Fix CVE-2020-35654 - OOB Write in TiffDecode.c

* In some circumstances with some versions of libtiff (4.1.0+), there
  could be a 4 byte out of bound write when decoding a YCbCr tiff.
* The Pillow code dates to 6.0.0
* Found and reported through Tidelift
This commit is contained in:
wiredfool 2020-11-01 14:16:38 +00:00 committed by Andrew Murray
parent 0c39689690
commit eb8c1206d6
3 changed files with 185 additions and 108 deletions

Binary file not shown.

View File

@ -19,7 +19,12 @@ from .helper import on_ci
@pytest.mark.parametrize( @pytest.mark.parametrize(
"test_file", ["Tests/images/crash_1.tif", "Tests/images/crash_2.tif"] "test_file",
[
"Tests/images/crash_1.tif",
"Tests/images/crash_2.tif",
"Tests/images/crash-2020-10-test.tif",
],
) )
@pytest.mark.filterwarnings("ignore:Possibly corrupt EXIF data") @pytest.mark.filterwarnings("ignore:Possibly corrupt EXIF data")
@pytest.mark.filterwarnings("ignore:Metadata warning") @pytest.mark.filterwarnings("ignore:Metadata warning")

View File

@ -238,54 +238,181 @@ int ReadTile(TIFF* tiff, UINT32 col, UINT32 row, UINT32* buffer) {
return 0; return 0;
} }
int ReadStrip(TIFF* tiff, UINT32 row, UINT32* buffer) { int _decodeStripYCbCr(Imaging im, ImagingCodecState state, TIFF *tiff) {
uint16 photometric = 0; // init to not PHOTOMETRIC_YCBCR
TIFFGetField(tiff, TIFFTAG_PHOTOMETRIC, &photometric);
// To avoid dealing with YCbCr subsampling, let libtiff handle it // To avoid dealing with YCbCr subsampling, let libtiff handle it
if (photometric == PHOTOMETRIC_YCBCR) { // Use a TIFFRGBAImage wrapping the tiff image, and let libtiff handle
TIFFRGBAImage img; // all of the conversion. Metadata read from the TIFFRGBAImage could
char emsg[1024] = ""; // be different from the metadata that the base tiff returns.
UINT32 rows_per_strip, rows_to_read;
int ok;
INT32 strip_row;
UINT8 *new_data;
UINT32 rows_per_strip, row_byte_size, rows_to_read;
int ret;
TIFFRGBAImage img;
char emsg[1024] = "";
int ok;
TIFFGetFieldDefaulted(tiff, TIFFTAG_ROWSPERSTRIP, &rows_per_strip); ret = TIFFGetFieldDefaulted(tiff, TIFFTAG_ROWSPERSTRIP, &rows_per_strip);
if ((row % rows_per_strip) != 0) { if (ret != 1) {
TRACE(("Row passed to ReadStrip() must be first in a strip.")); rows_per_strip = state->ysize;
return -1;
}
if (TIFFRGBAImageOK(tiff, emsg) && TIFFRGBAImageBegin(&img, tiff, 0, emsg)) {
TRACE(("Initialized RGBAImage\n"));
img.req_orientation = ORIENTATION_TOPLEFT;
img.row_offset = row;
img.col_offset = 0;
rows_to_read = min(rows_per_strip, img.height - row);
TRACE(("rows to read: %d\n", rows_to_read));
ok = TIFFRGBAImageGet(&img, buffer, img.width, rows_to_read);
TIFFRGBAImageEnd(&img);
} else {
ok = 0;
}
if (ok == 0) {
TRACE(("Decode Error, row %d; msg: %s\n", row, emsg));
return -1;
}
return 0;
} }
TRACE(("RowsPerStrip: %u \n", rows_per_strip));
if (TIFFReadEncodedStrip(tiff, TIFFComputeStrip(tiff, row, 0), (tdata_t)buffer, -1) == -1) { if (!(TIFFRGBAImageOK(tiff, emsg) && TIFFRGBAImageBegin(&img, tiff, 0, emsg))) {
TRACE(("Decode Error, strip %d\n", TIFFComputeStrip(tiff, row, 0))); TRACE(("Decode error, msg: %s", emsg));
state->errcode = IMAGING_CODEC_BROKEN;
TIFFClose(tiff);
return -1; return -1;
} }
img.req_orientation = ORIENTATION_TOPLEFT;
img.col_offset = 0;
if (state->xsize != img.width || state->ysize != img.height) {
TRACE(("Inconsistent Image Error: %d =? %d, %d =? %d",
state->xsize, img.width, state->ysize, img.height));
state->errcode = IMAGING_CODEC_BROKEN;
TIFFRGBAImageEnd(&img);
TIFFClose(tiff);
return -1;
}
/* overflow check for row byte size */
if (INT_MAX / 4 < img.width) {
state->errcode = IMAGING_CODEC_MEMORY;
TIFFRGBAImageEnd(&img);
TIFFClose(tiff);
return -1;
}
// TiffRGBAImages are 32bits/pixel.
row_byte_size = img.width * 4;
/* overflow check for realloc */
if (INT_MAX / row_byte_size < rows_per_strip) {
state->errcode = IMAGING_CODEC_MEMORY;
TIFFRGBAImageEnd(&img);
TIFFClose(tiff);
return -1;
}
state->bytes = rows_per_strip * row_byte_size;
TRACE(("StripSize: %d \n", state->bytes));
/* realloc to fit whole strip */
/* malloc check above */
new_data = realloc (state->buffer, state->bytes);
if (!new_data) {
state->errcode = IMAGING_CODEC_MEMORY;
TIFFRGBAImageEnd(&img);
TIFFClose(tiff);
return -1;
}
state->buffer = new_data;
for (; state->y < state->ysize; state->y += rows_per_strip) {
img.row_offset = state->y;
rows_to_read = min(rows_per_strip, img.height - state->y);
if (TIFFRGBAImageGet(&img, (UINT32 *)state->buffer, img.width, rows_to_read) == -1) {
TRACE(("Decode Error, y: %d\n", state->y ));
state->errcode = IMAGING_CODEC_BROKEN;
TIFFRGBAImageEnd(&img);
TIFFClose(tiff);
return -1;
}
TRACE(("Decoded strip for row %d \n", state->y));
// iterate over each row in the strip and stuff data into image
for (strip_row = 0; strip_row < min((INT32) rows_per_strip, state->ysize - state->y); strip_row++) {
TRACE(("Writing data into line %d ; \n", state->y + strip_row));
// UINT8 * bbb = state->buffer + strip_row * (state->bytes / rows_per_strip);
// TRACE(("chars: %x %x %x %x\n", ((UINT8 *)bbb)[0], ((UINT8 *)bbb)[1], ((UINT8 *)bbb)[2], ((UINT8 *)bbb)[3]));
state->shuffle((UINT8*) im->image[state->y + state->yoff + strip_row] +
state->xoff * im->pixelsize,
state->buffer + strip_row * row_byte_size,
state->xsize);
}
}
TIFFRGBAImageEnd(&img);
return 0;
}
int _decodeStrip(Imaging im, ImagingCodecState state, TIFF *tiff) {
INT32 strip_row;
UINT8 *new_data;
UINT32 rows_per_strip, row_byte_size;
int ret;
ret = TIFFGetField(tiff, TIFFTAG_ROWSPERSTRIP, &rows_per_strip);
if (ret != 1) {
rows_per_strip = state->ysize;
}
TRACE(("RowsPerStrip: %u \n", rows_per_strip));
// We could use TIFFStripSize, but for YCbCr data it returns subsampled data size
row_byte_size = (state->xsize * state->bits + 7) / 8;
/* overflow check for realloc */
if (INT_MAX / row_byte_size < rows_per_strip) {
state->errcode = IMAGING_CODEC_MEMORY;
TIFFClose(tiff);
return -1;
}
state->bytes = rows_per_strip * row_byte_size;
TRACE(("StripSize: %d \n", state->bytes));
if (TIFFStripSize(tiff) > state->bytes) {
// If the strip size as expected by LibTiff isn't what we're expecting, abort.
// man: TIFFStripSize returns the equivalent size for a strip of data as it would be returned in a
// call to TIFFReadEncodedStrip ...
state->errcode = IMAGING_CODEC_MEMORY;
TIFFClose(tiff);
return -1;
}
/* realloc to fit whole strip */
/* malloc check above */
new_data = realloc (state->buffer, state->bytes);
if (!new_data) {
state->errcode = IMAGING_CODEC_MEMORY;
TIFFClose(tiff);
return -1;
}
state->buffer = new_data;
for (; state->y < state->ysize; state->y += rows_per_strip) {
if (TIFFReadEncodedStrip(tiff, TIFFComputeStrip(tiff, state->y, 0), (tdata_t)state->buffer, -1) == -1) {
TRACE(("Decode Error, strip %d\n", TIFFComputeStrip(tiff, state->y, 0)));
state->errcode = IMAGING_CODEC_BROKEN;
TIFFClose(tiff);
return -1;
}
TRACE(("Decoded strip for row %d \n", state->y));
// iterate over each row in the strip and stuff data into image
for (strip_row = 0; strip_row < min((INT32) rows_per_strip, state->ysize - state->y); strip_row++) {
TRACE(("Writing data into line %d ; \n", state->y + strip_row));
// UINT8 * bbb = state->buffer + strip_row * (state->bytes / rows_per_strip);
// TRACE(("chars: %x %x %x %x\n", ((UINT8 *)bbb)[0], ((UINT8 *)bbb)[1], ((UINT8 *)bbb)[2], ((UINT8 *)bbb)[3]));
state->shuffle((UINT8*) im->image[state->y + state->yoff + strip_row] +
state->xoff * im->pixelsize,
state->buffer + strip_row * row_byte_size,
state->xsize);
}
}
return 0; return 0;
} }
@ -294,6 +421,9 @@ int ImagingLibTiffDecode(Imaging im, ImagingCodecState state, UINT8* buffer, Py_
char *filename = "tempfile.tif"; char *filename = "tempfile.tif";
char *mode = "r"; char *mode = "r";
TIFF *tiff; TIFF *tiff;
uint16 photometric = 0; // init to not PHOTOMETRIC_YCBCR
int isYCbCr = 0;
int ret;
/* buffer is the encoded file, bytes is the length of the encoded file */ /* buffer is the encoded file, bytes is the length of the encoded file */
/* it all ends up in state->buffer, which is a uint8* from Imaging.h */ /* it all ends up in state->buffer, which is a uint8* from Imaging.h */
@ -354,6 +484,10 @@ int ImagingLibTiffDecode(Imaging im, ImagingCodecState state, UINT8* buffer, Py_
} }
} }
TIFFGetField(tiff, TIFFTAG_PHOTOMETRIC, &photometric);
isYCbCr = photometric == PHOTOMETRIC_YCBCR;
if (TIFFIsTiled(tiff)) { if (TIFFIsTiled(tiff)) {
INT32 x, y, tile_y; INT32 x, y, tile_y;
UINT32 tile_width, tile_length, current_tile_width, row_byte_size; UINT32 tile_width, tile_length, current_tile_width, row_byte_size;
@ -429,75 +563,13 @@ int ImagingLibTiffDecode(Imaging im, ImagingCodecState state, UINT8* buffer, Py_
} }
} }
} else { } else {
INT32 strip_row; if (!isYCbCr) {
UINT8 *new_data; ret = _decodeStrip(im, state, tiff);
UINT32 rows_per_strip, row_byte_size;
int ret;
ret = TIFFGetField(tiff, TIFFTAG_ROWSPERSTRIP, &rows_per_strip);
if (ret != 1) {
rows_per_strip = state->ysize;
} }
TRACE(("RowsPerStrip: %u \n", rows_per_strip)); else {
ret = _decodeStripYCbCr(im, state, tiff);
// We could use TIFFStripSize, but for YCbCr data it returns subsampled data size
row_byte_size = (state->xsize * state->bits + 7) / 8;
/* overflow check for realloc */
if (INT_MAX / row_byte_size < rows_per_strip) {
state->errcode = IMAGING_CODEC_MEMORY;
TIFFClose(tiff);
return -1;
}
state->bytes = rows_per_strip * row_byte_size;
TRACE(("StripSize: %d \n", state->bytes));
if (TIFFStripSize(tiff) > state->bytes) {
// If the strip size as expected by LibTiff isn't what we're expecting, abort.
// man: TIFFStripSize returns the equivalent size for a strip of data as it would be returned in a
// call to TIFFReadEncodedStrip ...
state->errcode = IMAGING_CODEC_MEMORY;
TIFFClose(tiff);
return -1;
}
/* realloc to fit whole strip */
/* malloc check above */
new_data = realloc (state->buffer, state->bytes);
if (!new_data) {
state->errcode = IMAGING_CODEC_MEMORY;
TIFFClose(tiff);
return -1;
}
state->buffer = new_data;
for (; state->y < state->ysize; state->y += rows_per_strip) {
if (ReadStrip(tiff, state->y, (UINT32 *)state->buffer) == -1) {
TRACE(("Decode Error, strip %d\n", TIFFComputeStrip(tiff, state->y, 0)));
state->errcode = IMAGING_CODEC_BROKEN;
TIFFClose(tiff);
return -1;
}
TRACE(("Decoded strip for row %d \n", state->y));
// iterate over each row in the strip and stuff data into image
for (strip_row = 0; strip_row < min((INT32) rows_per_strip, state->ysize - state->y); strip_row++) {
TRACE(("Writing data into line %d ; \n", state->y + strip_row));
// UINT8 * bbb = state->buffer + strip_row * (state->bytes / rows_per_strip);
// TRACE(("chars: %x %x %x %x\n", ((UINT8 *)bbb)[0], ((UINT8 *)bbb)[1], ((UINT8 *)bbb)[2], ((UINT8 *)bbb)[3]));
state->shuffle((UINT8*) im->image[state->y + state->yoff + strip_row] +
state->xoff * im->pixelsize,
state->buffer + strip_row * row_byte_size,
state->xsize);
}
} }
if (ret == -1) { return ret; }
} }
TIFFClose(tiff); TIFFClose(tiff);