mirror of
https://github.com/python-pillow/Pillow.git
synced 2024-12-26 18:06:18 +03:00
Python to C bridge
This commit is contained in:
parent
853208c65f
commit
d2d546d4ae
122
src/_imaging.c
122
src/_imaging.c
|
@ -696,9 +696,123 @@ _blend(ImagingObject* self, PyObject* args)
|
|||
}
|
||||
|
||||
/* -------------------------------------------------------------------- */
|
||||
/* METHODS */
|
||||
/* METHODS */
|
||||
/* -------------------------------------------------------------------- */
|
||||
|
||||
|
||||
static INT16*
|
||||
_prepare_lut_table(PyObject* table, Py_ssize_t table_size)
|
||||
{
|
||||
int i;
|
||||
FLOAT32* table_data;
|
||||
INT16* prepared;
|
||||
|
||||
/* NOTE: This value should be the same as in ColorLUT.c */
|
||||
#define PRECISION_BITS (16 - 8 - 2)
|
||||
|
||||
table_data = (FLOAT32*) getlist(table, &table_size,
|
||||
"The table should have table_channels * "
|
||||
"size1D * size2D * size3D float items.", TYPE_FLOAT32);
|
||||
if ( ! table_data) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/* malloc check ok, max is 2 * 4 * 65**3 = 2197000 */
|
||||
prepared = (INT16*) malloc(sizeof(INT16) * table_size);
|
||||
if ( ! prepared) {
|
||||
free(table_data);
|
||||
return (INT16*) PyErr_NoMemory();
|
||||
}
|
||||
|
||||
for (i = 0; i < table_size; i++) {
|
||||
/* Max value for INT16 */
|
||||
if (table_data[i] >= (0x7fff - 0.5) / (255 << PRECISION_BITS)) {
|
||||
prepared[i] = 0x7fff;
|
||||
continue;
|
||||
}
|
||||
/* Min value for INT16 */
|
||||
if (table_data[i] <= (-0x8000 + 0.5) / (255 << PRECISION_BITS)) {
|
||||
prepared[i] = -0x8000;
|
||||
continue;
|
||||
}
|
||||
if (table_data[i] < 0) {
|
||||
prepared[i] = table_data[i] * (255 << PRECISION_BITS) - 0.5;
|
||||
} else {
|
||||
prepared[i] = table_data[i] * (255 << PRECISION_BITS) + 0.5;
|
||||
}
|
||||
}
|
||||
|
||||
#undef PRECISION_BITS
|
||||
free(table_data);
|
||||
return prepared;
|
||||
}
|
||||
|
||||
|
||||
static PyObject*
|
||||
_color_lut_3d(ImagingObject* self, PyObject* args)
|
||||
{
|
||||
char* mode;
|
||||
int filter;
|
||||
int table_channels;
|
||||
int size1D, size2D, size3D;
|
||||
PyObject* table;
|
||||
|
||||
INT16* prepared_table;
|
||||
Imaging imOut;
|
||||
|
||||
if ( ! PyArg_ParseTuple(args, "siiiiiO:color_lut_3d", &mode, &filter,
|
||||
&table_channels, &size1D, &size2D, &size3D,
|
||||
&table)) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/* actually, it is trilinear */
|
||||
if (filter != IMAGING_TRANSFORM_BILINEAR) {
|
||||
PyErr_SetString(PyExc_ValueError,
|
||||
"Only LINEAR filter is supported.");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (1 > table_channels || table_channels > 4) {
|
||||
PyErr_SetString(PyExc_ValueError,
|
||||
"table_channels should be from 1 to 4");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (2 > size1D || size1D > 65 ||
|
||||
2 > size2D || size2D > 65 ||
|
||||
2 > size3D || size3D > 65
|
||||
) {
|
||||
PyErr_SetString(PyExc_ValueError,
|
||||
"Table size in any dimension should be from 2 to 65");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
prepared_table = _prepare_lut_table(
|
||||
table, table_channels * size1D * size2D * size3D);
|
||||
if ( ! prepared_table) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
imOut = ImagingNewDirty(mode, self->image->xsize, self->image->ysize);
|
||||
if ( ! imOut) {
|
||||
free(prepared_table);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if ( ! ImagingColorLUT3D_linear(imOut, self->image,
|
||||
table_channels, size1D, size2D, size3D,
|
||||
prepared_table)) {
|
||||
free(prepared_table);
|
||||
ImagingDelete(imOut);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
free(prepared_table);
|
||||
|
||||
return PyImagingNew(imOut);
|
||||
}
|
||||
|
||||
static PyObject*
|
||||
_convert(ImagingObject* self, PyObject* args)
|
||||
{
|
||||
|
@ -720,7 +834,10 @@ _convert(ImagingObject* self, PyObject* args)
|
|||
}
|
||||
}
|
||||
|
||||
return PyImagingNew(ImagingConvert(self->image, mode, paletteimage ? paletteimage->image->palette : NULL, dither));
|
||||
return PyImagingNew(ImagingConvert(
|
||||
self->image, mode,
|
||||
paletteimage ? paletteimage->image->palette : NULL,
|
||||
dither));
|
||||
}
|
||||
|
||||
static PyObject*
|
||||
|
@ -2982,6 +3099,7 @@ static struct PyMethodDef methods[] = {
|
|||
{"pixel_access", (PyCFunction)pixel_access_new, 1},
|
||||
|
||||
/* Standard processing methods (Image) */
|
||||
{"color_lut_3d", (PyCFunction)_color_lut_3d, 1},
|
||||
{"convert", (PyCFunction)_convert, 1},
|
||||
{"convert2", (PyCFunction)_convert2, 1},
|
||||
{"convert_matrix", (PyCFunction)_convert_matrix, 1},
|
||||
|
|
|
@ -6,25 +6,26 @@
|
|||
|
||||
|
||||
/* 8 bits for result. Table can overflow [0, 1.0] range,
|
||||
so we need extra bits for overflow and negative values. */
|
||||
so we need extra bits for overflow and negative values.
|
||||
NOTE: This value should be the same as in _imaging/_prepare_lut_table() */
|
||||
#define PRECISION_BITS (16 - 8 - 2)
|
||||
|
||||
|
||||
static inline void
|
||||
interpolate3(INT16 out[3], const INT16 a[3], const INT16 b[3], float shift)
|
||||
{
|
||||
out[0] = a[0] * (1-shift) + b[0] * shift;
|
||||
out[1] = a[1] * (1-shift) + b[1] * shift;
|
||||
out[2] = a[2] * (1-shift) + b[2] * shift;
|
||||
out[0] = a[0] * (1-shift) + b[0] * shift + 0.5;
|
||||
out[1] = a[1] * (1-shift) + b[1] * shift + 0.5;
|
||||
out[2] = a[2] * (1-shift) + b[2] * shift + 0.5;
|
||||
}
|
||||
|
||||
static inline void
|
||||
interpolate4(INT16 out[3], const INT16 a[3], const INT16 b[3], float shift)
|
||||
{
|
||||
out[0] = a[0] * (1-shift) + b[0] * shift;
|
||||
out[1] = a[1] * (1-shift) + b[1] * shift;
|
||||
out[2] = a[2] * (1-shift) + b[2] * shift;
|
||||
out[3] = a[3] * (1-shift) + b[3] * shift;
|
||||
out[0] = a[0] * (1-shift) + b[0] * shift + 0.5;
|
||||
out[1] = a[1] * (1-shift) + b[1] * shift + 0.5;
|
||||
out[2] = a[2] * (1-shift) + b[2] * shift + 0.5;
|
||||
out[3] = a[3] * (1-shift) + b[3] * shift + 0.5;
|
||||
}
|
||||
|
||||
static inline int
|
||||
|
@ -61,10 +62,17 @@ ImagingColorLUT3D_linear(Imaging imOut, Imaging imIn, int table_channels,
|
|||
int size1D, int size2D, int size3D,
|
||||
INT16* table)
|
||||
{
|
||||
/* The fractions are a way to avoid overflow.
|
||||
For every pixel, we interpolate 8 elements from the table:
|
||||
current and +1 for every dimension and they combinations.
|
||||
If we hit the upper cells from the table,
|
||||
+1 cells will be outside of the table.
|
||||
With this compensation we never hit the upper cells
|
||||
but this also doesn't introduce any noticable difference. */
|
||||
float scale1D = (size1D - 1) / (255.0002);
|
||||
float scale2D = (size2D - 1) / (255.0002);
|
||||
float scale3D = (size3D - 1) / (255.0002);
|
||||
int size1D_2D = size1D * size2D;
|
||||
float scale1D = (size1D - 1) / 255.0;
|
||||
float scale2D = (size2D - 1) / 255.0;
|
||||
float scale3D = (size3D - 1) / 255.0;
|
||||
int x, y;
|
||||
|
||||
if (table_channels < 3 || table_channels > 4) {
|
||||
|
|
Loading…
Reference in New Issue
Block a user