Merge pull request #2707 from uploadcare/fix-box-resize

Fix resize with box when no resize required
This commit is contained in:
Alexander Karpinsky 2017-09-01 00:53:46 +03:00 committed by GitHub
commit e6456643d4
3 changed files with 99 additions and 13 deletions

View File

@ -344,6 +344,7 @@ class CoreResamplePassesTest(PillowTestCase):
cropped = im.crop(box).resize(im.size, Image.BILINEAR) cropped = im.crop(box).resize(im.size, Image.BILINEAR)
self.assert_image_similar(with_box, cropped, 0.1) self.assert_image_similar(with_box, cropped, 0.1)
class CoreResampleCoefficientsTest(PillowTestCase): class CoreResampleCoefficientsTest(PillowTestCase):
def test_reduce(self): def test_reduce(self):
test_color = 254 test_color = 254
@ -458,6 +459,86 @@ class CoreResampleBoxTest(PillowTestCase):
cropped = im.crop(box).resize((32, 32), resample) cropped = im.crop(box).resize((32, 32), resample)
self.assert_image_similar(cropped, with_box, 0.4) self.assert_image_similar(cropped, with_box, 0.4)
def test_passthrough(self):
"When no resize is required"
im = hopper()
for size, box in [
((40, 50), (0, 0, 40, 50)),
((40, 50), (0, 10, 40, 60)),
((40, 50), (10, 0, 50, 50)),
((40, 50), (10, 20, 50, 70)),
]:
try:
res = im.resize(size, Image.LANCZOS, box)
self.assertEqual(res.size, size)
self.assert_image_equal(res, im.crop(box))
except AssertionError:
print('>>>', size, box)
raise
def test_no_passthrough(self):
"When resize is required"
im = hopper()
for size, box in [
((40, 50), (0.4, 0.4, 40.4, 50.4)),
((40, 50), (0.4, 10.4, 40.4, 60.4)),
((40, 50), (10.4, 0.4, 50.4, 50.4)),
((40, 50), (10.4, 20.4, 50.4, 70.4)),
]:
try:
res = im.resize(size, Image.LANCZOS, box)
self.assertEqual(res.size, size)
with self.assertRaisesRegexp(AssertionError, "difference \d"):
# check that the difference at least that much
self.assert_image_similar(res, im.crop(box), 20)
except AssertionError:
print('>>>', size, box)
raise
def test_skip_horizontal(self):
"Can skip resize in one dimension"
im = hopper()
for flt in [Image.NEAREST, Image.BICUBIC]:
for size, box in [
((40, 50), (0, 0, 40, 90)),
((40, 50), (0, 20, 40, 90)),
((40, 50), (10, 0, 50, 90)),
((40, 50), (10, 20, 50, 90)),
]:
try:
res = im.resize(size, flt, box)
self.assertEqual(res.size, size)
# Borders should be slightly different
self.assert_image_similar(
res, im.crop(box).resize(size, flt), 0.4)
except AssertionError:
print('>>>', size, box, flt)
raise
def test_skip_vertical(self):
"Can skip resize in one dimension"
im = hopper()
for flt in [Image.NEAREST, Image.BICUBIC]:
for size, box in [
((40, 50), (0, 0, 90, 50)),
((40, 50), (20, 0, 90, 50)),
((40, 50), (0, 10, 90, 60)),
((40, 50), (20, 10, 90, 60)),
]:
try:
res = im.resize(size, flt, box)
self.assertEqual(res.size, size)
# Borders should be slightly different
self.assert_image_similar(
res, im.crop(box).resize(size, flt), 0.4)
except AssertionError:
print('>>>', size, box, flt)
raise
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()

View File

@ -1529,8 +1529,10 @@ _resize(ImagingObject* self, PyObject* args)
return ImagingError_ValueError("box can't be empty"); return ImagingError_ValueError("box can't be empty");
} }
if (box[0] == 0 && box[1] == 0 && box[2] == xsize && box[3] == ysize) { // If box's coordinates are int and box size matches requested size
imOut = ImagingCopy(imIn); if (box[0] - (int) box[0] == 0 && box[2] - box[0] == xsize
&& box[1] - (int) box[1] == 0 && box[3] - box[1] == ysize) {
imOut = ImagingCrop(imIn, box[0], box[1], box[2], box[3]);
} }
else if (filter == IMAGING_TRANSFORM_NEAREST) { else if (filter == IMAGING_TRANSFORM_NEAREST) {
double a[6]; double a[6];

View File

@ -553,12 +553,15 @@ ImagingResampleInner(Imaging imIn, int xsize, int ysize,
Imaging imTemp = NULL; Imaging imTemp = NULL;
Imaging imOut = NULL; Imaging imOut = NULL;
int i; int i, need_horizontal, need_vertical;
int yroi_min, yroi_max; int ybox_first, ybox_last;
int ksize_horiz, ksize_vert; int ksize_horiz, ksize_vert;
int *bounds_horiz, *bounds_vert; int *bounds_horiz, *bounds_vert;
double *kk_horiz, *kk_vert; double *kk_horiz, *kk_vert;
need_horizontal = xsize != imIn->xsize || box[0] || box[2] != xsize;
need_vertical = ysize != imIn->ysize || box[1] || box[3] != ysize;
ksize_horiz = precompute_coeffs(imIn->xsize, box[0], box[2], xsize, ksize_horiz = precompute_coeffs(imIn->xsize, box[0], box[2], xsize,
filterp, &bounds_horiz, &kk_horiz); filterp, &bounds_horiz, &kk_horiz);
if ( ! ksize_horiz) { if ( ! ksize_horiz) {
@ -574,21 +577,21 @@ ImagingResampleInner(Imaging imIn, int xsize, int ysize,
} }
// First used row in the source image // First used row in the source image
yroi_min = bounds_vert[0]; ybox_first = bounds_vert[0];
// Last used row in the source image // Last used row in the source image
yroi_max = bounds_vert[ysize*2 - 2] + bounds_vert[ysize*2 - 1]; ybox_last = bounds_vert[ysize*2 - 2] + bounds_vert[ysize*2 - 1];
/* two-pass resize, first pass */ /* two-pass resize, horizontal pass */
if (box[0] || box[2] != xsize) { if (need_horizontal) {
// Shift bounds for vertical pass // Shift bounds for vertical pass
for (i = 0; i < ysize; i++) { for (i = 0; i < ysize; i++) {
bounds_vert[i * 2] -= yroi_min; bounds_vert[i * 2] -= ybox_first;
} }
imTemp = ImagingNewDirty(imIn->mode, xsize, yroi_max - yroi_min); imTemp = ImagingNewDirty(imIn->mode, xsize, ybox_last - ybox_first);
if (imTemp) { if (imTemp) {
ResampleHorizontal(imTemp, imIn, yroi_min, ResampleHorizontal(imTemp, imIn, ybox_first,
ksize_horiz, bounds_horiz, kk_horiz); ksize_horiz, bounds_horiz, kk_horiz);
} }
free(bounds_horiz); free(bounds_horiz);
@ -605,8 +608,8 @@ ImagingResampleInner(Imaging imIn, int xsize, int ysize,
free(kk_horiz); free(kk_horiz);
} }
/* second pass */ /* vertical pass */
if (box[1] || box[3] != ysize) { if (need_vertical) {
imOut = ImagingNewDirty(imIn->mode, imIn->xsize, ysize); imOut = ImagingNewDirty(imIn->mode, imIn->xsize, ysize);
if (imOut) { if (imOut) {
/* imIn can be the original image or horizontally resampled one */ /* imIn can be the original image or horizontally resampled one */