] = (char*)view.buf + offset + y * stride;
}
}
im->destroy = mapping_destroy_buffer;

View File

@ -39,12 +39,14 @@ _outline_new(void)
{
OutlineObject *self;
if (PyType_Ready(&OutlineType) < 0)
if (PyType_Ready(&OutlineType) < 0) {
return NULL;
}
self = PyObject_New(OutlineObject, &OutlineType);
if (self == NULL)
if (self == NULL) {
return NULL;
}
self->outline = ImagingOutlineNew();
@ -61,8 +63,9 @@ _outline_dealloc(OutlineObject* self)
ImagingOutline
PyOutline_AsOutline(PyObject* outline)
{
if (PyOutline_Check(outline))
if (PyOutline_Check(outline)) {
return ((OutlineObject*) outline)->outline;
}
return NULL;
}
@ -74,8 +77,9 @@ PyOutline_AsOutline(PyObject* outline)
PyObject*
PyOutline_Create(PyObject* self, PyObject* args)
{
if (!PyArg_ParseTuple(args, ":outline"))
if (!PyArg_ParseTuple(args, ":outline")) {
return NULL;
}
return (PyObject*) _outline_new();
}
@ -88,8 +92,9 @@ static PyObject*
_outline_move(OutlineObject* self, PyObject* args)
{
float x0, y0;
if (!PyArg_ParseTuple(args, "ff", &x0, &y0))
if (!PyArg_ParseTuple(args, "ff", &x0, &y0)) {
return NULL;
}
ImagingOutlineMove(self->outline, x0, y0);
@ -101,8 +106,9 @@ static PyObject*
_outline_line(OutlineObject* self, PyObject* args)
{
float x1, y1;
if (!PyArg_ParseTuple(args, "ff", &x1, &y1))
if (!PyArg_ParseTuple(args, "ff", &x1, &y1)) {
return NULL;
}
ImagingOutlineLine(self->outline, x1, y1);
@ -114,8 +120,9 @@ static PyObject*
_outline_curve(OutlineObject* self, PyObject* args)
{
float x1, y1, x2, y2, x3, y3;
if (!PyArg_ParseTuple(args, "ffffff", &x1, &y1, &x2, &y2, &x3, &y3))
if (!PyArg_ParseTuple(args, "ffffff", &x1, &y1, &x2, &y2, &x3, &y3)) {
return NULL;
}
ImagingOutlineCurve(self->outline, x1, y1, x2, y2, x3, y3);
@ -126,8 +133,9 @@ _outline_curve(OutlineObject* self, PyObject* args)
static PyObject*
_outline_close(OutlineObject* self, PyObject* args)
{
if (!PyArg_ParseTuple(args, ":close"))
if (!PyArg_ParseTuple(args, ":close")) {
return NULL;
}
ImagingOutlineClose(self->outline);
@ -139,8 +147,9 @@ static PyObject*
_outline_transform(OutlineObject* self, PyObject* args)
{
double a[6];
if (!PyArg_ParseTuple(args, "(dddddd)", a+0, a+1, a+2, a+3, a+4, a+5))
if (!PyArg_ParseTuple(args, "(dddddd)", a+0, a+1, a+2, a+3, a+4, a+5)) {
return NULL;
}
ImagingOutlineTransform(self->outline, a);

View File

@ -61,8 +61,9 @@ alloc_array(Py_ssize_t count)
return NULL;
}
xy = malloc(2 * count * sizeof(double) + 1);
if (!xy)
if (!xy) {
PyErr_NoMemory();
}
return xy;
}
@ -74,8 +75,9 @@ path_new(Py_ssize_t count, double* xy, int duplicate)
if (duplicate) {
/* duplicate path */
double* p = alloc_array(count);
if (!p)
if (!p) {
return NULL;
}
memcpy(p, xy, count * 2 * sizeof(double));
xy = p;
}
@ -120,8 +122,9 @@ PyPath_Flatten(PyObject* data, double **pxy)
/* This was another path object. */
PyPathObject *path = (PyPathObject*) data;
xy = alloc_array(path->count);
if (!xy)
if (!xy) {
return -1;
}
memcpy(xy, path->xy, 2 * path->count * sizeof(double));
*pxy = xy;
return path->count;
@ -134,10 +137,12 @@ PyPath_Flatten(PyObject* data, double **pxy)
float *ptr = (float*) buffer.buf;
n = buffer.len / (2 * sizeof(float));
xy = alloc_array(n);
if (!xy)
if (!xy) {
return -1;
for (i = 0; i < n+n; i++)
}
for (i = 0; i < n+n; i++) {
xy[i] = ptr[i];
}
*pxy = xy;
PyBuffer_Release(&buffer);
return n;
@ -153,26 +158,28 @@ PyPath_Flatten(PyObject* data, double **pxy)
j = 0;
n = PyObject_Length(data);
/* Just in case __len__ breaks (or doesn't exist) */
if (PyErr_Occurred())
if (PyErr_Occurred()) {
return -1;
}
/* Allocate for worst case */
xy = alloc_array(n);
if (!xy)
if (!xy) {
return -1;
}
/* Copy table to path array */
if (PyList_Check(data)) {
for (i = 0; i < n; i++) {
double x, y;
PyObject *op = PyList_GET_ITEM(data, i);
if (PyFloat_Check(op))
if (PyFloat_Check(op)) {
xy[j++] = PyFloat_AS_DOUBLE(op);
else if (PyLong_Check(op))
} else if (PyLong_Check(op)) {
xy[j++] = (float) PyLong_AS_LONG(op);
else if (PyNumber_Check(op))
} else if (PyNumber_Check(op)) {
xy[j++] = PyFloat_AsDouble(op);
else if (PyArg_ParseTuple(op, "dd", &x, &y)) {
} else if (PyArg_ParseTuple(op, "dd", &x, &y)) {
xy[j++] = x;
xy[j++] = y;
} else {
@ -184,13 +191,13 @@ PyPath_Flatten(PyObject* data, double **pxy)
for (i = 0; i < n; i++) {
double x, y;
PyObject *op = PyTuple_GET_ITEM(data, i);
if (PyFloat_Check(op))
if (PyFloat_Check(op)) {
xy[j++] = PyFloat_AS_DOUBLE(op);
else if (PyLong_Check(op))
} else if (PyLong_Check(op)) {
xy[j++] = (float) PyLong_AS_LONG(op);
else if (PyNumber_Check(op))
} else if (PyNumber_Check(op)) {
xy[j++] = PyFloat_AsDouble(op);
else if (PyArg_ParseTuple(op, "dd", &x, &y)) {
} else if (PyArg_ParseTuple(op, "dd", &x, &y)) {
xy[j++] = x;
xy[j++] = y;
} else {
@ -213,13 +220,13 @@ PyPath_Flatten(PyObject* data, double **pxy)
return -1;
}
}
if (PyFloat_Check(op))
if (PyFloat_Check(op)) {
xy[j++] = PyFloat_AS_DOUBLE(op);
else if (PyLong_Check(op))
} else if (PyLong_Check(op)) {
xy[j++] = (float) PyLong_AS_LONG(op);
else if (PyNumber_Check(op))
} else if (PyNumber_Check(op)) {
xy[j++] = PyFloat_AsDouble(op);
else if (PyArg_ParseTuple(op, "dd", &x, &y)) {
} else if (PyArg_ParseTuple(op, "dd", &x, &y)) {
xy[j++] = x;
xy[j++] = y;
} else {
@ -257,20 +264,23 @@ PyPath_Create(PyObject* self, PyObject* args)
/* number of vertices */
xy = alloc_array(count);
if (!xy)
if (!xy) {
return NULL;
}
} else {
/* sequence or other path */
PyErr_Clear();
if (!PyArg_ParseTuple(args, "O", &data))
if (!PyArg_ParseTuple(args, "O", &data)) {
return NULL;
}
count = PyPath_Flatten(data, &xy);
if (count < 0)
if (count < 0) {
return NULL;
}
}
return (PyObject*) path_new(count, xy, 0);
}
@ -291,8 +301,9 @@ path_compact(PyPathObject* self, PyObject* args)
double cityblock = 2.0;
if (!PyArg_ParseTuple(args, "|d:compact", &cityblock))
if (!PyArg_ParseTuple(args, "|d:compact", &cityblock)) {
return NULL;
}
xy = self->xy;
@ -323,8 +334,9 @@ path_getbbox(PyPathObject* self, PyObject* args)
double *xy;
double x0, y0, x1, y1;
if (!PyArg_ParseTuple(args, ":getbbox"))
if (!PyArg_ParseTuple(args, ":getbbox")) {
return NULL;
}
xy = self->xy;
@ -332,15 +344,19 @@ path_getbbox(PyPathObject* self, PyObject* args)
y0 = y1 = xy[1];
for (i = 1; i < self->count; i++) {
if (xy[i+i] < x0)
if (xy[i+i] < x0) {
x0 = xy[i+i];
if (xy[i+i] > x1)
}
if (xy[i+i] > x1) {
x1 = xy[i+i];
if (xy[i+i+1] < y0)
}
if (xy[i+i+1] < y0) {
y0 = xy[i+i+1];
if (xy[i+i+1] > y1)
}
if (xy[i+i+1] > y1) {
y1 = xy[i+i+1];
}
}
return Py_BuildValue("dddd", x0, y0, x1, y1);
}
@ -348,8 +364,9 @@ path_getbbox(PyPathObject* self, PyObject* args)
static PyObject*
path_getitem(PyPathObject* self, Py_ssize_t i)
{
if (i < 0)
if (i < 0) {
i = self->count + i;
}
if (i < 0 || i >= self->count) {
PyErr_SetString(PyExc_IndexError, "path index out of range");
return NULL;
@ -362,16 +379,19 @@ static PyObject*
path_getslice(PyPathObject* self, Py_ssize_t ilow, Py_ssize_t ihigh)
{
/* adjust arguments */
if (ilow < 0)
if (ilow < 0) {
ilow = 0;
else if (ilow >= self->count)
} else if (ilow >= self->count) {
ilow = self->count;
if (ihigh < 0)
}
if (ihigh < 0) {
ihigh = 0;
if (ihigh < ilow)
}
if (ihigh < ilow) {
ihigh = ilow;
else if (ihigh > self->count)
} else if (ihigh > self->count) {
ihigh = self->count;
}
return (PyObject*) path_new(ihigh - ilow, self->xy + ilow * 2, 1);
}
@ -390,8 +410,9 @@ path_map(PyPathObject* self, PyObject* args)
double *xy;
PyObject* function;
if (!PyArg_ParseTuple(args, "O:map", &function))
if (!PyArg_ParseTuple(args, "O:map", &function)) {
return NULL;
}
xy = self->xy;
@ -432,8 +453,9 @@ path_setitem(PyPathObject* self, Py_ssize_t i, PyObject* op)
xy = &self->xy[i+i];
if (!PyArg_ParseTuple(op, "dd", &xy[0], &xy[1]))
if (!PyArg_ParseTuple(op, "dd", &xy[0], &xy[1])) {
return -1;
}
return 0;
}
@ -445,16 +467,18 @@ path_tolist(PyPathObject* self, PyObject* args)
Py_ssize_t i;
int flat = 0;
if (!PyArg_ParseTuple(args, "|i:tolist", &flat))
if (!PyArg_ParseTuple(args, "|i:tolist", &flat)) {
return NULL;
}
if (flat) {
list = PyList_New(self->count*2);
for (i = 0; i < self->count*2; i++) {
PyObject* item;
item = PyFloat_FromDouble(self->xy[i]);
if (!item)
if (!item) {
goto error;
}
PyList_SetItem(list, i, item);
}
} else {
@ -462,8 +486,9 @@ path_tolist(PyPathObject* self, PyObject* args)
for (i = 0; i < self->count; i++) {
PyObject* item;
item = Py_BuildValue("dd", self->xy[i+i], self->xy[i+i+1]);
if (!item)
if (!item) {
goto error;
}
PyList_SetItem(list, i, item);
}
}
@ -487,19 +512,20 @@ path_transform(PyPathObject* self, PyObject* args)
if (!PyArg_ParseTuple(args, "(dddddd)|d:transform",
&a, &b, &c, &d, &e, &f,
&wrap))
&wrap)) {
return NULL;
}
xy = self->xy;
/* transform the coordinate set */
if (b == 0.0 && d == 0.0)
if (b == 0.0 && d == 0.0) {
/* scaling */
for (i = 0; i < self->count; i++) {
xy[i+i] = a*xy[i+i]+c;
xy[i+i+1] = e*xy[i+i+1]+f;
}
else
} else {
/* affine transform */
for (i = 0; i < self->count; i++) {
double x = xy[i+i];
@ -507,11 +533,14 @@ path_transform(PyPathObject* self, PyObject* args)
xy[i+i] = a*x+b*y+c;
xy[i+i+1] = d*x+e*y+f;
}
}
/* special treatment of geographical map data */
if (wrap != 0.0)
for (i = 0; i < self->count; i++)
if (wrap != 0.0) {
for (i = 0; i < self->count; i++) {
xy[i+i] = fmod(xy[i+i], wrap);
}
}
Py_INCREF(Py_None);
return Py_None;
@ -542,16 +571,18 @@ path_subscript(PyPathObject* self, PyObject* item) {
if (PyIndex_Check(item)) {
Py_ssize_t i;
i = PyNumber_AsSsize_t(item, PyExc_IndexError);
if (i == -1 && PyErr_Occurred())
if (i == -1 && PyErr_Occurred()) {
return NULL;
}
return path_getitem(self, i);
}
if (PySlice_Check(item)) {
int len = 4;
Py_ssize_t start, stop, step, slicelength;
if (PySlice_GetIndicesEx(item, len, &start, &stop, &step, &slicelength) < 0)
if (PySlice_GetIndicesEx(item, len, &start, &stop, &step, &slicelength) < 0) {
return NULL;
}
if (slicelength <= 0) {
double *xy = alloc_array(0);

View File

@ -170,9 +170,9 @@ deps = {
"libs": [r"output\release-static\{architecture}\lib\*.lib"],
},
"freetype": {
"url": "https://download.savannah.gnu.org/releases/freetype/freetype-2.10.1.tar.gz", # noqa: E501
"filename": "freetype-2.10.1.tar.gz",
"dir": "freetype-2.10.1",
"url": "https://download.savannah.gnu.org/releases/freetype/freetype-2.10.2.tar.gz", # noqa: E501
"filename": "freetype-2.10.2.tar.gz",
"dir": "freetype-2.10.2",
"patch": {
r"builds\windows\vc2010\freetype.vcxproj": {
# freetype setting is /MD for .dll and /MT for .lib, we need /MD