mirror of
https://github.com/python-pillow/Pillow.git
synced 2025-08-14 01:04:45 +03:00
Added getdominantcolors method - Finds the dominant colors in an image using k-means clustering algorithm
This commit is contained in:
parent
8deaebd5e0
commit
eda259ba73
|
@ -1272,6 +1272,77 @@ class Image:
|
||||||
return self.im.getband(band)
|
return self.im.getband(band)
|
||||||
return self.im # could be abused
|
return self.im # could be abused
|
||||||
|
|
||||||
|
def getdominantcolors(self, numcolors=3, maxiter=50, threshold=1):
|
||||||
|
"""
|
||||||
|
Returns a list of dominant colors in an image using k-means
|
||||||
|
clustering.
|
||||||
|
|
||||||
|
:param numcolors: Number of dominant colors to search for.
|
||||||
|
The default number is 3.
|
||||||
|
:param maxiter: Maximum number of iterations to run the
|
||||||
|
algorithm. The default limit is 50.
|
||||||
|
:param threshold: Early stopping condition for the algorithm.
|
||||||
|
Higher values correspond with increased color differences. The
|
||||||
|
default is set to 1 (corresponding to 1 pixel difference).
|
||||||
|
:returns: An unsorted list of (pixel) values.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def euclidean(p1, p2):
|
||||||
|
return sum([(p1[i] - p2[i]) ** 2 for i in range(channels)])
|
||||||
|
|
||||||
|
if self.mode in ("1", "L", "P"):
|
||||||
|
channels = 1
|
||||||
|
elif self.mode in ("RGB", "YCbCr", "LAB", "HSV"):
|
||||||
|
channels = 3
|
||||||
|
elif self.mode in ("RGBA", "CMYK"):
|
||||||
|
channels = 4
|
||||||
|
|
||||||
|
w, h = self.size()
|
||||||
|
|
||||||
|
pixels_and_counts = []
|
||||||
|
for count, color in self.im.getcolors(w * h):
|
||||||
|
pixels_and_counts.append((color, count))
|
||||||
|
|
||||||
|
centroids = []
|
||||||
|
for i in range(numcolors):
|
||||||
|
centroids.append(([pixels_and_counts[i]], pixels_and_counts[i][0]))
|
||||||
|
|
||||||
|
for iter in range(maxiter):
|
||||||
|
cluster = {}
|
||||||
|
for i in range(numcolors):
|
||||||
|
cluster[i] = []
|
||||||
|
|
||||||
|
for pixel in pixels_and_counts:
|
||||||
|
smallest_distance = float("Inf")
|
||||||
|
|
||||||
|
for i in range(numcolors):
|
||||||
|
distance = euclidean(pixel[0], centroids[i][1])
|
||||||
|
if distance < smallest_distance:
|
||||||
|
smallest_distance = distance
|
||||||
|
idx = i
|
||||||
|
|
||||||
|
cluster[idx].append(pixel)
|
||||||
|
|
||||||
|
difference = 0
|
||||||
|
for i in range(numcolors):
|
||||||
|
previous = centroids[i][1]
|
||||||
|
pixel_sum = [0.0 for i in range(channels)]
|
||||||
|
count_sum = 0
|
||||||
|
|
||||||
|
for pixel in cluster[i]:
|
||||||
|
count_sum += pixel[1]
|
||||||
|
for channel in range(channels):
|
||||||
|
pixel_sum[channel] += pixel[0][channel] * pixel[1]
|
||||||
|
|
||||||
|
current = [(channel_sum / count_sum) for channel_sum in pixel_sum]
|
||||||
|
centroids[i] = (cluster[i], current)
|
||||||
|
difference = max(difference, euclidean(previous, current))
|
||||||
|
|
||||||
|
if difference < threshold:
|
||||||
|
break
|
||||||
|
|
||||||
|
return [tuple(map(int, center[1])) for center in centroids]
|
||||||
|
|
||||||
def getextrema(self):
|
def getextrema(self):
|
||||||
"""
|
"""
|
||||||
Gets the the minimum and maximum pixel values for each band in
|
Gets the the minimum and maximum pixel values for each band in
|
||||||
|
|
Loading…
Reference in New Issue
Block a user