mirror of
https://github.com/python-pillow/Pillow.git
synced 2024-11-11 12:17:14 +03:00
Merge branch 'fix-blur-alpha'
This commit is contained in:
commit
e3793447fc
BIN
Tests/images/color_snakes.png
Normal file
BIN
Tests/images/color_snakes.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 1.3 KiB |
|
@ -5,6 +5,7 @@ from PIL import ImageOps
|
|||
from PIL import ImageFilter
|
||||
|
||||
im = Image.open("Tests/images/hopper.ppm")
|
||||
snakes = Image.open("Tests/images/color_snakes.png")
|
||||
|
||||
|
||||
class TestImageOpsUsm(PillowTestCase):
|
||||
|
@ -16,7 +17,7 @@ class TestImageOpsUsm(PillowTestCase):
|
|||
self.assertEqual(i.size, (128, 128))
|
||||
# i.save("blur.bmp")
|
||||
|
||||
i = ImageOps.usm(im, 2.0, 125, 8)
|
||||
i = ImageOps.unsharp_mask(im, 2.0, 125, 8)
|
||||
self.assertEqual(i.mode, "RGB")
|
||||
self.assertEqual(i.size, (128, 128))
|
||||
# i.save("usm.bmp")
|
||||
|
@ -33,7 +34,7 @@ class TestImageOpsUsm(PillowTestCase):
|
|||
self.assertEqual(i.mode, "RGB")
|
||||
self.assertEqual(i.size, (128, 128))
|
||||
|
||||
def test_usm(self):
|
||||
def test_usm_formats(self):
|
||||
|
||||
usm = ImageOps.unsharp_mask
|
||||
self.assertRaises(ValueError, lambda: usm(im.convert("1")))
|
||||
|
@ -45,7 +46,7 @@ class TestImageOpsUsm(PillowTestCase):
|
|||
usm(im.convert("CMYK"))
|
||||
self.assertRaises(ValueError, lambda: usm(im.convert("YCbCr")))
|
||||
|
||||
def test_blur(self):
|
||||
def test_blur_formats(self):
|
||||
|
||||
blur = ImageOps.gaussian_blur
|
||||
self.assertRaises(ValueError, lambda: blur(im.convert("1")))
|
||||
|
@ -57,6 +58,33 @@ class TestImageOpsUsm(PillowTestCase):
|
|||
blur(im.convert("CMYK"))
|
||||
self.assertRaises(ValueError, lambda: blur(im.convert("YCbCr")))
|
||||
|
||||
def test_usm_accuracy(self):
|
||||
|
||||
i = snakes._new(ImageOps.unsharp_mask(snakes, 5, 1024, 0))
|
||||
# Image should not be changed because it have only 0 and 255 levels.
|
||||
self.assertEqual(i.tobytes(), snakes.tobytes())
|
||||
|
||||
def test_blur_accuracy(self):
|
||||
|
||||
i = snakes._new(ImageOps.gaussian_blur(snakes, 1))
|
||||
# Alpha channel must match whole.
|
||||
self.assertEqual(i.split()[3], snakes.split()[3])
|
||||
# These pixels surrounded with pixels with 255 intensity.
|
||||
# They must be 255.
|
||||
for x, y, c in [(1, 0, 1), (2, 0, 1), (7, 8, 1), (8, 8, 1), (2, 9, 1),
|
||||
(7, 3, 0), (8, 3, 0), (5, 8, 0), (5, 9, 0), (1, 3, 0),
|
||||
(4, 3, 2), (4, 2, 2)]:
|
||||
self.assertEqual(i.im.getpixel((x, y))[c], 255)
|
||||
# Fuzzy match.
|
||||
gp = lambda x, y: i.im.getpixel((x, y))
|
||||
self.assertTrue(211 <= gp(7, 4)[0] <= 213)
|
||||
self.assertTrue(211 <= gp(7, 5)[2] <= 213)
|
||||
self.assertTrue(211 <= gp(7, 6)[2] <= 213)
|
||||
self.assertTrue(211 <= gp(7, 7)[1] <= 213)
|
||||
self.assertTrue(211 <= gp(8, 4)[0] <= 213)
|
||||
self.assertTrue(211 <= gp(8, 5)[2] <= 213)
|
||||
self.assertTrue(211 <= gp(8, 6)[2] <= 213)
|
||||
self.assertTrue(211 <= gp(8, 7)[1] <= 213)
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
|
|
|
@ -48,10 +48,10 @@
|
|||
static inline UINT8 clip(double in)
|
||||
{
|
||||
if (in >= 255.0)
|
||||
return (UINT8) 255;
|
||||
return (UINT8) 255;
|
||||
if (in <= 0.0)
|
||||
return (UINT8) 0;
|
||||
return (UINT8) in;
|
||||
return (UINT8) 0;
|
||||
return (UINT8) (in + 0.5);
|
||||
}
|
||||
|
||||
static Imaging
|
||||
|
@ -79,6 +79,7 @@ gblur(Imaging im, Imaging imOut, float floatRadius, int channels, int padding)
|
|||
|
||||
int radius = 0;
|
||||
float remainder = 0.0;
|
||||
int hasAlpha = 0;
|
||||
|
||||
int i;
|
||||
|
||||
|
@ -108,31 +109,31 @@ gblur(Imaging im, Imaging imOut, float floatRadius, int channels, int padding)
|
|||
maskData = malloc(radius * sizeof(float));
|
||||
/* FIXME: error checking */
|
||||
for (x = 0; x < radius; x++) {
|
||||
z = ((float) (x + 2) / ((float) radius));
|
||||
dev = 0.5 + (((float) (radius * radius)) * 0.001);
|
||||
/* you can adjust this factor to change the shape/center-weighting
|
||||
of the gaussian */
|
||||
maskData[x] = (float) pow((1.0 / sqrt(2.0 * 3.14159265359 * dev)),
|
||||
((-(z - 1.0) * -(x - 1.0)) /
|
||||
(2.0 * dev)));
|
||||
z = ((float) (x + 2) / ((float) radius));
|
||||
dev = 0.5 + (((float) (radius * radius)) * 0.001);
|
||||
/* you can adjust this factor to change the shape/center-weighting
|
||||
of the gaussian */
|
||||
maskData[x] = (float) pow((1.0 / sqrt(2.0 * 3.14159265359 * dev)),
|
||||
((-(z - 1.0) * -(x - 1.0)) /
|
||||
(2.0 * dev)));
|
||||
}
|
||||
|
||||
/* if there's any remainder, multiply the first/last values in
|
||||
MaskData it. this allows us to support float radius values. */
|
||||
if (remainder > 0.0) {
|
||||
maskData[0] *= remainder;
|
||||
maskData[radius - 1] *= remainder;
|
||||
maskData[0] *= remainder;
|
||||
maskData[radius - 1] *= remainder;
|
||||
}
|
||||
|
||||
for (x = 0; x < radius; x++) {
|
||||
/* this is done separately now due to the correction for float
|
||||
radius values above */
|
||||
sum += maskData[x];
|
||||
/* this is done separately now due to the correction for float
|
||||
radius values above */
|
||||
sum += maskData[x];
|
||||
}
|
||||
|
||||
for (i = 0; i < radius; i++) {
|
||||
maskData[i] *= (1.0 / sum);
|
||||
/* printf("%f\n", maskData[i]); */
|
||||
maskData[i] *= (1.0 / sum);
|
||||
/* printf("%f\n", maskData[i]); */
|
||||
}
|
||||
|
||||
/* create a temporary memory buffer for the data for the first pass
|
||||
|
@ -140,9 +141,9 @@ gblur(Imaging im, Imaging imOut, float floatRadius, int channels, int padding)
|
|||
|
||||
/* don't bother about alpha/padding */
|
||||
buffer = calloc((size_t) (im->xsize * im->ysize * channels),
|
||||
sizeof(float));
|
||||
sizeof(float));
|
||||
if (buffer == NULL)
|
||||
return ImagingError_MemoryError();
|
||||
return ImagingError_MemoryError();
|
||||
|
||||
/* be nice to other threads while you go off to lala land */
|
||||
ImagingSectionEnter(&cookie);
|
||||
|
@ -153,94 +154,98 @@ gblur(Imaging im, Imaging imOut, float floatRadius, int channels, int padding)
|
|||
|
||||
/* perform a blur on each line, and place in the temporary storage buffer */
|
||||
for (y = 0; y < im->ysize; y++) {
|
||||
if (channels == 1 && im->image8 != NULL) {
|
||||
line8 = (UINT8 *) im->image8[y];
|
||||
} else {
|
||||
line = im->image32[y];
|
||||
}
|
||||
for (x = 0; x < im->xsize; x++) {
|
||||
newPixel[0] = newPixel[1] = newPixel[2] = newPixel[3] = 0;
|
||||
/* for each neighbor pixel, factor in its value/weighting to the
|
||||
current pixel */
|
||||
for (pix = 0; pix < radius; pix++) {
|
||||
/* figure the offset of this neighbor pixel */
|
||||
offset =
|
||||
(int) ((-((float) radius / 2.0) + (float) pix) + 0.5);
|
||||
if (x + offset < 0)
|
||||
offset = -x;
|
||||
else if (x + offset >= im->xsize)
|
||||
offset = im->xsize - x - 1;
|
||||
if (channels == 1 && im->image8 != NULL) {
|
||||
line8 = (UINT8 *) im->image8[y];
|
||||
} else {
|
||||
line = im->image32[y];
|
||||
}
|
||||
for (x = 0; x < im->xsize; x++) {
|
||||
newPixel[0] = newPixel[1] = newPixel[2] = newPixel[3] = 0;
|
||||
/* for each neighbor pixel, factor in its value/weighting to the
|
||||
current pixel */
|
||||
for (pix = 0; pix < radius; pix++) {
|
||||
/* figure the offset of this neighbor pixel */
|
||||
offset =
|
||||
(int) ((-((float) radius / 2.0) + (float) pix) + 0.5);
|
||||
if (x + offset < 0)
|
||||
offset = -x;
|
||||
else if (x + offset >= im->xsize)
|
||||
offset = im->xsize - x - 1;
|
||||
|
||||
/* add (neighbor pixel value * maskData[pix]) to the current
|
||||
pixel value */
|
||||
if (channels == 1) {
|
||||
buffer[(y * im->xsize) + x] +=
|
||||
((float) ((UINT8 *) & line8[x + offset])[0]) *
|
||||
(maskData[pix]);
|
||||
} else {
|
||||
for (channel = 0; channel < channels; channel++) {
|
||||
buffer[(y * im->xsize * channels) +
|
||||
(x * channels) + channel] +=
|
||||
((float) ((UINT8 *) & line[x + offset])
|
||||
[channel]) * (maskData[pix]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
/* add (neighbor pixel value * maskData[pix]) to the current
|
||||
pixel value */
|
||||
if (channels == 1) {
|
||||
buffer[(y * im->xsize) + x] +=
|
||||
((float) ((UINT8 *) & line8[x + offset])[0]) *
|
||||
(maskData[pix]);
|
||||
} else {
|
||||
for (channel = 0; channel < channels; channel++) {
|
||||
buffer[(y * im->xsize * channels) +
|
||||
(x * channels) + channel] +=
|
||||
((float) ((UINT8 *) & line[x + offset])
|
||||
[channel]) * (maskData[pix]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (strcmp(im->mode, "RGBX") == 0 || strcmp(im->mode, "RGBA") == 0) {
|
||||
hasAlpha = 1;
|
||||
}
|
||||
|
||||
/* perform a blur on each column in the buffer, and place in the
|
||||
output image */
|
||||
for (x = 0; x < im->xsize; x++) {
|
||||
for (y = 0; y < im->ysize; y++) {
|
||||
newPixel[0] = newPixel[1] = newPixel[2] = newPixel[3] = 0;
|
||||
/* for each neighbor pixel, factor in its value/weighting to the
|
||||
current pixel */
|
||||
for (pix = 0; pix < radius; pix++) {
|
||||
/* figure the offset of this neighbor pixel */
|
||||
offset =
|
||||
(int) (-((float) radius / 2.0) + (float) pix + 0.5);
|
||||
if (y + offset < 0)
|
||||
offset = -y;
|
||||
else if (y + offset >= im->ysize)
|
||||
offset = im->ysize - y - 1;
|
||||
/* add (neighbor pixel value * maskData[pix]) to the current
|
||||
pixel value */
|
||||
for (channel = 0; channel < channels; channel++) {
|
||||
newPixel[channel] +=
|
||||
(buffer
|
||||
[((y + offset) * im->xsize * channels) +
|
||||
(x * channels) + channel]) * (maskData[pix]);
|
||||
}
|
||||
}
|
||||
/* if the image is RGBX or RGBA, copy the 4th channel data to
|
||||
newPixel, so it gets put in imOut */
|
||||
if (strcmp(im->mode, "RGBX") == 0
|
||||
|| strcmp(im->mode, "RGBA") == 0) {
|
||||
newPixel[3] = (float) ((UINT8 *) & line[x + offset])[3];
|
||||
}
|
||||
for (y = 0; y < im->ysize; y++) {
|
||||
newPixel[0] = newPixel[1] = newPixel[2] = newPixel[3] = 0;
|
||||
/* for each neighbor pixel, factor in its value/weighting to the
|
||||
current pixel */
|
||||
for (pix = 0; pix < radius; pix++) {
|
||||
/* figure the offset of this neighbor pixel */
|
||||
offset =
|
||||
(int) (-((float) radius / 2.0) + (float) pix + 0.5);
|
||||
if (y + offset < 0)
|
||||
offset = -y;
|
||||
else if (y + offset >= im->ysize)
|
||||
offset = im->ysize - y - 1;
|
||||
|
||||
/* pack the channels into an INT32 so we can put them back in
|
||||
the PIL image */
|
||||
newPixelFinals = 0;
|
||||
if (channels == 1) {
|
||||
newPixelFinals = clip(newPixel[0]);
|
||||
} else {
|
||||
/* for RGB, the fourth channel isn't used anyways, so just
|
||||
pack a 0 in there, this saves checking the mode for each
|
||||
pixel. */
|
||||
/* this doesn't work on little-endian machines... fix it! */
|
||||
newPixelFinals =
|
||||
clip(newPixel[0]) | clip(newPixel[1]) << 8 |
|
||||
clip(newPixel[2]) << 16 | clip(newPixel[3]) << 24;
|
||||
}
|
||||
/* set the resulting pixel in imOut */
|
||||
if (channels == 1) {
|
||||
imOut->image8[y][x] = (UINT8) newPixelFinals;
|
||||
} else {
|
||||
imOut->image32[y][x] = newPixelFinals;
|
||||
}
|
||||
}
|
||||
/* add (neighbor pixel value * maskData[pix]) to the current
|
||||
pixel value */
|
||||
for (channel = 0; channel < channels; channel++) {
|
||||
newPixel[channel] +=
|
||||
(buffer
|
||||
[((y + offset) * im->xsize * channels) +
|
||||
(x * channels) + channel]) * (maskData[pix]);
|
||||
}
|
||||
}
|
||||
/* if the image is RGBX or RGBA, copy the 4th channel data to
|
||||
newPixel, so it gets put in imOut */
|
||||
if (hasAlpha) {
|
||||
newPixel[3] = (float) ((UINT8 *) & im->image32[y][x])[3];
|
||||
}
|
||||
|
||||
/* pack the channels into an INT32 so we can put them back in
|
||||
the PIL image */
|
||||
newPixelFinals = 0;
|
||||
if (channels == 1) {
|
||||
newPixelFinals = clip(newPixel[0]);
|
||||
} else {
|
||||
/* for RGB, the fourth channel isn't used anyways, so just
|
||||
pack a 0 in there, this saves checking the mode for each
|
||||
pixel. */
|
||||
/* this doesn't work on little-endian machines... fix it! */
|
||||
newPixelFinals =
|
||||
clip(newPixel[0]) | clip(newPixel[1]) << 8 |
|
||||
clip(newPixel[2]) << 16 | clip(newPixel[3]) << 24;
|
||||
}
|
||||
/* set the resulting pixel in imOut */
|
||||
if (channels == 1) {
|
||||
imOut->image8[y][x] = (UINT8) newPixelFinals;
|
||||
} else {
|
||||
imOut->image32[y][x] = newPixelFinals;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* free the buffer */
|
||||
|
@ -258,29 +263,29 @@ Imaging ImagingGaussianBlur(Imaging im, Imaging imOut, float radius)
|
|||
int padding = 0;
|
||||
|
||||
if (strcmp(im->mode, "RGB") == 0) {
|
||||
channels = 3;
|
||||
padding = 1;
|
||||
channels = 3;
|
||||
padding = 1;
|
||||
} else if (strcmp(im->mode, "RGBA") == 0) {
|
||||
channels = 3;
|
||||
padding = 1;
|
||||
channels = 3;
|
||||
padding = 1;
|
||||
} else if (strcmp(im->mode, "RGBX") == 0) {
|
||||
channels = 3;
|
||||
padding = 1;
|
||||
channels = 3;
|
||||
padding = 1;
|
||||
} else if (strcmp(im->mode, "CMYK") == 0) {
|
||||
channels = 4;
|
||||
padding = 0;
|
||||
channels = 4;
|
||||
padding = 0;
|
||||
} else if (strcmp(im->mode, "L") == 0) {
|
||||
channels = 1;
|
||||
padding = 0;
|
||||
channels = 1;
|
||||
padding = 0;
|
||||
} else
|
||||
return ImagingError_ModeError();
|
||||
return ImagingError_ModeError();
|
||||
|
||||
return gblur(im, imOut, radius, channels, padding);
|
||||
}
|
||||
|
||||
Imaging
|
||||
ImagingUnsharpMask(Imaging im, Imaging imOut, float radius, int percent,
|
||||
int threshold)
|
||||
int threshold)
|
||||
{
|
||||
ImagingSectionCookie cookie;
|
||||
|
||||
|
@ -288,6 +293,7 @@ ImagingUnsharpMask(Imaging im, Imaging imOut, float radius, int percent,
|
|||
int channel = 0;
|
||||
int channels = 0;
|
||||
int padding = 0;
|
||||
int hasAlpha = 0;
|
||||
|
||||
int x = 0;
|
||||
int y = 0;
|
||||
|
@ -302,28 +308,28 @@ ImagingUnsharpMask(Imaging im, Imaging imOut, float radius, int percent,
|
|||
INT32 newPixel = 0;
|
||||
|
||||
if (strcmp(im->mode, "RGB") == 0) {
|
||||
channels = 3;
|
||||
padding = 1;
|
||||
channels = 3;
|
||||
padding = 1;
|
||||
} else if (strcmp(im->mode, "RGBA") == 0) {
|
||||
channels = 3;
|
||||
padding = 1;
|
||||
channels = 3;
|
||||
padding = 1;
|
||||
} else if (strcmp(im->mode, "RGBX") == 0) {
|
||||
channels = 3;
|
||||
padding = 1;
|
||||
channels = 3;
|
||||
padding = 1;
|
||||
} else if (strcmp(im->mode, "CMYK") == 0) {
|
||||
channels = 4;
|
||||
padding = 0;
|
||||
channels = 4;
|
||||
padding = 0;
|
||||
} else if (strcmp(im->mode, "L") == 0) {
|
||||
channels = 1;
|
||||
padding = 0;
|
||||
channels = 1;
|
||||
padding = 0;
|
||||
} else
|
||||
return ImagingError_ModeError();
|
||||
return ImagingError_ModeError();
|
||||
|
||||
/* first, do a gaussian blur on the image, putting results in imOut
|
||||
temporarily */
|
||||
result = gblur(im, imOut, radius, channels, padding);
|
||||
if (!result)
|
||||
return NULL;
|
||||
return NULL;
|
||||
|
||||
/* now, go through each pixel, compare "normal" pixel to blurred
|
||||
pixel. if the difference is more than threshold values, apply
|
||||
|
@ -332,64 +338,67 @@ ImagingUnsharpMask(Imaging im, Imaging imOut, float radius, int percent,
|
|||
|
||||
ImagingSectionEnter(&cookie);
|
||||
|
||||
for (y = 0; y < im->ysize; y++) {
|
||||
if (channels == 1) {
|
||||
lineIn8 = im->image8[y];
|
||||
lineOut8 = imOut->image8[y];
|
||||
} else {
|
||||
lineIn = im->image32[y];
|
||||
lineOut = imOut->image32[y];
|
||||
}
|
||||
for (x = 0; x < im->xsize; x++) {
|
||||
newPixel = 0;
|
||||
/* compare in/out pixels, apply sharpening */
|
||||
if (channels == 1) {
|
||||
diff =
|
||||
((UINT8 *) & lineIn8[x])[0] -
|
||||
((UINT8 *) & lineOut8[x])[0];
|
||||
if (abs(diff) > threshold) {
|
||||
/* add the diff*percent to the original pixel */
|
||||
imOut->image8[y][x] =
|
||||
clip((((UINT8 *) & lineIn8[x])[0]) +
|
||||
(diff * ((float) percent) / 100.0));
|
||||
} else {
|
||||
/* newPixel is the same as imIn */
|
||||
imOut->image8[y][x] = ((UINT8 *) & lineIn8[x])[0];
|
||||
}
|
||||
}
|
||||
if (strcmp(im->mode, "RGBX") == 0 || strcmp(im->mode, "RGBA") == 0) {
|
||||
hasAlpha = 1;
|
||||
}
|
||||
|
||||
else {
|
||||
for (channel = 0; channel < channels; channel++) {
|
||||
diff = (int) ((((UINT8 *) & lineIn[x])[channel]) -
|
||||
(((UINT8 *) & lineOut[x])[channel]));
|
||||
if (abs(diff) > threshold) {
|
||||
/* add the diff*percent to the original pixel
|
||||
this may not work for little-endian systems, fix it! */
|
||||
newPixel =
|
||||
newPixel |
|
||||
clip((float) (((UINT8 *) & lineIn[x])[channel])
|
||||
+
|
||||
(diff *
|
||||
(((float) percent /
|
||||
100.0)))) << (channel * 8);
|
||||
} else {
|
||||
/* newPixel is the same as imIn
|
||||
this may not work for little-endian systems, fix it! */
|
||||
newPixel =
|
||||
newPixel | ((UINT8 *) & lineIn[x])[channel] <<
|
||||
(channel * 8);
|
||||
}
|
||||
}
|
||||
if (strcmp(im->mode, "RGBX") == 0
|
||||
|| strcmp(im->mode, "RGBA") == 0) {
|
||||
/* preserve the alpha channel
|
||||
this may not work for little-endian systems, fix it! */
|
||||
newPixel =
|
||||
newPixel | ((UINT8 *) & lineIn[x])[channel] << 24;
|
||||
}
|
||||
imOut->image32[y][x] = newPixel;
|
||||
}
|
||||
}
|
||||
for (y = 0; y < im->ysize; y++) {
|
||||
if (channels == 1) {
|
||||
lineIn8 = im->image8[y];
|
||||
lineOut8 = imOut->image8[y];
|
||||
} else {
|
||||
lineIn = im->image32[y];
|
||||
lineOut = imOut->image32[y];
|
||||
}
|
||||
for (x = 0; x < im->xsize; x++) {
|
||||
newPixel = 0;
|
||||
/* compare in/out pixels, apply sharpening */
|
||||
if (channels == 1) {
|
||||
diff =
|
||||
((UINT8 *) & lineIn8[x])[0] -
|
||||
((UINT8 *) & lineOut8[x])[0];
|
||||
if (abs(diff) > threshold) {
|
||||
/* add the diff*percent to the original pixel */
|
||||
imOut->image8[y][x] =
|
||||
clip((((UINT8 *) & lineIn8[x])[0]) +
|
||||
(diff * ((float) percent) / 100.0));
|
||||
} else {
|
||||
/* newPixel is the same as imIn */
|
||||
imOut->image8[y][x] = ((UINT8 *) & lineIn8[x])[0];
|
||||
}
|
||||
}
|
||||
|
||||
else {
|
||||
for (channel = 0; channel < channels; channel++) {
|
||||
diff = (int) ((((UINT8 *) & lineIn[x])[channel]) -
|
||||
(((UINT8 *) & lineOut[x])[channel]));
|
||||
if (abs(diff) > threshold) {
|
||||
/* add the diff*percent to the original pixel
|
||||
this may not work for little-endian systems, fix it! */
|
||||
newPixel =
|
||||
newPixel |
|
||||
clip((float) (((UINT8 *) & lineIn[x])[channel])
|
||||
+
|
||||
(diff *
|
||||
(((float) percent /
|
||||
100.0)))) << (channel * 8);
|
||||
} else {
|
||||
/* newPixel is the same as imIn
|
||||
this may not work for little-endian systems, fix it! */
|
||||
newPixel =
|
||||
newPixel | ((UINT8 *) & lineIn[x])[channel] <<
|
||||
(channel * 8);
|
||||
}
|
||||
}
|
||||
if (hasAlpha) {
|
||||
/* preserve the alpha channel
|
||||
this may not work for little-endian systems, fix it! */
|
||||
newPixel =
|
||||
newPixel | ((UINT8 *) & lineIn[x])[channel] << 24;
|
||||
}
|
||||
imOut->image32[y][x] = newPixel;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ImagingSectionLeave(&cookie);
|
||||
|
|
Loading…
Reference in New Issue
Block a user