mirror of
https://github.com/python-pillow/Pillow.git
synced 2025-08-09 14:54:46 +03:00
Add autocontrast_preserve
Maximize (normalize) image contrast while preserving image tone. (Mimics Photoshop autocontrast functionality as opposed to the default PIL implementation, which operates on channels separately).
This commit is contained in:
parent
e58a773c29
commit
bfab360504
|
@ -135,6 +135,89 @@ def autocontrast(image, cutoff=0, ignore=None):
|
|||
return _lut(image, lut)
|
||||
|
||||
|
||||
def autocontrast_preserve(image, cutoff=0, ignore=None):
|
||||
"""
|
||||
Maximize (normalize) image contrast while preserving image tone.
|
||||
This function calculates a histogram of the input image, removes
|
||||
**cutoff** percent of the lightest and darkest pixels from the
|
||||
histogram, and remaps the image so that the darkest pixel becomes
|
||||
black (0), and the lightest becomes white (255).
|
||||
:param image: The image to process.
|
||||
:param cutoff: How many percent to cut off from the histogram.
|
||||
:param ignore: The background pixel value (use None for no background).
|
||||
:return: An image.
|
||||
"""
|
||||
histogram = image.histogram()
|
||||
lut = []
|
||||
los = []
|
||||
his = []
|
||||
for layer in range(0, len(histogram), 256):
|
||||
h = histogram[layer:layer+256]
|
||||
if ignore is not None:
|
||||
# get rid of outliers
|
||||
try:
|
||||
h[ignore] = 0
|
||||
except TypeError:
|
||||
# assume sequence
|
||||
for ix in ignore:
|
||||
h[ix] = 0
|
||||
if cutoff:
|
||||
# cut off pixels from both ends of the histogram
|
||||
# get number of pixels
|
||||
n = 0
|
||||
for ix in range(256):
|
||||
n = n + h[ix]
|
||||
# remove cutoff% pixels from the low end
|
||||
cut = n * cutoff // 100
|
||||
for lo in range(256):
|
||||
if cut > h[lo]:
|
||||
cut = cut - h[lo]
|
||||
h[lo] = 0
|
||||
else:
|
||||
h[lo] -= cut
|
||||
cut = 0
|
||||
if cut <= 0:
|
||||
break
|
||||
# remove cutoff% samples from the hi end
|
||||
cut = n * cutoff // 100
|
||||
for hi in range(255, -1, -1):
|
||||
if cut > h[hi]:
|
||||
cut = cut - h[hi]
|
||||
h[hi] = 0
|
||||
else:
|
||||
h[hi] -= cut
|
||||
cut = 0
|
||||
if cut <= 0:
|
||||
break
|
||||
# find lowest/highest samples after preprocessing
|
||||
for lo in range(256):
|
||||
if h[lo]:
|
||||
los.append(lo)
|
||||
break
|
||||
for hi in range(255, -1, -1):
|
||||
if h[hi]:
|
||||
his.append(hi)
|
||||
break
|
||||
# get lowest/highest samples across all layers
|
||||
lo = min(los)
|
||||
hi = max(his)
|
||||
if hi <= lo:
|
||||
# don't bother
|
||||
lut.extend(list(range(len(histogram))))
|
||||
else:
|
||||
scale = 255.0 / (hi - lo)
|
||||
offset = -lo * scale
|
||||
for layer in range(len(histogram) / 256):
|
||||
for ix in range(256):
|
||||
ix = int(ix * scale + offset)
|
||||
if ix < 0:
|
||||
ix = 0
|
||||
elif ix > 255:
|
||||
ix = 255
|
||||
lut.append(ix)
|
||||
return _lut(image, lut)
|
||||
|
||||
|
||||
def colorize(image, black, white):
|
||||
"""
|
||||
Colorize grayscale image. The **black** and **white**
|
||||
|
|
Loading…
Reference in New Issue
Block a user