Python to C bridge

This commit is contained in:
Alexander 2018-03-26 11:26:51 +03:00
parent 853208c65f
commit d2d546d4ae
2 changed files with 139 additions and 13 deletions

View File

@ -696,9 +696,123 @@ _blend(ImagingObject* self, PyObject* args)
}
/* -------------------------------------------------------------------- */
/* METHODS */
/* METHODS */
/* -------------------------------------------------------------------- */
static INT16*
_prepare_lut_table(PyObject* table, Py_ssize_t table_size)
{
int i;
FLOAT32* table_data;
INT16* prepared;
/* NOTE: This value should be the same as in ColorLUT.c */
#define PRECISION_BITS (16 - 8 - 2)
table_data = (FLOAT32*) getlist(table, &table_size,
"The table should have table_channels * "
"size1D * size2D * size3D float items.", TYPE_FLOAT32);
if ( ! table_data) {
return NULL;
}
/* malloc check ok, max is 2 * 4 * 65**3 = 2197000 */
prepared = (INT16*) malloc(sizeof(INT16) * table_size);
if ( ! prepared) {
free(table_data);
return (INT16*) PyErr_NoMemory();
}
for (i = 0; i < table_size; i++) {
/* Max value for INT16 */
if (table_data[i] >= (0x7fff - 0.5) / (255 << PRECISION_BITS)) {
prepared[i] = 0x7fff;
continue;
}
/* Min value for INT16 */
if (table_data[i] <= (-0x8000 + 0.5) / (255 << PRECISION_BITS)) {
prepared[i] = -0x8000;
continue;
}
if (table_data[i] < 0) {
prepared[i] = table_data[i] * (255 << PRECISION_BITS) - 0.5;
} else {
prepared[i] = table_data[i] * (255 << PRECISION_BITS) + 0.5;
}
}
#undef PRECISION_BITS
free(table_data);
return prepared;
}
static PyObject*
_color_lut_3d(ImagingObject* self, PyObject* args)
{
char* mode;
int filter;
int table_channels;
int size1D, size2D, size3D;
PyObject* table;
INT16* prepared_table;
Imaging imOut;
if ( ! PyArg_ParseTuple(args, "siiiiiO:color_lut_3d", &mode, &filter,
&table_channels, &size1D, &size2D, &size3D,
&table)) {
return NULL;
}
/* actually, it is trilinear */
if (filter != IMAGING_TRANSFORM_BILINEAR) {
PyErr_SetString(PyExc_ValueError,
"Only LINEAR filter is supported.");
return NULL;
}
if (1 > table_channels || table_channels > 4) {
PyErr_SetString(PyExc_ValueError,
"table_channels should be from 1 to 4");
return NULL;
}
if (2 > size1D || size1D > 65 ||
2 > size2D || size2D > 65 ||
2 > size3D || size3D > 65
) {
PyErr_SetString(PyExc_ValueError,
"Table size in any dimension should be from 2 to 65");
return NULL;
}
prepared_table = _prepare_lut_table(
table, table_channels * size1D * size2D * size3D);
if ( ! prepared_table) {
return NULL;
}
imOut = ImagingNewDirty(mode, self->image->xsize, self->image->ysize);
if ( ! imOut) {
free(prepared_table);
return NULL;
}
if ( ! ImagingColorLUT3D_linear(imOut, self->image,
table_channels, size1D, size2D, size3D,
prepared_table)) {
free(prepared_table);
ImagingDelete(imOut);
return NULL;
}
free(prepared_table);
return PyImagingNew(imOut);
}
static PyObject*
_convert(ImagingObject* self, PyObject* args)
{
@ -720,7 +834,10 @@ _convert(ImagingObject* self, PyObject* args)
}
}
return PyImagingNew(ImagingConvert(self->image, mode, paletteimage ? paletteimage->image->palette : NULL, dither));
return PyImagingNew(ImagingConvert(
self->image, mode,
paletteimage ? paletteimage->image->palette : NULL,
dither));
}
static PyObject*
@ -2982,6 +3099,7 @@ static struct PyMethodDef methods[] = {
{"pixel_access", (PyCFunction)pixel_access_new, 1},
/* Standard processing methods (Image) */
{"color_lut_3d", (PyCFunction)_color_lut_3d, 1},
{"convert", (PyCFunction)_convert, 1},
{"convert2", (PyCFunction)_convert2, 1},
{"convert_matrix", (PyCFunction)_convert_matrix, 1},

View File

@ -6,25 +6,26 @@
/* 8 bits for result. Table can overflow [0, 1.0] range,
so we need extra bits for overflow and negative values. */
so we need extra bits for overflow and negative values.
NOTE: This value should be the same as in _imaging/_prepare_lut_table() */
#define PRECISION_BITS (16 - 8 - 2)
static inline void
interpolate3(INT16 out[3], const INT16 a[3], const INT16 b[3], float shift)
{
out[0] = a[0] * (1-shift) + b[0] * shift;
out[1] = a[1] * (1-shift) + b[1] * shift;
out[2] = a[2] * (1-shift) + b[2] * shift;
out[0] = a[0] * (1-shift) + b[0] * shift + 0.5;
out[1] = a[1] * (1-shift) + b[1] * shift + 0.5;
out[2] = a[2] * (1-shift) + b[2] * shift + 0.5;
}
static inline void
interpolate4(INT16 out[3], const INT16 a[3], const INT16 b[3], float shift)
{
out[0] = a[0] * (1-shift) + b[0] * shift;
out[1] = a[1] * (1-shift) + b[1] * shift;
out[2] = a[2] * (1-shift) + b[2] * shift;
out[3] = a[3] * (1-shift) + b[3] * shift;
out[0] = a[0] * (1-shift) + b[0] * shift + 0.5;
out[1] = a[1] * (1-shift) + b[1] * shift + 0.5;
out[2] = a[2] * (1-shift) + b[2] * shift + 0.5;
out[3] = a[3] * (1-shift) + b[3] * shift + 0.5;
}
static inline int
@ -61,10 +62,17 @@ ImagingColorLUT3D_linear(Imaging imOut, Imaging imIn, int table_channels,
int size1D, int size2D, int size3D,
INT16* table)
{
/* The fractions are a way to avoid overflow.
For every pixel, we interpolate 8 elements from the table:
current and +1 for every dimension and they combinations.
If we hit the upper cells from the table,
+1 cells will be outside of the table.
With this compensation we never hit the upper cells
but this also doesn't introduce any noticable difference. */
float scale1D = (size1D - 1) / (255.0002);
float scale2D = (size2D - 1) / (255.0002);
float scale3D = (size3D - 1) / (255.0002);
int size1D_2D = size1D * size2D;
float scale1D = (size1D - 1) / 255.0;
float scale2D = (size2D - 1) / 255.0;
float scale3D = (size3D - 1) / 255.0;
int x, y;
if (table_channels < 3 || table_channels > 4) {