Implementation for PlanarConfiguration=2 Tiffs, manually merged from f566c8a

This commit is contained in:
Eric Soroos 2020-12-31 13:01:35 +01:00
parent 4bc667b24b
commit a97e08abd2

View File

@ -280,8 +280,8 @@ int _decodeStripYCbCr(Imaging im, ImagingCodecState state, TIFF *tiff) {
return 0;
}
int _decodeStrip(Imaging im, ImagingCodecState state, TIFF *tiff) {
INT32 strip_row;
int _decodeStrip(Imaging im, ImagingCodecState state, TIFF *tiff, UINT8 planes, ImagingShuffler *unpackers) {
INT32 strip_row = 0;
UINT8 *new_data;
UINT32 rows_per_strip, row_byte_size;
int ret;
@ -293,7 +293,7 @@ int _decodeStrip(Imaging im, ImagingCodecState state, TIFF *tiff) {
TRACE(("RowsPerStrip: %u \n", rows_per_strip));
// We could use TIFFStripSize, but for YCbCr data it returns subsampled data size
row_byte_size = (state->xsize * state->bits + 7) / 8;
row_byte_size = (state->xsize * state->bits / planes + 7) / 8;
/* overflow check for realloc */
if (INT_MAX / row_byte_size < rows_per_strip) {
@ -325,27 +325,32 @@ int _decodeStrip(Imaging im, ImagingCodecState state, TIFF *tiff) {
state->buffer = new_data;
for (; state->y < state->ysize; state->y += rows_per_strip) {
if (TIFFReadEncodedStrip(tiff, TIFFComputeStrip(tiff, state->y, 0), (tdata_t)state->buffer, -1) == -1) {
TRACE(("Decode Error, strip %d\n", TIFFComputeStrip(tiff, state->y, 0)));
state->errcode = IMAGING_CODEC_BROKEN;
return -1;
}
UINT8 plane;
for (plane = 0; plane < planes; plane++) {
ImagingShuffler shuffler = unpackers[plane];
if (TIFFReadEncodedStrip(tiff, TIFFComputeStrip(tiff, state->y, plane), (tdata_t)state->buffer, -1) == -1) {
TRACE(("Decode Error, strip %d\n", TIFFComputeStrip(tiff, state->y, 0)));
state->errcode = IMAGING_CODEC_BROKEN;
return -1;
}
TRACE(("Decoded strip for row %d \n", state->y));
TRACE(("Decoded strip for row %d \n", state->y));
// iterate over each row in the strip and stuff data into image
for (strip_row = 0; strip_row < min((INT32) rows_per_strip, state->ysize - state->y); strip_row++) {
TRACE(("Writing data into line %d ; \n", state->y + strip_row));
// iterate over each row in the strip and stuff data into image
for (strip_row = 0; strip_row < min((INT32) rows_per_strip, state->ysize - state->y); strip_row++) {
TRACE(("Writing data into line %d ; \n", state->y + strip_row));
// UINT8 * bbb = state->buffer + strip_row * (state->bytes / rows_per_strip);
// TRACE(("chars: %x %x %x %x\n", ((UINT8 *)bbb)[0], ((UINT8 *)bbb)[1], ((UINT8 *)bbb)[2], ((UINT8 *)bbb)[3]));
// UINT8 * bbb = state->buffer + strip_row * (state->bytes / rows_per_strip);
// TRACE(("chars: %x %x %x %x\n", ((UINT8 *)bbb)[0], ((UINT8 *)bbb)[1], ((UINT8 *)bbb)[2], ((UINT8 *)bbb)[3]));
state->shuffle((UINT8*) im->image[state->y + state->yoff + strip_row] +
state->xoff * im->pixelsize,
state->buffer + strip_row * row_byte_size,
state->xsize);
shuffler((UINT8*) im->image[state->y + state->yoff + strip_row] +
state->xoff * im->pixelsize,
state->buffer + strip_row * row_byte_size,
state->xsize);
}
}
}
return 0;
}
@ -356,6 +361,9 @@ int ImagingLibTiffDecode(Imaging im, ImagingCodecState state, UINT8* buffer, Py_
TIFF *tiff;
uint16 photometric = 0; // init to not PHOTOMETRIC_YCBCR
int isYCbCr = 0;
UINT8 planarconfig = 0;
UINT8 planes = 1;
ImagingShuffler unpackers[4];
/* buffer is the encoded file, bytes is the length of the encoded file */
/* it all ends up in state->buffer, which is a uint8* from Imaging.h */
@ -419,6 +427,35 @@ int ImagingLibTiffDecode(Imaging im, ImagingCodecState state, UINT8* buffer, Py_
TIFFGetField(tiff, TIFFTAG_PHOTOMETRIC, &photometric);
isYCbCr = photometric == PHOTOMETRIC_YCBCR;
TIFFGetFieldDefaulted(tiff, TIFFTAG_PLANARCONFIG, &planarconfig);
// YCbCr data is read as RGB by libtiff and we don't need to worry about planar storage in that case
// if number of bands is 1, there is no difference with contig case
if (planarconfig == PLANARCONFIG_SEPARATE &&
im->bands > 1 &&
photometric != PHOTOMETRIC_YCBCR) {
uint16 bits_per_sample = 8;
TIFFGetFieldDefaulted(tiff, TIFFTAG_BITSPERSAMPLE, &bits_per_sample);
if (bits_per_sample != 8 && bits_per_sample != 16) {
TRACE(("Invalid value for bits per sample: %d\n", bits_per_sample));
state->errcode = IMAGING_CODEC_BROKEN;
goto decode_err;
}
planes = im->bands;
// We'll pick appropriate set of unpackers depending on planar_configuration
// It does not matter if data is RGB(A), CMYK or LUV really,
// we just copy it plane by plane
unpackers[0] = ImagingFindUnpacker("RGBA", bits_per_sample == 16 ? "R;16N" : "R", NULL);
unpackers[1] = ImagingFindUnpacker("RGBA", bits_per_sample == 16 ? "G;16N" : "G", NULL);
unpackers[2] = ImagingFindUnpacker("RGBA", bits_per_sample == 16 ? "B;16N" : "B", NULL);
unpackers[3] = ImagingFindUnpacker("RGBA", bits_per_sample == 16 ? "A;16N" : "A", NULL);
} else {
unpackers[0] = state->shuffle;
}
if (TIFFIsTiled(tiff)) {
INT32 x, y, tile_y;
@ -444,7 +481,7 @@ int ImagingLibTiffDecode(Imaging im, ImagingCodecState state, UINT8* buffer, Py_
}
} else {
// We could use TIFFTileSize, but for YCbCr data it returns subsampled data size
row_byte_size = (tile_width * state->bits + 7) / 8;
row_byte_size = (tile_width * state->bits / planes + 7) / 8;
}
/* overflow check for realloc */
@ -456,7 +493,7 @@ int ImagingLibTiffDecode(Imaging im, ImagingCodecState state, UINT8* buffer, Py_
state->bytes = row_byte_size * tile_length;
if (TIFFTileSize(tiff) > state->bytes) {
// If the strip size as expected by LibTiff isn't what we're expecting, abort.
// If the tile size as expected by LibTiff isn't what we're expecting, abort.
state->errcode = IMAGING_CODEC_MEMORY;
goto decode_err;
}
@ -474,61 +511,90 @@ int ImagingLibTiffDecode(Imaging im, ImagingCodecState state, UINT8* buffer, Py_
TRACE(("TIFFTileSize: %d\n", state->bytes));
for (y = state->yoff; y < state->ysize; y += tile_length) {
for (x = state->xoff; x < state->xsize; x += tile_width) {
if (isYCbCr) {
/* To avoid dealing with YCbCr subsampling, let libtiff handle it */
if (!TIFFReadRGBATile(tiff, x, y, (UINT32 *)state->buffer)) {
TRACE(("Decode Error, Tile at %dx%d\n", x, y));
state->errcode = IMAGING_CODEC_BROKEN;
goto decode_err;
}
} else {
if (TIFFReadTile(tiff, (tdata_t)state->buffer, x, y, 0, 0) == -1) {
TRACE(("Decode Error, Tile at %dx%d\n", x, y));
state->errcode = IMAGING_CODEC_BROKEN;
goto decode_err;
}
}
TRACE(("Read tile at %dx%d; \n\n", x, y));
current_tile_width = min((INT32) tile_width, state->xsize - x);
current_tile_length = min((INT32) tile_length, state->ysize - y);
// iterate over each line in the tile and stuff data into image
for (tile_y = 0; tile_y < current_tile_length; tile_y++) {
TRACE(("Writing tile data at %dx%d using tile_width: %d; \n", tile_y + y, x, current_tile_width));
// UINT8 * bbb = state->buffer + tile_y * row_byte_size;
// TRACE(("chars: %x%x%x%x\n", ((UINT8 *)bbb)[0], ((UINT8 *)bbb)[1], ((UINT8 *)bbb)[2], ((UINT8 *)bbb)[3]));
/*
* For some reason the TIFFReadRGBATile() function
* chooses the lower left corner as the origin.
* Vertically mirror by shuffling the scanlines
* backwards
*/
UINT8 plane;
for (plane = 0; plane < planes; plane++) {
ImagingShuffler shuffler = unpackers[plane];
for (x = state->xoff; x < state->xsize; x += tile_width) {
if (isYCbCr) {
current_line = tile_length - tile_y - 1;
/* To avoid dealing with YCbCr subsampling, let libtiff handle it */
if (!TIFFReadRGBATile(tiff, x, y, (UINT32 *)state->buffer)) {
TRACE(("Decode Error, Tile at %dx%d\n", x, y));
state->errcode = IMAGING_CODEC_BROKEN;
goto decode_err;
}
} else {
current_line = tile_y;
if (TIFFReadTile(tiff, (tdata_t)state->buffer, x, y, 0, plane) == -1) {
TRACE(("Decode Error, Tile at %dx%d\n", x, y));
state->errcode = IMAGING_CODEC_BROKEN;
goto decode_err;
}
}
state->shuffle((UINT8*) im->image[tile_y + y] + x * im->pixelsize,
state->buffer + current_line * row_byte_size,
current_tile_width
);
TRACE(("Read tile at %dx%d; \n\n", x, y));
current_tile_width = min((INT32) tile_width, state->xsize - x);
current_tile_length = min((INT32) tile_length, state->ysize - y);
// iterate over each line in the tile and stuff data into image
for (tile_y = 0; tile_y < current_tile_length; tile_y++) {
TRACE(("Writing tile data at %dx%d using tile_width: %d; \n", tile_y + y, x, current_tile_width));
// UINT8 * bbb = state->buffer + tile_y * row_byte_size;
// TRACE(("chars: %x%x%x%x\n", ((UINT8 *)bbb)[0], ((UINT8 *)bbb)[1], ((UINT8 *)bbb)[2], ((UINT8 *)bbb)[3]));
/*
* For some reason the TIFFReadRGBATile() function
* chooses the lower left corner as the origin.
* Vertically mirror by shuffling the scanlines
* backwards
*/
if (isYCbCr) {
current_line = tile_length - tile_y - 1;
} else {
current_line = tile_y;
}
shuffler((UINT8*) im->image[tile_y + y] + x * im->pixelsize,
state->buffer + current_line * row_byte_size,
current_tile_width
);
}
}
}
}
} else {
if (!isYCbCr) {
_decodeStrip(im, state, tiff);
_decodeStrip(im, state, tiff, planes, unpackers);
}
else {
_decodeStripYCbCr(im, state, tiff);
}
}
if (!state->errcode) {
// Check if raw mode was RGBa and it was stored on separate planes
// so we have to convert it to RGBA
if (planes > 3 && strcmp(im->mode, "RGBA") == 0) {
uint16 extrasamples;
uint16* sampleinfo;
ImagingShuffler shuffle;
INT32 y;
TIFFGetFieldDefaulted(tiff, TIFFTAG_EXTRASAMPLES, &extrasamples, &sampleinfo);
if (extrasamples >= 1 &&
(sampleinfo[0] == EXTRASAMPLE_UNSPECIFIED || sampleinfo[0] == EXTRASAMPLE_ASSOCALPHA)
) {
shuffle = ImagingFindUnpacker("RGBA", "RGBa", NULL);
for (y = state->yoff; y < state->ysize; y++) {
UINT8* ptr = (UINT8*) im->image[y + state->yoff] +
state->xoff * im->pixelsize;
shuffle(ptr, ptr, state->xsize);
}
}
}
}
decode_err:
TIFFClose(tiff);
TRACE(("Done Decoding, Returning \n"));