Replaced drawing algorithm for arcs, chords and pies

This commit is contained in:
Stanislau Tsitsianok 2020-06-29 17:21:33 +03:00
parent 27109c9011
commit 96f69eb287
No known key found for this signature in database
GPG Key ID: 349CB26B2ED6E0C0
2 changed files with 292 additions and 258 deletions

View File

@ -2834,8 +2834,7 @@ _draw_arc(ImagingDrawObject* self, PyObject* args)
int ink;
int width = 0;
float start, end;
int op = 0;
if (!PyArg_ParseTuple(args, "Offi|ii", &data, &start, &end, &ink, &width)) {
if (!PyArg_ParseTuple(args, "Offi|i", &data, &start, &end, &ink, &width)) {
return NULL;
}
@ -2852,7 +2851,7 @@ _draw_arc(ImagingDrawObject* self, PyObject* args)
n = ImagingDrawArc(self->image->image,
(int) xy[0], (int) xy[1],
(int) xy[2], (int) xy[3],
start, end, &ink, width, op
start, end, &ink, width, self->blend
);
free(xy);

View File

@ -819,192 +819,6 @@ ImagingDrawBitmap(Imaging im, int x0, int y0, Imaging bitmap, const void* ink,
/* -------------------------------------------------------------------- */
/* standard shapes */
#define ARC 0
#define CHORD 1
#define PIESLICE 2
static void
ellipsePoint(int cx, int cy, int w, int h,
float i, int *x, int *y)
{
float i_cos, i_sin;
float x_f, y_f;
double modf_int;
i_cos = cos(i*M_PI/180);
i_sin = sin(i*M_PI/180);
x_f = (i_cos * w/2) + cx;
y_f = (i_sin * h/2) + cy;
if (modf(x_f, &modf_int) == 0.5) {
*x = i_cos > 0 ? FLOOR(x_f) : CEIL(x_f);
} else {
*x = FLOOR(x_f + 0.5);
}
if (modf(y_f, &modf_int) == 0.5) {
*y = i_sin > 0 ? FLOOR(y_f) : CEIL(y_f);
} else {
*y = FLOOR(y_f + 0.5);
}
}
static int
ellipse(Imaging im, int x0, int y0, int x1, int y1,
float start, float end, const void* ink_, int fill,
int width, int mode, int op)
{
float i;
int inner;
int n;
int maxEdgeCount;
int w, h;
int x, y;
int cx, cy;
int lx = 0, ly = 0;
int sx = 0, sy = 0;
int lx_inner = 0, ly_inner = 0;
int sx_inner = 0, sy_inner = 0;
DRAW* draw;
INT32 ink;
Edge* e;
DRAWINIT();
while (end < start) {
end += 360;
}
if (end - start > 360) {
// no need to go in loops
end = start + 361;
}
w = x1 - x0;
h = y1 - y0;
if (w <= 0 || h <= 0) {
return 0;
}
cx = (x0 + x1) / 2;
cy = (y0 + y1) / 2;
if (!fill && width <= 1) {
for (i = start; i < end+1; i++) {
if (i > end) {
i = end;
}
ellipsePoint(cx, cy, w, h, i, &x, &y);
if (i != start) {
draw->line(im, lx, ly, x, y, ink);
} else {
sx = x, sy = y;
}
lx = x, ly = y;
}
if (i != start) {
if (mode == PIESLICE) {
if (x != cx || y != cy) {
draw->line(im, x, y, cx, cy, ink);
draw->line(im, cx, cy, sx, sy, ink);
}
} else if (mode == CHORD) {
if (x != sx || y != sy) {
draw->line(im, x, y, sx, sy, ink);
}
}
}
} else {
inner = (mode == ARC || !fill) ? 1 : 0;
// Build edge list
// malloc check UNDONE, FLOAT?
maxEdgeCount = ceil(end - start);
if (inner) {
maxEdgeCount *= 2;
}
maxEdgeCount += 3;
e = calloc(maxEdgeCount, sizeof(Edge));
if (!e) {
ImagingError_MemoryError();
return -1;
}
// Outer circle
n = 0;
for (i = start; i < end+1; i++) {
if (i > end) {
i = end;
}
ellipsePoint(cx, cy, w, h, i, &x, &y);
if (i == start) {
sx = x, sy = y;
} else {
add_edge(&e[n++], lx, ly, x, y);
}
lx = x, ly = y;
}
if (n == 0) {
return 0;
}
if (inner) {
// Inner circle
x0 += width - 1;
y0 += width - 1;
x1 -= width - 1;
y1 -= width - 1;
w = x1 - x0;
h = y1 - y0;
if (w <= 0 || h <= 0) {
// ARC with no gap in the middle is a PIESLICE
mode = PIESLICE;
inner = 0;
} else {
for (i = start; i < end+1; i++) {
if (i > end) {
i = end;
}
ellipsePoint(cx, cy, w, h, i, &x, &y);
if (i == start) {
sx_inner = x, sy_inner = y;
} else {
add_edge(&e[n++], lx_inner, ly_inner, x, y);
}
lx_inner = x, ly_inner = y;
}
}
}
if (end - start < 360) {
// Close polygon
if (mode == PIESLICE) {
if (x != cx || y != cy) {
add_edge(&e[n++], sx, sy, cx, cy);
add_edge(&e[n++], cx, cy, lx, ly);
if (inner) {
ImagingDrawWideLine(im, sx, sy, cx, cy, &ink, width, op);
ImagingDrawWideLine(im, cx, cy, lx, ly, &ink, width, op);
}
}
} else if (mode == CHORD) {
add_edge(&e[n++], sx, sy, lx, ly);
if (inner) {
add_edge(&e[n++], sx_inner, sy_inner, lx_inner, ly_inner);
}
} else if (mode == ARC) {
add_edge(&e[n++], sx, sy, sx_inner, sy_inner);
add_edge(&e[n++], lx, ly, lx_inner, ly_inner);
}
}
draw->polygon(im, n, e, ink, 0);
free(e);
}
return 0;
}
// Imagine 2D plane and ellipse with center in (0, 0) and semi-major axes a and b.
// Then quarter_* stuff approximates its top right quarter (x, y >= 0) with integer
// points from set {(2x+x0, 2y+y0) | x,y in Z} where x0, y0 are from {0, 1} and
@ -1155,25 +969,35 @@ int8_t ellipse_next(ellipse_state* s, int32_t* ret_x0, int32_t* ret_y, int32_t*
return 0;
}
// Clipping tree consists of half-plane clipping nodes and combining nodes.
// We can throw a horizontal segment in such a tree and collect an ordered set
// of resulting disjoint clipped segments organized into a sorted linked list
// of their end points.
typedef enum {
CT_AND,
CT_OR,
CT_CLIP
CT_AND, // intersection
CT_OR, // union
CT_CLIP // half-plane clipping
} clip_type;
typedef struct clip_node {
clip_type type;
double a, b, c;
struct clip_node* l;
double a, b, c; // half-plane coeffs, only used in clipping nodes
struct clip_node* l; // child pointers, are only non-NULL in combining nodes
struct clip_node* r;
} clip_node;
// Linked list for the ends of the clipped horizontal segments.
// Since the segment is always horizontal, we don't need to store Y coordinate.
typedef struct event_list {
int32_t x;
int8_t type;
int8_t type; // used internally, 1 for the left end (smaller X), -1 for the
// right end; pointless in output since the output segments
// are disjoint, therefore the types would always come in pairs
// and interchange (1 -1 1 -1 ...)
struct event_list* next;
} event_list;
// Mirrors all the clipping nodes of the tree relative to the y = x line.
void clip_tree_transpose(clip_node* root) {
if (root != NULL) {
if (root->type == CT_CLIP) {
@ -1186,29 +1010,31 @@ void clip_tree_transpose(clip_node* root) {
}
}
void clip_tree_free(clip_node* root) {
if (root != NULL) {
clip_tree_free(root->l);
clip_tree_free(root->r);
free(root);
}
}
// Outputs a sequence of open-close events (types -1 and 1) for non-intersecting
// segments sorted by X coordinate.
// Merging nodes (AND, OR) may also accept sequences for intersecting segments,
// i.e. something like correct bracket sequences.
event_list* clip_tree_do_clip(clip_node* root, int32_t x0, int32_t y, int32_t x1) {
// Outputs a sequence of open-close events (types -1 and 1) for
// non-intersecting segments sorted by X coordinate.
// Combining nodes (AND, OR) may also accept sequences for intersecting
// segments, i.e. something like correct bracket sequences.
int clip_tree_do_clip(clip_node* root, int32_t x0, int32_t y, int32_t x1, event_list** ret) {
if (root == NULL) {
event_list* start = malloc(sizeof(event_list));
if (!start) {
ImagingError_MemoryError();
return -1;
}
event_list* end = malloc(sizeof(event_list));
if (!end) {
free(start);
ImagingError_MemoryError();
return -1;
}
start->x = x0;
start->type = 1;
start->next = end;
end->x = x1;
end->type = -1;
end->next = NULL;
return start;
*ret = start;
return 0;
}
if (root->type == CT_CLIP) {
double eps = 1e-9;
@ -1232,22 +1058,43 @@ event_list* clip_tree_do_clip(clip_node* root, int32_t x0, int32_t y, int32_t x1
}
if (x0 <= x1) {
event_list* start = malloc(sizeof(event_list));
if (!start) {
ImagingError_MemoryError();
return -1;
}
event_list* end = malloc(sizeof(event_list));
if (!end) {
free(start);
ImagingError_MemoryError();
return -1;
}
start->x = x0;
start->type = 1;
start->next = end;
end->x = x1;
end->type = -1;
end->next = NULL;
return start;
*ret = start;
} else {
return NULL;
*ret = NULL;
}
return 0;
}
if (root->type == CT_OR || root->type == CT_AND) {
event_list* l1 = clip_tree_do_clip(root->l, x0, y, x1);
event_list* l2 = clip_tree_do_clip(root->r, x0, y, x1);
event_list* ret = NULL;
event_list* l1;
event_list* l2;
if (clip_tree_do_clip(root->l, x0, y, x1, &l1) < 0) {
return -1;
}
if (clip_tree_do_clip(root->r, x0, y, x1, &l2) < 0) {
while (l1) {
l2 = l1->next;
free(l1);
l1 = l2;
}
return -1;
}
*ret = NULL;
event_list* tail = NULL;
int32_t k1 = 0;
int32_t k2 = 0;
@ -1274,7 +1121,7 @@ event_list* clip_tree_do_clip(clip_node* root, int32_t x0, int32_t y, int32_t x1
(t->type == -1 && tail != NULL && tail->type == 1 && (k1 == 0 || k2 == 0))
))) {
if (tail == NULL) {
ret = t;
*ret = t;
} else {
tail->next = t;
}
@ -1283,43 +1130,59 @@ event_list* clip_tree_do_clip(clip_node* root, int32_t x0, int32_t y, int32_t x1
free(t);
}
}
return ret;
return 0;
}
return NULL;
*ret = NULL;
return 0;
}
// One more layer of processing on top of the regular ellipse.
// Uses the clipping tree.
// Used for producing ellipse derivatives such as arc, chord, pie, etc.
typedef struct {
ellipse_state st;
clip_node* root;
clip_node nodes[7];
int32_t node_count;
event_list* head;
int32_t y;
} clip_ellipse_state;
void arc_init(clip_ellipse_state* s, int32_t a, int32_t b, int32_t w, int32_t al, int32_t ar) {
typedef void (*clip_ellipse_init)(clip_ellipse_state*, int32_t, int32_t, int32_t, float, float);
// Resulting angles will satisfy 0 <= al < 360, al <= ar <= al + 360
void normalize_angles(float* al, float* ar) {
if (*ar - *al >= 360) {
*al = 0;
*ar = 360;
} else {
*al = fmod(*al < 0 ? 360 - (fmod(-*al, 360)) : *al, 360);
*ar = *al + fmod(*ar < *al ? 360 - fmod(*al - *ar, 360) : *ar - *al, 360);
}
}
// An arc with caps orthogonal to the ellipse curve.
void arc_init(clip_ellipse_state* s, int32_t a, int32_t b, int32_t w, float _al, float _ar) {
if (a < b) {
// transpose the coordinate system
arc_init(s, b, a, w, 90 - ar, 90 - al);
arc_init(s, b, a, w, 90 - _ar, 90 - _al);
ellipse_init(&s->st, a, b, w);
clip_tree_transpose(s->root);
} else {
// a >= b, based on "wide" ellipse
ellipse_init(&s->st, a, b, w);
s->head = NULL;
s->node_count = 0;
// normalize angles: 0 <= al < 360, al <= ar <= al + 360
if (ar - al >= 360) {
al = 0;
ar = 360;
} else {
al = (al < 0 ? 360 - (-al % 360) : al) % 360;
ar = al + (ar < al ? 360 - ((al - ar) % 360) : ar - al) % 360;
}
int32_t al = round(_al), ar = round(_ar);
// building clipping tree, a lot of different cases
if (ar == al + 360) {
s->root = NULL;
} else {
clip_node* lc = malloc(sizeof(clip_node));
clip_node* rc = malloc(sizeof(clip_node));
clip_node* lc = s->nodes + s->node_count++;
clip_node* rc = s->nodes + s->node_count++;
lc->l = lc->r = rc->l = rc->r = NULL;
lc->type = rc->type = CT_CLIP;
lc->a = -a * sin(al * M_PI / 180.0);
@ -1329,30 +1192,30 @@ void arc_init(clip_ellipse_state* s, int32_t a, int32_t b, int32_t w, int32_t al
rc->b = -b * cos(ar * M_PI / 180.0);
rc->c = (b * b - a * a) * sin(ar * M_PI / 90.0) / 2.0;
if (al % 180 == 0 || ar % 180 == 0 || al == ar) {
s->root = malloc(sizeof(clip_node));
s->root = s->nodes + s->node_count++;
s->root->l = lc;
s->root->r = rc;
s->root->type = ar - al < 180 ? CT_AND : CT_OR;
if (al == ar) {
lc = malloc(sizeof(clip_node));
lc = s->nodes + s->node_count++;
lc->l = lc->r = NULL;
lc->type = CT_CLIP;
lc->a = al == 0 ? 1 : al == 180 ? -1 : 0;
lc->b = al % 180 ? (al < 180 ? 1 : -1) : 0;
lc->c = 0;
rc = s->root;
s->root = malloc(sizeof(clip_node));
s->root = s->nodes + s->node_count++;
s->root->l = lc;
s->root->r = rc;
s->root->type = CT_AND;
}
} else if ((al / 180 + ar / 180) % 2 == 1) {
s->root = malloc(sizeof(clip_node));
s->root->l = malloc(sizeof(clip_node));
s->root->l->l = malloc(sizeof(clip_node));
s->root = s->nodes + s->node_count++;
s->root->l = s->nodes + s->node_count++;
s->root->l->l = s->nodes + s->node_count++;
s->root->l->r = lc;
s->root->r = malloc(sizeof(clip_node));
s->root->r->l = malloc(sizeof(clip_node));
s->root->r = s->nodes + s->node_count++;
s->root->r->l = s->nodes + s->node_count++;
s->root->r->r = rc;
s->root->type = CT_OR;
s->root->l->type = CT_AND;
@ -1366,9 +1229,9 @@ void arc_init(clip_ellipse_state* s, int32_t a, int32_t b, int32_t w, int32_t al
s->root->l->l->b = (al / 180) % 2 == 0 ? 1 : -1;
s->root->r->l->b = (ar / 180) % 2 == 0 ? 1 : -1;
} else {
s->root = malloc(sizeof(clip_node));
s->root->l = malloc(sizeof(clip_node));
s->root->r = malloc(sizeof(clip_node));
s->root = s->nodes + s->node_count++;
s->root->l = s->nodes + s->node_count++;
s->root->r = s->nodes + s->node_count++;
s->root->type = s->root->l->type = ar - al < 180 ? CT_AND : CT_OR;
s->root->l->l = lc;
s->root->l->r = rc;
@ -1381,15 +1244,41 @@ void arc_init(clip_ellipse_state* s, int32_t a, int32_t b, int32_t w, int32_t al
}
}
void chord_init(clip_ellipse_state* s, int32_t a, int32_t b, int32_t w, int32_t al, int32_t ar) {
ellipse_init(&s->st, a, b, w);
// A chord line.
void chord_line_init(clip_ellipse_state* s, int32_t a, int32_t b, int32_t w, float al, float ar) {
ellipse_init(&s->st, a, b, a + b + 1);
s->head = NULL;
s->node_count = 0;
// line equation for chord
double xl = a * cos(al * M_PI / 180.0), xr = a * cos(ar * M_PI / 180.0);
double yl = b * sin(al * M_PI / 180.0), yr = b * sin(ar * M_PI / 180.0);
s->root = malloc(sizeof(clip_node));
s->root = s->nodes + s->node_count++;
s->root->l = s->nodes + s->node_count++;
s->root->r = s->nodes + s->node_count++;
s->root->type = CT_AND;
s->root->l->type = s->root->r->type = CT_CLIP;
s->root->l->l = s->root->l->r = s->root->r->l = s->root->r->r = NULL;
s->root->l->a = yr - yl;
s->root->l->b = xl - xr;
s->root->l->c = -(s->root->l->a * xl + s->root->l->b * yl);
s->root->r->a = -s->root->l->a;
s->root->r->b = -s->root->l->b;
s->root->r->c = 2 * w * sqrt(pow(s->root->l->a, 2.0) + pow(s->root->l->b, 2.0)) - s->root->l->c;
}
// A chord.
void chord_init(clip_ellipse_state* s, int32_t a, int32_t b, int32_t w, float al, float ar) {
ellipse_init(&s->st, a, b, w);
s->head = NULL;
s->node_count = 0;
// line equation for chord
double xl = a * cos(al * M_PI / 180.0), xr = a * cos(ar * M_PI / 180.0);
double yl = b * sin(al * M_PI / 180.0), yr = b * sin(ar * M_PI / 180.0);
s->root = s->nodes + s->node_count++;
s->root->l = s->root->r = NULL;
s->root->type = CT_CLIP;
s->root->a = yr - yl;
@ -1397,8 +1286,35 @@ void chord_init(clip_ellipse_state* s, int32_t a, int32_t b, int32_t w, int32_t
s->root->c = -(s->root->a * xl + s->root->b * yl);
}
// A pie. Can also be used to draw an arc with ugly sharp caps.
void pie_init(clip_ellipse_state* s, int32_t a, int32_t b, int32_t w, float al, float ar) {
ellipse_init(&s->st, a, b, w);
s->head = NULL;
s->node_count = 0;
// line equations for pie sides
double xl = a * cos(al * M_PI / 180.0), xr = a * cos(ar * M_PI / 180.0);
double yl = b * sin(al * M_PI / 180.0), yr = b * sin(ar * M_PI / 180.0);
clip_node* lc = s->nodes + s->node_count++;
clip_node* rc = s->nodes + s->node_count++;
lc->l = lc->r = rc->l = rc->r = NULL;
lc->type = rc->type = CT_CLIP;
lc->a = -yl;
lc->b = xl;
lc->c = 0;
rc->a = yr;
rc->b = -xr;
rc->c = 0;
s->root = s->nodes + s->node_count++;
s->root->l = lc;
s->root->r = rc;
s->root->type = ar - al < 180 ? CT_AND : CT_OR;
}
void clip_ellipse_free(clip_ellipse_state* s) {
clip_tree_free(s->root);
while (s->head != NULL) {
event_list* t = s->head;
s->head = s->head->next;
@ -1409,7 +1325,9 @@ void clip_ellipse_free(clip_ellipse_state* s) {
int8_t clip_ellipse_next(clip_ellipse_state* s, int32_t* ret_x0, int32_t* ret_y, int32_t* ret_x1) {
int32_t x0, y, x1;
while (s->head == NULL && ellipse_next(&s->st, &x0, &y, &x1) >= 0) {
s->head = clip_tree_do_clip(s->root, x0, y, x1);
if (clip_tree_do_clip(s->root, x0, y, x1, &s->head) < 0) {
return -2;
}
s->y = y;
}
if (s->head != NULL) {
@ -1439,8 +1357,9 @@ ellipseNew(Imaging im, int x0, int y0, int x1, int y1,
int a = x1 - x0;
int b = y1 - y0;
if (a < 0 || b < 0)
return 0;
if (a < 0 || b < 0) {
return 0;
}
if (fill) {
width = a + b;
}
@ -1449,41 +1368,157 @@ ellipseNew(Imaging im, int x0, int y0, int x1, int y1,
ellipse_init(&st, a, b, width);
int32_t X0, Y, X1;
while (ellipse_next(&st, &X0, &Y, &X1) != -1) {
draw->hline(im, x0 + (X0 + a) / 2, y0 + (Y + b) / 2, x0 + (X1 + a) / 2, ink);
draw->hline(im, x0 + (X0 + a) / 2, y0 + (Y + b) / 2, x0 + (X1 + a) / 2, ink);
}
return 0;
}
int
ImagingDrawArc(Imaging im, int x0, int y0, int x1, int y1,
float start, float end, const void* ink, int width, int op)
static int
clipEllipseNew(Imaging im, int x0, int y0, int x1, int y1,
float start, float end,
const void* ink_, int width, int op, clip_ellipse_init init)
{
return ellipse(im, x0, y0, x1, y1, start, end, ink, 0, width, ARC, op);
DRAW* draw;
INT32 ink;
DRAWINIT();
int a = x1 - x0;
int b = y1 - y0;
if (a < 0 || b < 0 || start == end) {
return 0;
}
clip_ellipse_state st;
init(&st, a, b, width, start, end);
int32_t X0, Y, X1;
int next_code;
while ((next_code = clip_ellipse_next(&st, &X0, &Y, &X1)) >= 0) {
draw->hline(im, x0 + (X0 + a) / 2, y0 + (Y + b) / 2, x0 + (X1 + a) / 2, ink);
}
clip_ellipse_free(&st);
return next_code == -1 ? 0 : -1;
}
static int
arcNew(Imaging im, int x0, int y0, int x1, int y1,
float start, float end,
const void* ink_, int width, int op)
{
return clipEllipseNew(im, x0, y0, x1, y1, start, end, ink_, width, op, arc_init);
}
int
ImagingDrawChord(Imaging im, int x0, int y0, int x1, int y1,
float start, float end, const void* ink, int fill,
int width, int op)
static int
chordNew(Imaging im, int x0, int y0, int x1, int y1,
float start, float end,
const void* ink_, int width, int op)
{
return ellipse(im, x0, y0, x1, y1, start, end, ink, fill, width, CHORD, op);
return clipEllipseNew(im, x0, y0, x1, y1, start, end, ink_, width, op, chord_init);
}
static int
chordLineNew(Imaging im, int x0, int y0, int x1, int y1,
float start, float end,
const void* ink_, int width, int op)
{
return clipEllipseNew(im, x0, y0, x1, y1, start, end, ink_, width, op, chord_line_init);
}
static int
pieNew(Imaging im, int x0, int y0, int x1, int y1,
float start, float end,
const void* ink_, int op)
{
return clipEllipseNew(im, x0, y0, x1, y1, start, end, ink_, x1 + y1 - x0 - y0, op, pie_init);
}
int
ImagingDrawEllipse(Imaging im, int x0, int y0, int x1, int y1,
const void* ink, int fill, int width, int op)
{
//fprintf(stderr, "E (%d %d) (%d %d) --- %08X f%d w%d o%d\n", x0, y0, x1, y1, *(int*)ink, fill, width, op);
return ellipseNew(im, x0, y0, x1, y1, ink, fill, width, op);
}
int
ImagingDrawArc(Imaging im, int x0, int y0, int x1, int y1,
float start, float end, const void* ink, int width, int op)
{
//fprintf(stderr, "A (%d %d) (%d %d) %f-%f %08X f- w%d o%d\n", x0, y0, x1, y1, start, end, *(int*)ink, width, op);
normalize_angles(&start, &end);
if (start + 360 == end) {
return ImagingDrawEllipse(im, x0, y0, x1, y1, ink, 0, width, op);
}
if (start == end) {
return 0;
}
return arcNew(im, x0, y0, x1, y1, start, end, ink, width, op);
}
int
ImagingDrawChord(Imaging im, int x0, int y0, int x1, int y1,
float start, float end, const void* ink, int fill,
int width, int op)
{
//fprintf(stderr, "C (%d %d) (%d %d) %f-%f %08X f%d w%d o%d\n", x0, y0, x1, y1, start, end, *(int*)ink, fill, width, op);
normalize_angles(&start, &end);
if (start + 360 == end) {
return ImagingDrawEllipse(im, x0, y0, x1, y1, ink, fill, width, op);
}
if (start == end) {
return 0;
}
if (fill) {
return chordNew(im, x0, y0, x1, y1, start, end, ink, x1 - x0 + y1 - y0 + 1, op);
} else {
if (chordLineNew(im, x0, y0, x1, y1, start, end, ink, width, op)) {
return -1;
}
return chordNew(im, x0, y0, x1, y1, start, end, ink, width, op);
}
}
int
ImagingDrawPieslice(Imaging im, int x0, int y0, int x1, int y1,
float start, float end, const void* ink, int fill,
int width, int op)
{
return ellipse(im, x0, y0, x1, y1, start, end, ink, fill, width, PIESLICE, op);
//fprintf(stderr, "P (%d %d) (%d %d) %f-%f %08X f%d w%d o%d\n", x0, y0, x1, y1, start, end, *(int*)ink, fill, width, op);
normalize_angles(&start, &end);
if (start + 360 == end) {
return ImagingDrawEllipse(im, x0, y0, x1, y1, ink, fill, width, op);
}
if (start == end) {
return 0;
}
if (fill) {
return pieNew(im, x0, y0, x1, y1, start, end, ink, op);
} else {
float xc = x0 + (x1 - x0) / 2.0, yc = y0 + (y1 - y0) / 2.0;
float al = start * M_PI / 180.0, ar = end * M_PI / 180.0;
int32_t xa = xc + (x1 - x0 - width) * cos(al) / 2, ya = yc + (y1 - y0 - width) * sin(al) / 2;
int32_t xb = xc + (x1 - x0 - width) * cos(ar) / 2, yb = yc + (y1 - y0 - width) * sin(ar) / 2;
int32_t xt, yt;
if (ImagingDrawWideLine(im, xc, yc, xa, ya, ink, width, op) < 0) {
return -1;
}
if (ImagingDrawWideLine(im, xc, yc, xb, yb, ink, width, op) < 0) {
return -1;
}
xt = xc - width / 2;
yt = yc - width / 2;
ellipseNew(im, xt, yt, xt + width, yt + width, ink, 1, 0, op);
xt = xa - width / 2;
yt = ya - width / 2;
ellipseNew(im, xt, yt, xt + width, yt + width, ink, 1, 0, op);
xt = xb - width / 2;
yt = yb - width / 2;
ellipseNew(im, xt, yt, xt + width, yt + width, ink, 1, 0, op);
return arcNew(im, x0, y0, x1, y1, start, end, ink, width, op);
}
}
/* -------------------------------------------------------------------- */
/* experimental level 2 ("arrow") graphics stuff. this implements