Merge pull request #2738 from uploadcare/block-storage

Block & array hybrid storage
This commit is contained in:
wiredfool 2017-10-01 20:41:08 +01:00 committed by GitHub
commit c82f9fe1bb
8 changed files with 603 additions and 70 deletions

View File

@ -110,6 +110,7 @@ import os
import sys
import io
import struct
import atexit
# type stuff
import collections
@ -2836,3 +2837,41 @@ def radial_gradient(mode):
:param mode: Input mode.
"""
return Image()._new(core.radial_gradient(mode))
# --------------------------------------------------------------------
# Resources
def _apply_env_variables(env=None):
if env is None:
env = os.environ
for var_name, setter in [
('PILLOW_ALIGNMENT', core.set_alignment),
('PILLOW_BLOCK_SIZE', core.set_block_size),
('PILLOW_BLOCKS_MAX', core.set_blocks_max),
]:
if var_name not in env:
continue
var = env[var_name].lower()
units = 1
for postfix, mul in [('k', 1024), ('m', 1024*1024)]:
if var.endswith(postfix):
units = mul
var = var[:-len(postfix)]
try:
var = int(var) * units
except ValueError:
warnings.warn("{0} is not int".format(var_name))
continue
try:
setter(var)
except ValueError as e:
warnings.warn("{0}: {1}".format(var_name, e))
_apply_env_variables()
atexit.register(core.clear_cache)

View File

@ -0,0 +1,181 @@
from __future__ import division, print_function
import sys
from helper import unittest, PillowTestCase
from PIL import Image
is_pypy = hasattr(sys, 'pypy_version_info')
class TestCoreStats(PillowTestCase):
def test_get_stats(self):
# Create at least one image
Image.new('RGB', (10, 10))
stats = Image.core.get_stats()
self.assertIn('new_count', stats)
self.assertIn('reused_blocks', stats)
self.assertIn('freed_blocks', stats)
self.assertIn('allocated_blocks', stats)
self.assertIn('reallocated_blocks', stats)
self.assertIn('blocks_cached', stats)
def test_reset_stats(self):
Image.core.reset_stats()
stats = Image.core.get_stats()
self.assertEqual(stats['new_count'], 0)
self.assertEqual(stats['reused_blocks'], 0)
self.assertEqual(stats['freed_blocks'], 0)
self.assertEqual(stats['allocated_blocks'], 0)
self.assertEqual(stats['reallocated_blocks'], 0)
self.assertEqual(stats['blocks_cached'], 0)
class TestCoreMemory(PillowTestCase):
def tearDown(self):
# Restore default values
Image.core.set_alignment(1)
Image.core.set_block_size(1024*1024)
Image.core.set_blocks_max(0)
Image.core.clear_cache()
def test_get_alignment(self):
alignment = Image.core.get_alignment()
self.assertGreater(alignment, 0)
def test_set_alignment(self):
for i in [1, 2, 4, 8, 16, 32]:
Image.core.set_alignment(i)
alignment = Image.core.get_alignment()
self.assertEqual(alignment, i)
# Try to construct new image
Image.new('RGB', (10, 10))
self.assertRaises(ValueError, Image.core.set_alignment, 0)
self.assertRaises(ValueError, Image.core.set_alignment, -1)
self.assertRaises(ValueError, Image.core.set_alignment, 3)
def test_get_block_size(self):
block_size = Image.core.get_block_size()
self.assertGreaterEqual(block_size, 4096)
def test_set_block_size(self):
for i in [4096, 2*4096, 3*4096]:
Image.core.set_block_size(i)
block_size = Image.core.get_block_size()
self.assertEqual(block_size, i)
# Try to construct new image
Image.new('RGB', (10, 10))
self.assertRaises(ValueError, Image.core.set_block_size, 0)
self.assertRaises(ValueError, Image.core.set_block_size, -1)
self.assertRaises(ValueError, Image.core.set_block_size, 4000)
def test_set_block_size_stats(self):
Image.core.reset_stats()
Image.core.set_blocks_max(0)
Image.core.set_block_size(4096)
Image.new('RGB', (256, 256))
stats = Image.core.get_stats()
self.assertGreaterEqual(stats['new_count'], 1)
self.assertGreaterEqual(stats['allocated_blocks'], 64)
if not is_pypy:
self.assertGreaterEqual(stats['freed_blocks'], 64)
def test_get_blocks_max(self):
blocks_max = Image.core.get_blocks_max()
self.assertGreaterEqual(blocks_max, 0)
def test_set_blocks_max(self):
for i in [0, 1, 10]:
Image.core.set_blocks_max(i)
blocks_max = Image.core.get_blocks_max()
self.assertEqual(blocks_max, i)
# Try to construct new image
Image.new('RGB', (10, 10))
self.assertRaises(ValueError, Image.core.set_blocks_max, -1)
@unittest.skipIf(is_pypy, "images are not collected")
def test_set_blocks_max_stats(self):
Image.core.reset_stats()
Image.core.set_blocks_max(128)
Image.core.set_block_size(4096)
Image.new('RGB', (256, 256))
Image.new('RGB', (256, 256))
stats = Image.core.get_stats()
self.assertGreaterEqual(stats['new_count'], 2)
self.assertGreaterEqual(stats['allocated_blocks'], 64)
self.assertGreaterEqual(stats['reused_blocks'], 64)
self.assertEqual(stats['freed_blocks'], 0)
self.assertEqual(stats['blocks_cached'], 64)
@unittest.skipIf(is_pypy, "images are not collected")
def test_clear_cache_stats(self):
Image.core.reset_stats()
Image.core.clear_cache()
Image.core.set_blocks_max(128)
Image.core.set_block_size(4096)
Image.new('RGB', (256, 256))
Image.new('RGB', (256, 256))
# Keep 16 blocks in cache
Image.core.clear_cache(16)
stats = Image.core.get_stats()
self.assertGreaterEqual(stats['new_count'], 2)
self.assertGreaterEqual(stats['allocated_blocks'], 64)
self.assertGreaterEqual(stats['reused_blocks'], 64)
self.assertGreaterEqual(stats['freed_blocks'], 48)
self.assertEqual(stats['blocks_cached'], 16)
def test_large_images(self):
Image.core.reset_stats()
Image.core.set_blocks_max(0)
Image.core.set_block_size(4096)
Image.new('RGB', (2048, 16))
Image.core.clear_cache()
stats = Image.core.get_stats()
self.assertGreaterEqual(stats['new_count'], 1)
self.assertGreaterEqual(stats['allocated_blocks'], 16)
self.assertGreaterEqual(stats['reused_blocks'], 0)
self.assertEqual(stats['blocks_cached'], 0)
if not is_pypy:
self.assertGreaterEqual(stats['freed_blocks'], 16)
class TestEnvVars(PillowTestCase):
def tearDown(self):
# Restore default values
Image.core.set_alignment(1)
Image.core.set_block_size(1024*1024)
Image.core.set_blocks_max(0)
Image.core.clear_cache()
def test_units(self):
Image._apply_env_variables({'PILLOW_BLOCKS_MAX': '2K'})
self.assertEqual(Image.core.get_blocks_max(), 2*1024)
Image._apply_env_variables({'PILLOW_BLOCK_SIZE': '2m'})
self.assertEqual(Image.core.get_block_size(), 2*1024*1024)
def test_warnings(self):
self.assert_warning(
UserWarning, Image._apply_env_variables,
{'PILLOW_ALIGNMENT': '15'})
self.assert_warning(
UserWarning, Image._apply_env_variables,
{'PILLOW_BLOCK_SIZE': '1024'})
self.assert_warning(
UserWarning, Image._apply_env_variables,
{'PILLOW_BLOCKS_MAX': 'wat'})

View File

@ -383,6 +383,12 @@ class TestImage(PillowTestCase):
im = Image.new('L', (0, 0))
self.assertEqual(im.size, (0, 0))
im = Image.new('L', (0, 100))
self.assertEqual(im.size, (0, 100))
im = Image.new('L', (100, 0))
self.assertEqual(im.size, (100, 0))
self.assertTrue(Image.new('RGB', (1, 1)))
# Should pass lists too
i = Image.new('RGB', [1, 1])

View File

@ -305,9 +305,9 @@ class CoreResampleAlphaCorrectTest(PillowTestCase):
class CoreResamplePassesTest(PillowTestCase):
@contextmanager
def count(self, diff):
count = Image.core.getcount()
count = Image.core.get_stats()['new_count']
yield
self.assertEqual(Image.core.getcount() - count, diff)
self.assertEqual(Image.core.get_stats()['new_count'] - count, diff)
def test_horizontal(self):
im = hopper('L')

View File

@ -641,15 +641,6 @@ _new_block(PyObject* self, PyObject* args)
return PyImagingNew(ImagingNewBlock(mode, xsize, ysize));
}
static PyObject*
_getcount(PyObject* self, PyObject* args)
{
if (!PyArg_ParseTuple(args, ":getcount"))
return NULL;
return PyInt_FromLong(ImagingNewCount);
}
static PyObject*
_linear_gradient(PyObject* self, PyObject* args)
{
@ -3330,6 +3321,164 @@ static PyTypeObject PixelAccess_Type = {
/* -------------------------------------------------------------------- */
static PyObject*
_get_stats(PyObject* self, PyObject* args)
{
PyObject* d;
ImagingMemoryArena arena = &ImagingDefaultArena;
if (!PyArg_ParseTuple(args, ":get_stats"))
return NULL;
d = PyDict_New();
if ( ! d)
return NULL;
PyDict_SetItemString(d, "new_count",
PyInt_FromLong(arena->stats_new_count));
PyDict_SetItemString(d, "allocated_blocks",
PyInt_FromLong(arena->stats_allocated_blocks));
PyDict_SetItemString(d, "reused_blocks",
PyInt_FromLong(arena->stats_reused_blocks));
PyDict_SetItemString(d, "reallocated_blocks",
PyInt_FromLong(arena->stats_reallocated_blocks));
PyDict_SetItemString(d, "freed_blocks",
PyInt_FromLong(arena->stats_freed_blocks));
PyDict_SetItemString(d, "blocks_cached",
PyInt_FromLong(arena->blocks_cached));
return d;
}
static PyObject*
_reset_stats(PyObject* self, PyObject* args)
{
ImagingMemoryArena arena = &ImagingDefaultArena;
if (!PyArg_ParseTuple(args, ":reset_stats"))
return NULL;
arena->stats_new_count = 0;
arena->stats_allocated_blocks = 0;
arena->stats_reused_blocks = 0;
arena->stats_reallocated_blocks = 0;
arena->stats_freed_blocks = 0;
Py_INCREF(Py_None);
return Py_None;
}
static PyObject*
_get_alignment(PyObject* self, PyObject* args)
{
if (!PyArg_ParseTuple(args, ":get_alignment"))
return NULL;
return PyInt_FromLong(ImagingDefaultArena.alignment);
}
static PyObject*
_get_block_size(PyObject* self, PyObject* args)
{
if (!PyArg_ParseTuple(args, ":get_block_size"))
return NULL;
return PyInt_FromLong(ImagingDefaultArena.block_size);
}
static PyObject*
_get_blocks_max(PyObject* self, PyObject* args)
{
if (!PyArg_ParseTuple(args, ":get_blocks_max"))
return NULL;
return PyInt_FromLong(ImagingDefaultArena.blocks_max);
}
static PyObject*
_set_alignment(PyObject* self, PyObject* args)
{
int alignment;
if (!PyArg_ParseTuple(args, "i:set_alignment", &alignment))
return NULL;
if (alignment < 1 || alignment > 128) {
PyErr_SetString(PyExc_ValueError, "alignment should be from 1 to 128");
return NULL;
}
/* Is power of two */
if (alignment & (alignment - 1)) {
PyErr_SetString(PyExc_ValueError, "alignment should be power of two");
return NULL;
}
ImagingDefaultArena.alignment = alignment;
Py_INCREF(Py_None);
return Py_None;
}
static PyObject*
_set_block_size(PyObject* self, PyObject* args)
{
int block_size;
if (!PyArg_ParseTuple(args, "i:set_block_size", &block_size))
return NULL;
if (block_size <= 0) {
PyErr_SetString(PyExc_ValueError,
"block_size should be greater than 0");
return NULL;
}
if (block_size & 0xfff) {
PyErr_SetString(PyExc_ValueError,
"block_size should be multiple of 4096");
return NULL;
}
ImagingDefaultArena.block_size = block_size;
Py_INCREF(Py_None);
return Py_None;
}
static PyObject*
_set_blocks_max(PyObject* self, PyObject* args)
{
int blocks_max;
if (!PyArg_ParseTuple(args, "i:set_blocks_max", &blocks_max))
return NULL;
if (blocks_max < 0) {
PyErr_SetString(PyExc_ValueError,
"blocks_max should be greater than 0");
return NULL;
}
if ( ! ImagingMemorySetBlocksMax(&ImagingDefaultArena, blocks_max)) {
ImagingError_MemoryError();
return NULL;
}
Py_INCREF(Py_None);
return Py_None;
}
static PyObject*
_clear_cache(PyObject* self, PyObject* args)
{
int i = 0;
if (!PyArg_ParseTuple(args, "|i:clear_cache", &i))
return NULL;
ImagingMemoryClearCache(&ImagingDefaultArena, i);
Py_INCREF(Py_None);
return Py_None;
}
/* -------------------------------------------------------------------- */
/* FIXME: this is something of a mess. Should replace this with
pluggable codecs, but not before PIL 1.2 */
@ -3393,8 +3542,6 @@ static PyMethodDef functions[] = {
{"new", (PyCFunction)_new, 1},
{"merge", (PyCFunction)_merge, 1},
{"getcount", (PyCFunction)_getcount, 1},
/* Functions */
{"convert", (PyCFunction)_convert2, 1},
@ -3484,6 +3631,17 @@ static PyMethodDef functions[] = {
{"outline", (PyCFunction)PyOutline_Create, 1},
#endif
/* Resource management */
{"get_stats", (PyCFunction)_get_stats, 1},
{"reset_stats", (PyCFunction)_reset_stats, 1},
{"get_alignment", (PyCFunction)_get_alignment, 1},
{"get_block_size", (PyCFunction)_get_block_size, 1},
{"get_blocks_max", (PyCFunction)_get_blocks_max, 1},
{"set_alignment", (PyCFunction)_set_alignment, 1},
{"set_block_size", (PyCFunction)_set_block_size, 1},
{"set_blocks_max", (PyCFunction)_set_blocks_max, 1},
{"clear_cache", (PyCFunction)_clear_cache, 1},
{NULL, NULL} /* sentinel */
};

View File

@ -40,6 +40,9 @@ identified the format of the clipboard data.
The ``PIL.Image.core.copy`` and ``PIL.Image.Image.im.copy2`` methods
have been removed.
The ``PIL.Image.core.getcount`` methods have been removed, use
``PIL.Image.core.get_stats()['new_count']`` property instead.
API Additions
=============
@ -106,4 +109,3 @@ This release contains several performance improvements:
friendly algorithm.
* ImageFilters based on Kernel convolution are significantly faster
due to the new MultibandFilter feature.

View File

@ -75,6 +75,11 @@ typedef struct ImagingPaletteInstance* ImagingPalette;
#define IMAGING_MODE_LENGTH 6+1 /* Band names ("1", "L", "P", "RGB", "RGBA", "CMYK", "YCbCr", "BGR;xy") */
typedef struct {
char *ptr;
int size;
} ImagingMemoryBlock;
struct ImagingMemoryInstance {
/* Format */
@ -95,6 +100,7 @@ struct ImagingMemoryInstance {
/* Internals */
char **image; /* Actual raster data. */
char *block; /* Set if data is allocated in a single block. */
ImagingMemoryBlock *blocks; /* Memory blocks for pixel storage */
int pixelsize; /* Size of a pixel, in bytes (1, 2 or 4) */
int linesize; /* Size of a line, in bytes (xsize * pixelsize) */
@ -152,11 +158,26 @@ struct ImagingPaletteInstance {
};
typedef struct ImagingMemoryArena {
int alignment; /* Alignment in memory of each line of an image */
int block_size; /* Preferred block size, bytes */
int blocks_max; /* Maximum number of cached blocks */
int blocks_cached; /* Current number of blocks not associated with images */
ImagingMemoryBlock *blocks_pool;
int stats_new_count; /* Number of new allocated images */
int stats_allocated_blocks; /* Number of allocated blocks */
int stats_reused_blocks; /* Number of blocks which were retrieved from a pool */
int stats_reallocated_blocks; /* Number of blocks which were actually reallocated after retrieving */
int stats_freed_blocks; /* Number of freed blocks */
} *ImagingMemoryArena;
/* Objects */
/* ------- */
extern int ImagingNewCount;
extern struct ImagingMemoryArena ImagingDefaultArena;
extern int ImagingMemorySetBlocksMax(ImagingMemoryArena arena, int blocks_max);
extern void ImagingMemoryClearCache(ImagingMemoryArena arena, int new_size);
extern Imaging ImagingNew(const char* mode, int xsize, int ysize);
extern Imaging ImagingNewDirty(const char* mode, int xsize, int ysize);

View File

@ -173,7 +173,6 @@ ImagingNewPrologueSubtype(const char *mode, int xsize, int ysize, int size)
im->linesize = xsize * 4;
} else if (strcmp(mode, "RGBa") == 0) {
/* EXPERIMENTAL */
/* 32-bit true colour images with premultiplied alpha */
im->bands = im->pixelsize = 4;
im->linesize = xsize * 4;
@ -230,7 +229,7 @@ ImagingNewPrologueSubtype(const char *mode, int xsize, int ysize, int size)
break;
}
ImagingNewCount++;
ImagingDefaultArena.stats_new_count += 1;
return im;
}
@ -265,48 +264,186 @@ ImagingDelete(Imaging im)
/* ------------------ */
/* Allocate image as an array of line buffers. */
#define IMAGING_PAGE_SIZE (4096)
struct ImagingMemoryArena ImagingDefaultArena = {
1, // alignment
16*1024*1024, // block_size
0, // blocks_max
0, // blocks_cached
NULL, // blocks_pool
0, 0, 0, 0, 0 // Stats
};
int
ImagingMemorySetBlocksMax(ImagingMemoryArena arena, int blocks_max)
{
void *p;
/* Free already cached blocks */
ImagingMemoryClearCache(arena, blocks_max);
if (blocks_max == 0 && arena->blocks_pool != NULL) {
free(arena->blocks_pool);
arena->blocks_pool = NULL;
} else if (arena->blocks_pool != NULL) {
p = realloc(arena->blocks_pool, sizeof(*arena->blocks_pool) * blocks_max);
if ( ! p) {
// Leave previous blocks_max value
return 0;
}
arena->blocks_pool = p;
} else {
arena->blocks_pool = calloc(sizeof(*arena->blocks_pool), blocks_max);
if ( ! arena->blocks_pool) {
return 0;
}
}
arena->blocks_max = blocks_max;
return 1;
}
void
ImagingMemoryClearCache(ImagingMemoryArena arena, int new_size)
{
while (arena->blocks_cached > new_size) {
arena->blocks_cached -= 1;
free(arena->blocks_pool[arena->blocks_cached].ptr);
arena->stats_freed_blocks += 1;
}
}
ImagingMemoryBlock
memory_get_block(ImagingMemoryArena arena, int requested_size, int dirty)
{
ImagingMemoryBlock block = {NULL, 0};
if (arena->blocks_cached > 0) {
// Get block from cache
arena->blocks_cached -= 1;
block = arena->blocks_pool[arena->blocks_cached];
// Reallocate if needed
if (block.size != requested_size){
block.ptr = realloc(block.ptr, requested_size);
}
if ( ! block.ptr) {
// Can't allocate, free prevous pointer (it is still valid)
free(arena->blocks_pool[arena->blocks_cached].ptr);
arena->stats_freed_blocks += 1;
return block;
}
if ( ! dirty) {
memset(block.ptr, 0, requested_size);
}
arena->stats_reused_blocks += 1;
if (block.ptr != arena->blocks_pool[arena->blocks_cached].ptr) {
arena->stats_reallocated_blocks += 1;
}
} else {
if (dirty) {
block.ptr = malloc(requested_size);
} else {
block.ptr = calloc(1, requested_size);
}
arena->stats_allocated_blocks += 1;
}
block.size = requested_size;
return block;
}
void
memory_return_block(ImagingMemoryArena arena, ImagingMemoryBlock block)
{
if (arena->blocks_cached < arena->blocks_max) {
// Reduce block size
if (block.size > arena->block_size) {
block.size = arena->block_size;
block.ptr = realloc(block.ptr, arena->block_size);
}
arena->blocks_pool[arena->blocks_cached] = block;
arena->blocks_cached += 1;
} else {
free(block.ptr);
arena->stats_freed_blocks += 1;
}
}
static void
ImagingDestroyArray(Imaging im)
{
int y;
int y = 0;
if (im->image)
for (y = 0; y < im->ysize; y++)
if (im->image[y])
free(im->image[y]);
if (im->blocks) {
while (im->blocks[y].ptr) {
memory_return_block(&ImagingDefaultArena, im->blocks[y]);
y += 1;
}
free(im->blocks);
}
}
Imaging
ImagingAllocateArray(Imaging im, int dirty)
ImagingAllocateArray(Imaging im, int dirty, int block_size)
{
ImagingSectionCookie cookie;
int y, line_in_block, current_block;
ImagingMemoryArena arena = &ImagingDefaultArena;
ImagingMemoryBlock block = {NULL, 0};
int aligned_linesize, lines_per_block, blocks_count;
char *aligned_ptr = NULL;
int y;
char* p;
ImagingSectionEnter(&cookie);
/* Allocate image as an array of lines */
for (y = 0; y < im->ysize; y++) {
/* malloc check linesize checked in prologue */
if (dirty) {
p = (char *) malloc(im->linesize);
} else {
p = (char *) calloc(1, im->linesize);
}
if (!p) {
ImagingDestroyArray(im);
break;
}
im->image[y] = p;
/* 0-width or 0-height image. No need to do anything */
if ( ! im->linesize || ! im->ysize) {
return im;
}
ImagingSectionLeave(&cookie);
aligned_linesize = (im->linesize + arena->alignment - 1) & -arena->alignment;
lines_per_block = (block_size - (arena->alignment - 1)) / aligned_linesize;
if (lines_per_block == 0)
lines_per_block = 1;
blocks_count = (im->ysize + lines_per_block - 1) / lines_per_block;
// printf("NEW size: %dx%d, ls: %d, lpb: %d, blocks: %d\n",
// im->xsize, im->ysize, aligned_linesize, lines_per_block, blocks_count);
if (y != im->ysize) {
/* One extra ponter is always NULL */
im->blocks = calloc(sizeof(*im->blocks), blocks_count + 1);
if ( ! im->blocks) {
return (Imaging) ImagingError_MemoryError();
}
/* Allocate image as an array of lines */
line_in_block = 0;
current_block = 0;
for (y = 0; y < im->ysize; y++) {
if (line_in_block == 0) {
int required;
int lines_remaining = lines_per_block;
if (lines_remaining > im->ysize - y) {
lines_remaining = im->ysize - y;
}
required = lines_remaining * aligned_linesize + arena->alignment - 1;
block = memory_get_block(arena, required, dirty);
if ( ! block.ptr) {
ImagingDestroyArray(im);
return (Imaging) ImagingError_MemoryError();
}
im->blocks[current_block] = block;
/* Bulletproof code from libc _int_memalign */
aligned_ptr = (char *)(
((unsigned long) (block.ptr + arena->alignment - 1)) &
-((signed long) arena->alignment));
}
im->image[y] = aligned_ptr + aligned_linesize * line_in_block;
line_in_block += 1;
if (line_in_block >= lines_per_block) {
/* Reset counter and start new block */
line_in_block = 0;
current_block += 1;
}
}
im->destroy = ImagingDestroyArray;
return im;
@ -325,17 +462,13 @@ ImagingDestroyBlock(Imaging im)
}
Imaging
ImagingAllocateBlock(Imaging im, int dirty)
ImagingAllocateBlock(Imaging im)
{
Py_ssize_t y, i;
/* We shouldn't overflow, since the threshold defined
below says that we're only going to allocate max 4M
here before going to the array allocator. Check anyway.
*/
/* overflow check for malloc */
if (im->linesize &&
im->ysize > INT_MAX / im->linesize) {
/* punt if we're going to overflow */
return (Imaging) ImagingError_MemoryError();
}
@ -345,13 +478,8 @@ ImagingAllocateBlock(Imaging im, int dirty)
platforms */
im->block = (char *) malloc(1);
} else {
if (dirty) {
/* malloc check ok, overflow check above */
im->block = (char *) malloc(im->ysize * im->linesize);
} else {
/* malloc check ok, overflow check above */
im->block = (char *) calloc(im->ysize, im->linesize);
}
/* malloc check ok, overflow check above */
im->block = (char *) calloc(im->ysize, im->linesize);
}
if ( ! im->block) {
@ -371,11 +499,6 @@ ImagingAllocateBlock(Imaging im, int dirty)
/* --------------------------------------------------------------------
* Create a new, internally allocated, image.
*/
#if defined(IMAGING_SMALL_MODEL)
#define THRESHOLD 16384L
#else
#define THRESHOLD (2048*2048*4L)
#endif
Imaging
ImagingNewInternal(const char* mode, int xsize, int ysize, int dirty)
@ -390,15 +513,14 @@ ImagingNewInternal(const char* mode, int xsize, int ysize, int dirty)
if ( ! im)
return NULL;
if (im->ysize && im->linesize <= THRESHOLD / im->ysize) {
if (ImagingAllocateBlock(im, dirty)) {
return im;
}
/* assume memory error; try allocating in array mode instead */
ImagingError_Clear();
if (ImagingAllocateArray(im, dirty, ImagingDefaultArena.block_size)) {
return im;
}
if (ImagingAllocateArray(im, dirty)) {
ImagingError_Clear();
// Try to allocate the image once more with smallest possible block size
if (ImagingAllocateArray(im, dirty, IMAGING_PAGE_SIZE)) {
return im;
}
@ -423,11 +545,15 @@ ImagingNewBlock(const char* mode, int xsize, int ysize)
{
Imaging im;
if (xsize < 0 || ysize < 0) {
return (Imaging) ImagingError_ValueError("bad image size");
}
im = ImagingNewPrologue(mode, xsize, ysize);
if ( ! im)
return NULL;
if (ImagingAllocateBlock(im, 0)) {
if (ImagingAllocateBlock(im)) {
return im;
}