Merge branch 'fix-blur-alpha'

This commit is contained in:
homm 2014-10-08 17:40:57 +04:00
commit e3793447fc
3 changed files with 221 additions and 184 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.3 KiB

View File

@ -5,6 +5,7 @@ from PIL import ImageOps
from PIL import ImageFilter
im = Image.open("Tests/images/hopper.ppm")
snakes = Image.open("Tests/images/color_snakes.png")
class TestImageOpsUsm(PillowTestCase):
@ -16,7 +17,7 @@ class TestImageOpsUsm(PillowTestCase):
self.assertEqual(i.size, (128, 128))
# i.save("blur.bmp")
i = ImageOps.usm(im, 2.0, 125, 8)
i = ImageOps.unsharp_mask(im, 2.0, 125, 8)
self.assertEqual(i.mode, "RGB")
self.assertEqual(i.size, (128, 128))
# i.save("usm.bmp")
@ -33,7 +34,7 @@ class TestImageOpsUsm(PillowTestCase):
self.assertEqual(i.mode, "RGB")
self.assertEqual(i.size, (128, 128))
def test_usm(self):
def test_usm_formats(self):
usm = ImageOps.unsharp_mask
self.assertRaises(ValueError, lambda: usm(im.convert("1")))
@ -45,7 +46,7 @@ class TestImageOpsUsm(PillowTestCase):
usm(im.convert("CMYK"))
self.assertRaises(ValueError, lambda: usm(im.convert("YCbCr")))
def test_blur(self):
def test_blur_formats(self):
blur = ImageOps.gaussian_blur
self.assertRaises(ValueError, lambda: blur(im.convert("1")))
@ -57,6 +58,33 @@ class TestImageOpsUsm(PillowTestCase):
blur(im.convert("CMYK"))
self.assertRaises(ValueError, lambda: blur(im.convert("YCbCr")))
def test_usm_accuracy(self):
i = snakes._new(ImageOps.unsharp_mask(snakes, 5, 1024, 0))
# Image should not be changed because it have only 0 and 255 levels.
self.assertEqual(i.tobytes(), snakes.tobytes())
def test_blur_accuracy(self):
i = snakes._new(ImageOps.gaussian_blur(snakes, 1))
# Alpha channel must match whole.
self.assertEqual(i.split()[3], snakes.split()[3])
# These pixels surrounded with pixels with 255 intensity.
# They must be 255.
for x, y, c in [(1, 0, 1), (2, 0, 1), (7, 8, 1), (8, 8, 1), (2, 9, 1),
(7, 3, 0), (8, 3, 0), (5, 8, 0), (5, 9, 0), (1, 3, 0),
(4, 3, 2), (4, 2, 2)]:
self.assertEqual(i.im.getpixel((x, y))[c], 255)
# Fuzzy match.
gp = lambda x, y: i.im.getpixel((x, y))
self.assertTrue(211 <= gp(7, 4)[0] <= 213)
self.assertTrue(211 <= gp(7, 5)[2] <= 213)
self.assertTrue(211 <= gp(7, 6)[2] <= 213)
self.assertTrue(211 <= gp(7, 7)[1] <= 213)
self.assertTrue(211 <= gp(8, 4)[0] <= 213)
self.assertTrue(211 <= gp(8, 5)[2] <= 213)
self.assertTrue(211 <= gp(8, 6)[2] <= 213)
self.assertTrue(211 <= gp(8, 7)[1] <= 213)
if __name__ == '__main__':
unittest.main()

View File

@ -48,10 +48,10 @@
static inline UINT8 clip(double in)
{
if (in >= 255.0)
return (UINT8) 255;
return (UINT8) 255;
if (in <= 0.0)
return (UINT8) 0;
return (UINT8) in;
return (UINT8) 0;
return (UINT8) (in + 0.5);
}
static Imaging
@ -79,6 +79,7 @@ gblur(Imaging im, Imaging imOut, float floatRadius, int channels, int padding)
int radius = 0;
float remainder = 0.0;
int hasAlpha = 0;
int i;
@ -108,31 +109,31 @@ gblur(Imaging im, Imaging imOut, float floatRadius, int channels, int padding)
maskData = malloc(radius * sizeof(float));
/* FIXME: error checking */
for (x = 0; x < radius; x++) {
z = ((float) (x + 2) / ((float) radius));
dev = 0.5 + (((float) (radius * radius)) * 0.001);
/* you can adjust this factor to change the shape/center-weighting
of the gaussian */
maskData[x] = (float) pow((1.0 / sqrt(2.0 * 3.14159265359 * dev)),
((-(z - 1.0) * -(x - 1.0)) /
(2.0 * dev)));
z = ((float) (x + 2) / ((float) radius));
dev = 0.5 + (((float) (radius * radius)) * 0.001);
/* you can adjust this factor to change the shape/center-weighting
of the gaussian */
maskData[x] = (float) pow((1.0 / sqrt(2.0 * 3.14159265359 * dev)),
((-(z - 1.0) * -(x - 1.0)) /
(2.0 * dev)));
}
/* if there's any remainder, multiply the first/last values in
MaskData it. this allows us to support float radius values. */
if (remainder > 0.0) {
maskData[0] *= remainder;
maskData[radius - 1] *= remainder;
maskData[0] *= remainder;
maskData[radius - 1] *= remainder;
}
for (x = 0; x < radius; x++) {
/* this is done separately now due to the correction for float
radius values above */
sum += maskData[x];
/* this is done separately now due to the correction for float
radius values above */
sum += maskData[x];
}
for (i = 0; i < radius; i++) {
maskData[i] *= (1.0 / sum);
/* printf("%f\n", maskData[i]); */
maskData[i] *= (1.0 / sum);
/* printf("%f\n", maskData[i]); */
}
/* create a temporary memory buffer for the data for the first pass
@ -140,9 +141,9 @@ gblur(Imaging im, Imaging imOut, float floatRadius, int channels, int padding)
/* don't bother about alpha/padding */
buffer = calloc((size_t) (im->xsize * im->ysize * channels),
sizeof(float));
sizeof(float));
if (buffer == NULL)
return ImagingError_MemoryError();
return ImagingError_MemoryError();
/* be nice to other threads while you go off to lala land */
ImagingSectionEnter(&cookie);
@ -153,94 +154,98 @@ gblur(Imaging im, Imaging imOut, float floatRadius, int channels, int padding)
/* perform a blur on each line, and place in the temporary storage buffer */
for (y = 0; y < im->ysize; y++) {
if (channels == 1 && im->image8 != NULL) {
line8 = (UINT8 *) im->image8[y];
} else {
line = im->image32[y];
}
for (x = 0; x < im->xsize; x++) {
newPixel[0] = newPixel[1] = newPixel[2] = newPixel[3] = 0;
/* for each neighbor pixel, factor in its value/weighting to the
current pixel */
for (pix = 0; pix < radius; pix++) {
/* figure the offset of this neighbor pixel */
offset =
(int) ((-((float) radius / 2.0) + (float) pix) + 0.5);
if (x + offset < 0)
offset = -x;
else if (x + offset >= im->xsize)
offset = im->xsize - x - 1;
if (channels == 1 && im->image8 != NULL) {
line8 = (UINT8 *) im->image8[y];
} else {
line = im->image32[y];
}
for (x = 0; x < im->xsize; x++) {
newPixel[0] = newPixel[1] = newPixel[2] = newPixel[3] = 0;
/* for each neighbor pixel, factor in its value/weighting to the
current pixel */
for (pix = 0; pix < radius; pix++) {
/* figure the offset of this neighbor pixel */
offset =
(int) ((-((float) radius / 2.0) + (float) pix) + 0.5);
if (x + offset < 0)
offset = -x;
else if (x + offset >= im->xsize)
offset = im->xsize - x - 1;
/* add (neighbor pixel value * maskData[pix]) to the current
pixel value */
if (channels == 1) {
buffer[(y * im->xsize) + x] +=
((float) ((UINT8 *) & line8[x + offset])[0]) *
(maskData[pix]);
} else {
for (channel = 0; channel < channels; channel++) {
buffer[(y * im->xsize * channels) +
(x * channels) + channel] +=
((float) ((UINT8 *) & line[x + offset])
[channel]) * (maskData[pix]);
}
}
}
}
/* add (neighbor pixel value * maskData[pix]) to the current
pixel value */
if (channels == 1) {
buffer[(y * im->xsize) + x] +=
((float) ((UINT8 *) & line8[x + offset])[0]) *
(maskData[pix]);
} else {
for (channel = 0; channel < channels; channel++) {
buffer[(y * im->xsize * channels) +
(x * channels) + channel] +=
((float) ((UINT8 *) & line[x + offset])
[channel]) * (maskData[pix]);
}
}
}
}
}
if (strcmp(im->mode, "RGBX") == 0 || strcmp(im->mode, "RGBA") == 0) {
hasAlpha = 1;
}
/* perform a blur on each column in the buffer, and place in the
output image */
for (x = 0; x < im->xsize; x++) {
for (y = 0; y < im->ysize; y++) {
newPixel[0] = newPixel[1] = newPixel[2] = newPixel[3] = 0;
/* for each neighbor pixel, factor in its value/weighting to the
current pixel */
for (pix = 0; pix < radius; pix++) {
/* figure the offset of this neighbor pixel */
offset =
(int) (-((float) radius / 2.0) + (float) pix + 0.5);
if (y + offset < 0)
offset = -y;
else if (y + offset >= im->ysize)
offset = im->ysize - y - 1;
/* add (neighbor pixel value * maskData[pix]) to the current
pixel value */
for (channel = 0; channel < channels; channel++) {
newPixel[channel] +=
(buffer
[((y + offset) * im->xsize * channels) +
(x * channels) + channel]) * (maskData[pix]);
}
}
/* if the image is RGBX or RGBA, copy the 4th channel data to
newPixel, so it gets put in imOut */
if (strcmp(im->mode, "RGBX") == 0
|| strcmp(im->mode, "RGBA") == 0) {
newPixel[3] = (float) ((UINT8 *) & line[x + offset])[3];
}
for (y = 0; y < im->ysize; y++) {
newPixel[0] = newPixel[1] = newPixel[2] = newPixel[3] = 0;
/* for each neighbor pixel, factor in its value/weighting to the
current pixel */
for (pix = 0; pix < radius; pix++) {
/* figure the offset of this neighbor pixel */
offset =
(int) (-((float) radius / 2.0) + (float) pix + 0.5);
if (y + offset < 0)
offset = -y;
else if (y + offset >= im->ysize)
offset = im->ysize - y - 1;
/* pack the channels into an INT32 so we can put them back in
the PIL image */
newPixelFinals = 0;
if (channels == 1) {
newPixelFinals = clip(newPixel[0]);
} else {
/* for RGB, the fourth channel isn't used anyways, so just
pack a 0 in there, this saves checking the mode for each
pixel. */
/* this doesn't work on little-endian machines... fix it! */
newPixelFinals =
clip(newPixel[0]) | clip(newPixel[1]) << 8 |
clip(newPixel[2]) << 16 | clip(newPixel[3]) << 24;
}
/* set the resulting pixel in imOut */
if (channels == 1) {
imOut->image8[y][x] = (UINT8) newPixelFinals;
} else {
imOut->image32[y][x] = newPixelFinals;
}
}
/* add (neighbor pixel value * maskData[pix]) to the current
pixel value */
for (channel = 0; channel < channels; channel++) {
newPixel[channel] +=
(buffer
[((y + offset) * im->xsize * channels) +
(x * channels) + channel]) * (maskData[pix]);
}
}
/* if the image is RGBX or RGBA, copy the 4th channel data to
newPixel, so it gets put in imOut */
if (hasAlpha) {
newPixel[3] = (float) ((UINT8 *) & im->image32[y][x])[3];
}
/* pack the channels into an INT32 so we can put them back in
the PIL image */
newPixelFinals = 0;
if (channels == 1) {
newPixelFinals = clip(newPixel[0]);
} else {
/* for RGB, the fourth channel isn't used anyways, so just
pack a 0 in there, this saves checking the mode for each
pixel. */
/* this doesn't work on little-endian machines... fix it! */
newPixelFinals =
clip(newPixel[0]) | clip(newPixel[1]) << 8 |
clip(newPixel[2]) << 16 | clip(newPixel[3]) << 24;
}
/* set the resulting pixel in imOut */
if (channels == 1) {
imOut->image8[y][x] = (UINT8) newPixelFinals;
} else {
imOut->image32[y][x] = newPixelFinals;
}
}
}
/* free the buffer */
@ -258,29 +263,29 @@ Imaging ImagingGaussianBlur(Imaging im, Imaging imOut, float radius)
int padding = 0;
if (strcmp(im->mode, "RGB") == 0) {
channels = 3;
padding = 1;
channels = 3;
padding = 1;
} else if (strcmp(im->mode, "RGBA") == 0) {
channels = 3;
padding = 1;
channels = 3;
padding = 1;
} else if (strcmp(im->mode, "RGBX") == 0) {
channels = 3;
padding = 1;
channels = 3;
padding = 1;
} else if (strcmp(im->mode, "CMYK") == 0) {
channels = 4;
padding = 0;
channels = 4;
padding = 0;
} else if (strcmp(im->mode, "L") == 0) {
channels = 1;
padding = 0;
channels = 1;
padding = 0;
} else
return ImagingError_ModeError();
return ImagingError_ModeError();
return gblur(im, imOut, radius, channels, padding);
}
Imaging
ImagingUnsharpMask(Imaging im, Imaging imOut, float radius, int percent,
int threshold)
int threshold)
{
ImagingSectionCookie cookie;
@ -288,6 +293,7 @@ ImagingUnsharpMask(Imaging im, Imaging imOut, float radius, int percent,
int channel = 0;
int channels = 0;
int padding = 0;
int hasAlpha = 0;
int x = 0;
int y = 0;
@ -302,28 +308,28 @@ ImagingUnsharpMask(Imaging im, Imaging imOut, float radius, int percent,
INT32 newPixel = 0;
if (strcmp(im->mode, "RGB") == 0) {
channels = 3;
padding = 1;
channels = 3;
padding = 1;
} else if (strcmp(im->mode, "RGBA") == 0) {
channels = 3;
padding = 1;
channels = 3;
padding = 1;
} else if (strcmp(im->mode, "RGBX") == 0) {
channels = 3;
padding = 1;
channels = 3;
padding = 1;
} else if (strcmp(im->mode, "CMYK") == 0) {
channels = 4;
padding = 0;
channels = 4;
padding = 0;
} else if (strcmp(im->mode, "L") == 0) {
channels = 1;
padding = 0;
channels = 1;
padding = 0;
} else
return ImagingError_ModeError();
return ImagingError_ModeError();
/* first, do a gaussian blur on the image, putting results in imOut
temporarily */
result = gblur(im, imOut, radius, channels, padding);
if (!result)
return NULL;
return NULL;
/* now, go through each pixel, compare "normal" pixel to blurred
pixel. if the difference is more than threshold values, apply
@ -332,64 +338,67 @@ ImagingUnsharpMask(Imaging im, Imaging imOut, float radius, int percent,
ImagingSectionEnter(&cookie);
for (y = 0; y < im->ysize; y++) {
if (channels == 1) {
lineIn8 = im->image8[y];
lineOut8 = imOut->image8[y];
} else {
lineIn = im->image32[y];
lineOut = imOut->image32[y];
}
for (x = 0; x < im->xsize; x++) {
newPixel = 0;
/* compare in/out pixels, apply sharpening */
if (channels == 1) {
diff =
((UINT8 *) & lineIn8[x])[0] -
((UINT8 *) & lineOut8[x])[0];
if (abs(diff) > threshold) {
/* add the diff*percent to the original pixel */
imOut->image8[y][x] =
clip((((UINT8 *) & lineIn8[x])[0]) +
(diff * ((float) percent) / 100.0));
} else {
/* newPixel is the same as imIn */
imOut->image8[y][x] = ((UINT8 *) & lineIn8[x])[0];
}
}
if (strcmp(im->mode, "RGBX") == 0 || strcmp(im->mode, "RGBA") == 0) {
hasAlpha = 1;
}
else {
for (channel = 0; channel < channels; channel++) {
diff = (int) ((((UINT8 *) & lineIn[x])[channel]) -
(((UINT8 *) & lineOut[x])[channel]));
if (abs(diff) > threshold) {
/* add the diff*percent to the original pixel
this may not work for little-endian systems, fix it! */
newPixel =
newPixel |
clip((float) (((UINT8 *) & lineIn[x])[channel])
+
(diff *
(((float) percent /
100.0)))) << (channel * 8);
} else {
/* newPixel is the same as imIn
this may not work for little-endian systems, fix it! */
newPixel =
newPixel | ((UINT8 *) & lineIn[x])[channel] <<
(channel * 8);
}
}
if (strcmp(im->mode, "RGBX") == 0
|| strcmp(im->mode, "RGBA") == 0) {
/* preserve the alpha channel
this may not work for little-endian systems, fix it! */
newPixel =
newPixel | ((UINT8 *) & lineIn[x])[channel] << 24;
}
imOut->image32[y][x] = newPixel;
}
}
for (y = 0; y < im->ysize; y++) {
if (channels == 1) {
lineIn8 = im->image8[y];
lineOut8 = imOut->image8[y];
} else {
lineIn = im->image32[y];
lineOut = imOut->image32[y];
}
for (x = 0; x < im->xsize; x++) {
newPixel = 0;
/* compare in/out pixels, apply sharpening */
if (channels == 1) {
diff =
((UINT8 *) & lineIn8[x])[0] -
((UINT8 *) & lineOut8[x])[0];
if (abs(diff) > threshold) {
/* add the diff*percent to the original pixel */
imOut->image8[y][x] =
clip((((UINT8 *) & lineIn8[x])[0]) +
(diff * ((float) percent) / 100.0));
} else {
/* newPixel is the same as imIn */
imOut->image8[y][x] = ((UINT8 *) & lineIn8[x])[0];
}
}
else {
for (channel = 0; channel < channels; channel++) {
diff = (int) ((((UINT8 *) & lineIn[x])[channel]) -
(((UINT8 *) & lineOut[x])[channel]));
if (abs(diff) > threshold) {
/* add the diff*percent to the original pixel
this may not work for little-endian systems, fix it! */
newPixel =
newPixel |
clip((float) (((UINT8 *) & lineIn[x])[channel])
+
(diff *
(((float) percent /
100.0)))) << (channel * 8);
} else {
/* newPixel is the same as imIn
this may not work for little-endian systems, fix it! */
newPixel =
newPixel | ((UINT8 *) & lineIn[x])[channel] <<
(channel * 8);
}
}
if (hasAlpha) {
/* preserve the alpha channel
this may not work for little-endian systems, fix it! */
newPixel =
newPixel | ((UINT8 *) & lineIn[x])[channel] << 24;
}
imOut->image32[y][x] = newPixel;
}
}
}
ImagingSectionLeave(&cookie);