mirror of
https://github.com/python-pillow/Pillow.git
synced 2025-01-12 18:26:17 +03:00
ImageStat: use functools.cached_property and add type hints
This commit is contained in:
parent
38f4c7ba5a
commit
bcb2db6a87
|
@ -7,67 +7,6 @@
|
|||
The :py:mod:`~PIL.ImageStat` module calculates global statistics for an image, or
|
||||
for a region of an image.
|
||||
|
||||
.. py:class:: Stat(image_or_list, mask=None)
|
||||
|
||||
Calculate statistics for the given image. If a mask is included,
|
||||
only the regions covered by that mask are included in the
|
||||
statistics. You can also pass in a previously calculated histogram.
|
||||
|
||||
:param image: A PIL image, or a precalculated histogram.
|
||||
|
||||
.. note::
|
||||
|
||||
For a PIL image, calculations rely on the
|
||||
:py:meth:`~PIL.Image.Image.histogram` method. The pixel counts are
|
||||
grouped into 256 bins, even if the image has more than 8 bits per
|
||||
channel. So ``I`` and ``F`` mode images have a maximum ``mean``,
|
||||
``median`` and ``rms`` of 255, and cannot have an ``extrema`` maximum
|
||||
of more than 255.
|
||||
|
||||
:param mask: An optional mask.
|
||||
|
||||
.. py:attribute:: extrema
|
||||
|
||||
Min/max values for each band in the image.
|
||||
|
||||
.. note::
|
||||
|
||||
This relies on the :py:meth:`~PIL.Image.Image.histogram` method, and
|
||||
simply returns the low and high bins used. This is correct for
|
||||
images with 8 bits per channel, but fails for other modes such as
|
||||
``I`` or ``F``. Instead, use :py:meth:`~PIL.Image.Image.getextrema` to
|
||||
return per-band extrema for the image. This is more correct and
|
||||
efficient because, for non-8-bit modes, the histogram method uses
|
||||
:py:meth:`~PIL.Image.Image.getextrema` to determine the bins used.
|
||||
|
||||
.. py:attribute:: count
|
||||
|
||||
Total number of pixels for each band in the image.
|
||||
|
||||
.. py:attribute:: sum
|
||||
|
||||
Sum of all pixels for each band in the image.
|
||||
|
||||
.. py:attribute:: sum2
|
||||
|
||||
Squared sum of all pixels for each band in the image.
|
||||
|
||||
.. py:attribute:: mean
|
||||
|
||||
Average (arithmetic mean) pixel level for each band in the image.
|
||||
|
||||
.. py:attribute:: median
|
||||
|
||||
Median pixel level for each band in the image.
|
||||
|
||||
.. py:attribute:: rms
|
||||
|
||||
RMS (root-mean-square) for each band in the image.
|
||||
|
||||
.. py:attribute:: var
|
||||
|
||||
Variance for each band in the image.
|
||||
|
||||
.. py:attribute:: stddev
|
||||
|
||||
Standard deviation for each band in the image.
|
||||
.. autoclass:: Stat
|
||||
:members:
|
||||
:special-members: __init__
|
||||
|
|
|
@ -23,35 +23,61 @@
|
|||
from __future__ import annotations
|
||||
|
||||
import math
|
||||
from functools import cached_property
|
||||
|
||||
from . import Image
|
||||
|
||||
|
||||
class Stat:
|
||||
def __init__(self, image_or_list, mask=None):
|
||||
try:
|
||||
def __init__(
|
||||
self, image_or_list: Image.Image | list[int], mask: Image.Image | None = None
|
||||
) -> None:
|
||||
"""
|
||||
Calculate statistics for the given image. If a mask is included,
|
||||
only the regions covered by that mask are included in the
|
||||
statistics. You can also pass in a previously calculated histogram.
|
||||
|
||||
:param image: A PIL image, or a precalculated histogram.
|
||||
|
||||
.. note::
|
||||
|
||||
For a PIL image, calculations rely on the
|
||||
:py:meth:`~PIL.Image.Image.histogram` method. The pixel counts are
|
||||
grouped into 256 bins, even if the image has more than 8 bits per
|
||||
channel. So ``I`` and ``F`` mode images have a maximum ``mean``,
|
||||
``median`` and ``rms`` of 255, and cannot have an ``extrema`` maximum
|
||||
of more than 255.
|
||||
|
||||
:param mask: An optional mask.
|
||||
"""
|
||||
if isinstance(image_or_list, Image.Image):
|
||||
if mask:
|
||||
self.h = image_or_list.histogram(mask)
|
||||
else:
|
||||
self.h = image_or_list.histogram()
|
||||
except AttributeError:
|
||||
self.h = image_or_list # assume it to be a histogram list
|
||||
else:
|
||||
self.h = image_or_list
|
||||
if not isinstance(self.h, list):
|
||||
msg = "first argument must be image or list"
|
||||
msg = "first argument must be image or list" # type: ignore[unreachable]
|
||||
raise TypeError(msg)
|
||||
self.bands = list(range(len(self.h) // 256))
|
||||
|
||||
def __getattr__(self, id):
|
||||
"""Calculate missing attribute"""
|
||||
if id[:4] == "_get":
|
||||
raise AttributeError(id)
|
||||
# calculate missing attribute
|
||||
v = getattr(self, "_get" + id)()
|
||||
setattr(self, id, v)
|
||||
return v
|
||||
@cached_property
|
||||
def extrema(self) -> list[tuple[int, int]]:
|
||||
"""
|
||||
Min/max values for each band in the image.
|
||||
|
||||
def _getextrema(self):
|
||||
"""Get min/max values for each band in the image"""
|
||||
.. note::
|
||||
This relies on the :py:meth:`~PIL.Image.Image.histogram` method, and
|
||||
simply returns the low and high bins used. This is correct for
|
||||
images with 8 bits per channel, but fails for other modes such as
|
||||
``I`` or ``F``. Instead, use :py:meth:`~PIL.Image.Image.getextrema` to
|
||||
return per-band extrema for the image. This is more correct and
|
||||
efficient because, for non-8-bit modes, the histogram method uses
|
||||
:py:meth:`~PIL.Image.Image.getextrema` to determine the bins used.
|
||||
"""
|
||||
|
||||
def minmax(histogram):
|
||||
def minmax(histogram: list[int]) -> tuple[int, int]:
|
||||
res_min, res_max = 255, 0
|
||||
for i in range(256):
|
||||
if histogram[i]:
|
||||
|
@ -65,12 +91,14 @@ class Stat:
|
|||
|
||||
return [minmax(self.h[i:]) for i in range(0, len(self.h), 256)]
|
||||
|
||||
def _getcount(self):
|
||||
"""Get total number of pixels in each layer"""
|
||||
@cached_property
|
||||
def count(self) -> list[int]:
|
||||
"""Total number of pixels for each band in the image."""
|
||||
return [sum(self.h[i : i + 256]) for i in range(0, len(self.h), 256)]
|
||||
|
||||
def _getsum(self):
|
||||
"""Get sum of all pixels in each layer"""
|
||||
@cached_property
|
||||
def sum(self) -> list[float]:
|
||||
"""Sum of all pixels for each band in the image."""
|
||||
|
||||
v = []
|
||||
for i in range(0, len(self.h), 256):
|
||||
|
@ -80,8 +108,9 @@ class Stat:
|
|||
v.append(layer_sum)
|
||||
return v
|
||||
|
||||
def _getsum2(self):
|
||||
"""Get squared sum of all pixels in each layer"""
|
||||
@cached_property
|
||||
def sum2(self) -> list[float]:
|
||||
"""Squared sum of all pixels for each band in the image."""
|
||||
|
||||
v = []
|
||||
for i in range(0, len(self.h), 256):
|
||||
|
@ -91,12 +120,14 @@ class Stat:
|
|||
v.append(sum2)
|
||||
return v
|
||||
|
||||
def _getmean(self):
|
||||
"""Get average pixel level for each layer"""
|
||||
@cached_property
|
||||
def mean(self) -> list[float]:
|
||||
"""Average (arithmetic mean) pixel level for each band in the image."""
|
||||
return [self.sum[i] / self.count[i] for i in self.bands]
|
||||
|
||||
def _getmedian(self):
|
||||
"""Get median pixel level for each layer"""
|
||||
@cached_property
|
||||
def median(self) -> list[int]:
|
||||
"""Median pixel level for each band in the image."""
|
||||
|
||||
v = []
|
||||
for i in self.bands:
|
||||
|
@ -110,19 +141,22 @@ class Stat:
|
|||
v.append(j)
|
||||
return v
|
||||
|
||||
def _getrms(self):
|
||||
"""Get RMS for each layer"""
|
||||
@cached_property
|
||||
def rms(self) -> list[float]:
|
||||
"""RMS (root-mean-square) for each band in the image."""
|
||||
return [math.sqrt(self.sum2[i] / self.count[i]) for i in self.bands]
|
||||
|
||||
def _getvar(self):
|
||||
"""Get variance for each layer"""
|
||||
@cached_property
|
||||
def var(self) -> list[float]:
|
||||
"""Variance for each band in the image."""
|
||||
return [
|
||||
(self.sum2[i] - (self.sum[i] ** 2.0) / self.count[i]) / self.count[i]
|
||||
for i in self.bands
|
||||
]
|
||||
|
||||
def _getstddev(self):
|
||||
"""Get standard deviation for each layer"""
|
||||
@cached_property
|
||||
def stddev(self) -> list[float]:
|
||||
"""Standard deviation for each band in the image."""
|
||||
return [math.sqrt(self.var[i]) for i in self.bands]
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user