Added enums

This commit is contained in:
Andrew Murray 2022-01-15 09:02:31 +11:00
parent fd2b07c454
commit f8e4e9c2dd
47 changed files with 920 additions and 685 deletions

View File

@ -43,107 +43,158 @@ class TestColorLut3DCoreAPI:
im = Image.new("RGB", (10, 10), 0)
with pytest.raises(ValueError, match="filter"):
im.im.color_lut_3d("RGB", Image.CUBIC, *self.generate_identity_table(3, 3))
im.im.color_lut_3d(
"RGB", Image.Resampling.BICUBIC, *self.generate_identity_table(3, 3)
)
with pytest.raises(ValueError, match="image mode"):
im.im.color_lut_3d(
"wrong", Image.LINEAR, *self.generate_identity_table(3, 3)
"wrong", Image.Resampling.BILINEAR, *self.generate_identity_table(3, 3)
)
with pytest.raises(ValueError, match="table_channels"):
im.im.color_lut_3d("RGB", Image.LINEAR, *self.generate_identity_table(5, 3))
with pytest.raises(ValueError, match="table_channels"):
im.im.color_lut_3d("RGB", Image.LINEAR, *self.generate_identity_table(1, 3))
with pytest.raises(ValueError, match="table_channels"):
im.im.color_lut_3d("RGB", Image.LINEAR, *self.generate_identity_table(2, 3))
with pytest.raises(ValueError, match="Table size"):
im.im.color_lut_3d(
"RGB", Image.LINEAR, *self.generate_identity_table(3, (1, 3, 3))
"RGB", Image.Resampling.BILINEAR, *self.generate_identity_table(5, 3)
)
with pytest.raises(ValueError, match="table_channels"):
im.im.color_lut_3d(
"RGB", Image.Resampling.BILINEAR, *self.generate_identity_table(1, 3)
)
with pytest.raises(ValueError, match="table_channels"):
im.im.color_lut_3d(
"RGB", Image.Resampling.BILINEAR, *self.generate_identity_table(2, 3)
)
with pytest.raises(ValueError, match="Table size"):
im.im.color_lut_3d(
"RGB", Image.LINEAR, *self.generate_identity_table(3, (66, 3, 3))
"RGB",
Image.Resampling.BILINEAR,
*self.generate_identity_table(3, (1, 3, 3)),
)
with pytest.raises(ValueError, match="Table size"):
im.im.color_lut_3d(
"RGB",
Image.Resampling.BILINEAR,
*self.generate_identity_table(3, (66, 3, 3)),
)
with pytest.raises(ValueError, match=r"size1D \* size2D \* size3D"):
im.im.color_lut_3d("RGB", Image.LINEAR, 3, 2, 2, 2, [0, 0, 0] * 7)
im.im.color_lut_3d(
"RGB", Image.Resampling.BILINEAR, 3, 2, 2, 2, [0, 0, 0] * 7
)
with pytest.raises(ValueError, match=r"size1D \* size2D \* size3D"):
im.im.color_lut_3d("RGB", Image.LINEAR, 3, 2, 2, 2, [0, 0, 0] * 9)
im.im.color_lut_3d(
"RGB", Image.Resampling.BILINEAR, 3, 2, 2, 2, [0, 0, 0] * 9
)
with pytest.raises(TypeError):
im.im.color_lut_3d("RGB", Image.LINEAR, 3, 2, 2, 2, [0, 0, "0"] * 8)
im.im.color_lut_3d(
"RGB", Image.Resampling.BILINEAR, 3, 2, 2, 2, [0, 0, "0"] * 8
)
with pytest.raises(TypeError):
im.im.color_lut_3d("RGB", Image.LINEAR, 3, 2, 2, 2, 16)
im.im.color_lut_3d("RGB", Image.Resampling.BILINEAR, 3, 2, 2, 2, 16)
def test_correct_args(self):
im = Image.new("RGB", (10, 10), 0)
im.im.color_lut_3d("RGB", Image.LINEAR, *self.generate_identity_table(3, 3))
im.im.color_lut_3d("CMYK", Image.LINEAR, *self.generate_identity_table(4, 3))
im.im.color_lut_3d(
"RGB", Image.LINEAR, *self.generate_identity_table(3, (2, 3, 3))
"RGB", Image.Resampling.BILINEAR, *self.generate_identity_table(3, 3)
)
im.im.color_lut_3d(
"RGB", Image.LINEAR, *self.generate_identity_table(3, (65, 3, 3))
"CMYK", Image.Resampling.BILINEAR, *self.generate_identity_table(4, 3)
)
im.im.color_lut_3d(
"RGB", Image.LINEAR, *self.generate_identity_table(3, (3, 65, 3))
"RGB",
Image.Resampling.BILINEAR,
*self.generate_identity_table(3, (2, 3, 3)),
)
im.im.color_lut_3d(
"RGB", Image.LINEAR, *self.generate_identity_table(3, (3, 3, 65))
"RGB",
Image.Resampling.BILINEAR,
*self.generate_identity_table(3, (65, 3, 3)),
)
im.im.color_lut_3d(
"RGB",
Image.Resampling.BILINEAR,
*self.generate_identity_table(3, (3, 65, 3)),
)
im.im.color_lut_3d(
"RGB",
Image.Resampling.BILINEAR,
*self.generate_identity_table(3, (3, 3, 65)),
)
def test_wrong_mode(self):
with pytest.raises(ValueError, match="wrong mode"):
im = Image.new("L", (10, 10), 0)
im.im.color_lut_3d("RGB", Image.LINEAR, *self.generate_identity_table(3, 3))
with pytest.raises(ValueError, match="wrong mode"):
im = Image.new("RGB", (10, 10), 0)
im.im.color_lut_3d("L", Image.LINEAR, *self.generate_identity_table(3, 3))
with pytest.raises(ValueError, match="wrong mode"):
im = Image.new("L", (10, 10), 0)
im.im.color_lut_3d("L", Image.LINEAR, *self.generate_identity_table(3, 3))
with pytest.raises(ValueError, match="wrong mode"):
im = Image.new("RGB", (10, 10), 0)
im.im.color_lut_3d(
"RGBA", Image.LINEAR, *self.generate_identity_table(3, 3)
"RGB", Image.Resampling.BILINEAR, *self.generate_identity_table(3, 3)
)
with pytest.raises(ValueError, match="wrong mode"):
im = Image.new("RGB", (10, 10), 0)
im.im.color_lut_3d("RGB", Image.LINEAR, *self.generate_identity_table(4, 3))
im.im.color_lut_3d(
"L", Image.Resampling.BILINEAR, *self.generate_identity_table(3, 3)
)
with pytest.raises(ValueError, match="wrong mode"):
im = Image.new("L", (10, 10), 0)
im.im.color_lut_3d(
"L", Image.Resampling.BILINEAR, *self.generate_identity_table(3, 3)
)
with pytest.raises(ValueError, match="wrong mode"):
im = Image.new("RGB", (10, 10), 0)
im.im.color_lut_3d(
"RGBA", Image.Resampling.BILINEAR, *self.generate_identity_table(3, 3)
)
with pytest.raises(ValueError, match="wrong mode"):
im = Image.new("RGB", (10, 10), 0)
im.im.color_lut_3d(
"RGB", Image.Resampling.BILINEAR, *self.generate_identity_table(4, 3)
)
def test_correct_mode(self):
im = Image.new("RGBA", (10, 10), 0)
im.im.color_lut_3d("RGBA", Image.LINEAR, *self.generate_identity_table(3, 3))
im.im.color_lut_3d(
"RGBA", Image.Resampling.BILINEAR, *self.generate_identity_table(3, 3)
)
im = Image.new("RGBA", (10, 10), 0)
im.im.color_lut_3d("RGBA", Image.LINEAR, *self.generate_identity_table(4, 3))
im.im.color_lut_3d(
"RGBA", Image.Resampling.BILINEAR, *self.generate_identity_table(4, 3)
)
im = Image.new("RGB", (10, 10), 0)
im.im.color_lut_3d("HSV", Image.LINEAR, *self.generate_identity_table(3, 3))
im.im.color_lut_3d(
"HSV", Image.Resampling.BILINEAR, *self.generate_identity_table(3, 3)
)
im = Image.new("RGB", (10, 10), 0)
im.im.color_lut_3d("RGBA", Image.LINEAR, *self.generate_identity_table(4, 3))
im.im.color_lut_3d(
"RGBA", Image.Resampling.BILINEAR, *self.generate_identity_table(4, 3)
)
def test_identities(self):
g = Image.linear_gradient("L")
im = Image.merge(
"RGB", [g, g.transpose(Image.ROTATE_90), g.transpose(Image.ROTATE_180)]
"RGB",
[
g,
g.transpose(Image.Transpose.ROTATE_90),
g.transpose(Image.Transpose.ROTATE_180),
],
)
# Fast test with small cubes
@ -152,7 +203,9 @@ class TestColorLut3DCoreAPI:
im,
im._new(
im.im.color_lut_3d(
"RGB", Image.LINEAR, *self.generate_identity_table(3, size)
"RGB",
Image.Resampling.BILINEAR,
*self.generate_identity_table(3, size),
)
),
)
@ -162,7 +215,9 @@ class TestColorLut3DCoreAPI:
im,
im._new(
im.im.color_lut_3d(
"RGB", Image.LINEAR, *self.generate_identity_table(3, (2, 2, 65))
"RGB",
Image.Resampling.BILINEAR,
*self.generate_identity_table(3, (2, 2, 65)),
)
),
)
@ -170,7 +225,12 @@ class TestColorLut3DCoreAPI:
def test_identities_4_channels(self):
g = Image.linear_gradient("L")
im = Image.merge(
"RGB", [g, g.transpose(Image.ROTATE_90), g.transpose(Image.ROTATE_180)]
"RGB",
[
g,
g.transpose(Image.Transpose.ROTATE_90),
g.transpose(Image.Transpose.ROTATE_180),
],
)
# Red channel copied to alpha
@ -178,7 +238,9 @@ class TestColorLut3DCoreAPI:
Image.merge("RGBA", (im.split() * 2)[:4]),
im._new(
im.im.color_lut_3d(
"RGBA", Image.LINEAR, *self.generate_identity_table(4, 17)
"RGBA",
Image.Resampling.BILINEAR,
*self.generate_identity_table(4, 17),
)
),
)
@ -189,9 +251,9 @@ class TestColorLut3DCoreAPI:
"RGBA",
[
g,
g.transpose(Image.ROTATE_90),
g.transpose(Image.ROTATE_180),
g.transpose(Image.ROTATE_270),
g.transpose(Image.Transpose.ROTATE_90),
g.transpose(Image.Transpose.ROTATE_180),
g.transpose(Image.Transpose.ROTATE_270),
],
)
@ -199,7 +261,9 @@ class TestColorLut3DCoreAPI:
im,
im._new(
im.im.color_lut_3d(
"RGBA", Image.LINEAR, *self.generate_identity_table(3, 17)
"RGBA",
Image.Resampling.BILINEAR,
*self.generate_identity_table(3, 17),
)
),
)
@ -207,14 +271,19 @@ class TestColorLut3DCoreAPI:
def test_channels_order(self):
g = Image.linear_gradient("L")
im = Image.merge(
"RGB", [g, g.transpose(Image.ROTATE_90), g.transpose(Image.ROTATE_180)]
"RGB",
[
g,
g.transpose(Image.Transpose.ROTATE_90),
g.transpose(Image.Transpose.ROTATE_180),
],
)
# Reverse channels by splitting and using table
# fmt: off
assert_image_equal(
Image.merge('RGB', im.split()[::-1]),
im._new(im.im.color_lut_3d('RGB', Image.LINEAR,
im._new(im.im.color_lut_3d('RGB', Image.Resampling.BILINEAR,
3, 2, 2, 2, [
0, 0, 0, 0, 0, 1,
0, 1, 0, 0, 1, 1,
@ -227,11 +296,16 @@ class TestColorLut3DCoreAPI:
def test_overflow(self):
g = Image.linear_gradient("L")
im = Image.merge(
"RGB", [g, g.transpose(Image.ROTATE_90), g.transpose(Image.ROTATE_180)]
"RGB",
[
g,
g.transpose(Image.Transpose.ROTATE_90),
g.transpose(Image.Transpose.ROTATE_180),
],
)
# fmt: off
transformed = im._new(im.im.color_lut_3d('RGB', Image.LINEAR,
transformed = im._new(im.im.color_lut_3d('RGB', Image.Resampling.BILINEAR,
3, 2, 2, 2,
[
-1, -1, -1, 2, -1, -1,
@ -251,7 +325,7 @@ class TestColorLut3DCoreAPI:
assert transformed[205, 205] == (255, 255, 0)
# fmt: off
transformed = im._new(im.im.color_lut_3d('RGB', Image.LINEAR,
transformed = im._new(im.im.color_lut_3d('RGB', Image.Resampling.BILINEAR,
3, 2, 2, 2,
[
-3, -3, -3, 5, -3, -3,
@ -354,7 +428,12 @@ class TestColorLut3DFilter:
def test_numpy_formats(self):
g = Image.linear_gradient("L")
im = Image.merge(
"RGB", [g, g.transpose(Image.ROTATE_90), g.transpose(Image.ROTATE_180)]
"RGB",
[
g,
g.transpose(Image.Transpose.ROTATE_90),
g.transpose(Image.Transpose.ROTATE_180),
],
)
lut = ImageFilter.Color3DLUT.generate((7, 9, 11), lambda r, g, b: (r, g, b))
@ -445,7 +524,12 @@ class TestGenerateColorLut3D:
g = Image.linear_gradient("L")
im = Image.merge(
"RGB", [g, g.transpose(Image.ROTATE_90), g.transpose(Image.ROTATE_180)]
"RGB",
[
g,
g.transpose(Image.Transpose.ROTATE_90),
g.transpose(Image.Transpose.ROTATE_180),
],
)
assert im == im.filter(lut)

View File

@ -120,9 +120,9 @@ def test_apng_dispose_op_previous_frame():
# save_all=True,
# append_images=[green, blue],
# disposal=[
# PngImagePlugin.APNG_DISPOSE_OP_NONE,
# PngImagePlugin.APNG_DISPOSE_OP_PREVIOUS,
# PngImagePlugin.APNG_DISPOSE_OP_PREVIOUS
# PngImagePlugin.Disposal.OP_NONE,
# PngImagePlugin.Disposal.OP_PREVIOUS,
# PngImagePlugin.Disposal.OP_PREVIOUS
# ],
# )
with Image.open("Tests/images/apng/dispose_op_previous_frame.png") as im:
@ -455,31 +455,31 @@ def test_apng_save_disposal(tmp_path):
green = Image.new("RGBA", size, (0, 255, 0, 255))
transparent = Image.new("RGBA", size, (0, 0, 0, 0))
# test APNG_DISPOSE_OP_NONE
# test OP_NONE
red.save(
test_file,
save_all=True,
append_images=[green, transparent],
disposal=PngImagePlugin.APNG_DISPOSE_OP_NONE,
blend=PngImagePlugin.APNG_BLEND_OP_OVER,
disposal=PngImagePlugin.Disposal.OP_NONE,
blend=PngImagePlugin.Blend.OP_OVER,
)
with Image.open(test_file) as im:
im.seek(2)
assert im.getpixel((0, 0)) == (0, 255, 0, 255)
assert im.getpixel((64, 32)) == (0, 255, 0, 255)
# test APNG_DISPOSE_OP_BACKGROUND
# test OP_BACKGROUND
disposal = [
PngImagePlugin.APNG_DISPOSE_OP_NONE,
PngImagePlugin.APNG_DISPOSE_OP_BACKGROUND,
PngImagePlugin.APNG_DISPOSE_OP_NONE,
PngImagePlugin.Disposal.OP_NONE,
PngImagePlugin.Disposal.OP_BACKGROUND,
PngImagePlugin.Disposal.OP_NONE,
]
red.save(
test_file,
save_all=True,
append_images=[red, transparent],
disposal=disposal,
blend=PngImagePlugin.APNG_BLEND_OP_OVER,
blend=PngImagePlugin.Blend.OP_OVER,
)
with Image.open(test_file) as im:
im.seek(2)
@ -487,26 +487,26 @@ def test_apng_save_disposal(tmp_path):
assert im.getpixel((64, 32)) == (0, 0, 0, 0)
disposal = [
PngImagePlugin.APNG_DISPOSE_OP_NONE,
PngImagePlugin.APNG_DISPOSE_OP_BACKGROUND,
PngImagePlugin.Disposal.OP_NONE,
PngImagePlugin.Disposal.OP_BACKGROUND,
]
red.save(
test_file,
save_all=True,
append_images=[green],
disposal=disposal,
blend=PngImagePlugin.APNG_BLEND_OP_OVER,
blend=PngImagePlugin.Blend.OP_OVER,
)
with Image.open(test_file) as im:
im.seek(1)
assert im.getpixel((0, 0)) == (0, 255, 0, 255)
assert im.getpixel((64, 32)) == (0, 255, 0, 255)
# test APNG_DISPOSE_OP_PREVIOUS
# test OP_PREVIOUS
disposal = [
PngImagePlugin.APNG_DISPOSE_OP_NONE,
PngImagePlugin.APNG_DISPOSE_OP_PREVIOUS,
PngImagePlugin.APNG_DISPOSE_OP_NONE,
PngImagePlugin.Disposal.OP_NONE,
PngImagePlugin.Disposal.OP_PREVIOUS,
PngImagePlugin.Disposal.OP_NONE,
]
red.save(
test_file,
@ -514,7 +514,7 @@ def test_apng_save_disposal(tmp_path):
append_images=[green, red, transparent],
default_image=True,
disposal=disposal,
blend=PngImagePlugin.APNG_BLEND_OP_OVER,
blend=PngImagePlugin.Blend.OP_OVER,
)
with Image.open(test_file) as im:
im.seek(3)
@ -522,15 +522,15 @@ def test_apng_save_disposal(tmp_path):
assert im.getpixel((64, 32)) == (0, 255, 0, 255)
disposal = [
PngImagePlugin.APNG_DISPOSE_OP_NONE,
PngImagePlugin.APNG_DISPOSE_OP_PREVIOUS,
PngImagePlugin.Disposal.OP_NONE,
PngImagePlugin.Disposal.OP_PREVIOUS,
]
red.save(
test_file,
save_all=True,
append_images=[green],
disposal=disposal,
blend=PngImagePlugin.APNG_BLEND_OP_OVER,
blend=PngImagePlugin.Blend.OP_OVER,
)
with Image.open(test_file) as im:
im.seek(1)
@ -538,7 +538,7 @@ def test_apng_save_disposal(tmp_path):
assert im.getpixel((64, 32)) == (0, 255, 0, 255)
# test info disposal
red.info["disposal"] = PngImagePlugin.APNG_DISPOSE_OP_BACKGROUND
red.info["disposal"] = PngImagePlugin.Disposal.OP_BACKGROUND
red.save(
test_file,
save_all=True,
@ -556,12 +556,12 @@ def test_apng_save_disposal_previous(tmp_path):
red = Image.new("RGBA", size, (255, 0, 0, 255))
green = Image.new("RGBA", size, (0, 255, 0, 255))
# test APNG_DISPOSE_OP_NONE
# test OP_NONE
transparent.save(
test_file,
save_all=True,
append_images=[red, green],
disposal=PngImagePlugin.APNG_DISPOSE_OP_PREVIOUS,
disposal=PngImagePlugin.Disposal.OP_PREVIOUS,
)
with Image.open(test_file) as im:
im.seek(2)
@ -576,17 +576,17 @@ def test_apng_save_blend(tmp_path):
green = Image.new("RGBA", size, (0, 255, 0, 255))
transparent = Image.new("RGBA", size, (0, 0, 0, 0))
# test APNG_BLEND_OP_SOURCE on solid color
# test OP_SOURCE on solid color
blend = [
PngImagePlugin.APNG_BLEND_OP_OVER,
PngImagePlugin.APNG_BLEND_OP_SOURCE,
PngImagePlugin.Blend.OP_OVER,
PngImagePlugin.Blend.OP_SOURCE,
]
red.save(
test_file,
save_all=True,
append_images=[red, green],
default_image=True,
disposal=PngImagePlugin.APNG_DISPOSE_OP_NONE,
disposal=PngImagePlugin.Disposal.OP_NONE,
blend=blend,
)
with Image.open(test_file) as im:
@ -594,17 +594,17 @@ def test_apng_save_blend(tmp_path):
assert im.getpixel((0, 0)) == (0, 255, 0, 255)
assert im.getpixel((64, 32)) == (0, 255, 0, 255)
# test APNG_BLEND_OP_SOURCE on transparent color
# test OP_SOURCE on transparent color
blend = [
PngImagePlugin.APNG_BLEND_OP_OVER,
PngImagePlugin.APNG_BLEND_OP_SOURCE,
PngImagePlugin.Blend.OP_OVER,
PngImagePlugin.Blend.OP_SOURCE,
]
red.save(
test_file,
save_all=True,
append_images=[red, transparent],
default_image=True,
disposal=PngImagePlugin.APNG_DISPOSE_OP_NONE,
disposal=PngImagePlugin.Disposal.OP_NONE,
blend=blend,
)
with Image.open(test_file) as im:
@ -612,14 +612,14 @@ def test_apng_save_blend(tmp_path):
assert im.getpixel((0, 0)) == (0, 0, 0, 0)
assert im.getpixel((64, 32)) == (0, 0, 0, 0)
# test APNG_BLEND_OP_OVER
# test OP_OVER
red.save(
test_file,
save_all=True,
append_images=[green, transparent],
default_image=True,
disposal=PngImagePlugin.APNG_DISPOSE_OP_NONE,
blend=PngImagePlugin.APNG_BLEND_OP_OVER,
disposal=PngImagePlugin.Disposal.OP_NONE,
blend=PngImagePlugin.Blend.OP_OVER,
)
with Image.open(test_file) as im:
im.seek(1)
@ -630,7 +630,7 @@ def test_apng_save_blend(tmp_path):
assert im.getpixel((64, 32)) == (0, 255, 0, 255)
# test info blend
red.info["blend"] = PngImagePlugin.APNG_BLEND_OP_OVER
red.info["blend"] = PngImagePlugin.Blend.OP_OVER
red.save(test_file, save_all=True, append_images=[green, transparent])
with Image.open(test_file) as im:
im.seek(2)

View File

@ -210,8 +210,8 @@ def test_palette_handling(tmp_path):
with Image.open(TEST_GIF) as im:
im = im.convert("RGB")
im = im.resize((100, 100), Image.LANCZOS)
im2 = im.convert("P", palette=Image.ADAPTIVE, colors=256)
im = im.resize((100, 100), Image.Resampling.LANCZOS)
im2 = im.convert("P", palette=Image.Palette.ADAPTIVE, colors=256)
f = str(tmp_path / "temp.gif")
im2.save(f, optimize=True)
@ -911,7 +911,7 @@ def test_save_I(tmp_path):
def test_getdata():
# Test getheader/getdata against legacy values.
# Create a 'P' image with holes in the palette.
im = Image._wedge().resize((16, 16), Image.NEAREST)
im = Image._wedge().resize((16, 16), Image.Resampling.NEAREST)
im.putpalette(ImagePalette.ImagePalette("RGB"))
im.info = {"background": 0}

View File

@ -48,7 +48,9 @@ def test_save_to_bytes():
assert im.mode == reloaded.mode
assert (64, 64) == reloaded.size
assert reloaded.format == "ICO"
assert_image_equal(reloaded, hopper().resize((64, 64), Image.LANCZOS))
assert_image_equal(
reloaded, hopper().resize((64, 64), Image.Resampling.LANCZOS)
)
# The other one
output.seek(0)
@ -58,7 +60,9 @@ def test_save_to_bytes():
assert im.mode == reloaded.mode
assert (32, 32) == reloaded.size
assert reloaded.format == "ICO"
assert_image_equal(reloaded, hopper().resize((32, 32), Image.LANCZOS))
assert_image_equal(
reloaded, hopper().resize((32, 32), Image.Resampling.LANCZOS)
)
@pytest.mark.parametrize("mode", ("1", "L", "P", "RGB", "RGBA"))
@ -75,7 +79,7 @@ def test_save_to_bytes_bmp(mode):
assert "RGBA" == reloaded.mode
assert (64, 64) == reloaded.size
assert reloaded.format == "ICO"
im = hopper(mode).resize((64, 64), Image.LANCZOS).convert("RGBA")
im = hopper(mode).resize((64, 64), Image.Resampling.LANCZOS).convert("RGBA")
assert_image_equal(reloaded, im)
# The other one
@ -86,7 +90,7 @@ def test_save_to_bytes_bmp(mode):
assert "RGBA" == reloaded.mode
assert (32, 32) == reloaded.size
assert reloaded.format == "ICO"
im = hopper(mode).resize((32, 32), Image.LANCZOS).convert("RGBA")
im = hopper(mode).resize((32, 32), Image.Resampling.LANCZOS).convert("RGBA")
assert_image_equal(reloaded, im)

View File

@ -271,7 +271,7 @@ class TestFileJpeg:
del exif[0x8769]
# Assert that it needs to be transposed
assert exif[0x0112] == Image.TRANSVERSE
assert exif[0x0112] == Image.Transpose.TRANSVERSE
# Assert that the GPS IFD is present and empty
assert exif.get_ifd(0x8825) == {}

View File

@ -291,7 +291,7 @@ def test_subsampling_decode(name):
# RGB reference images are downscaled
epsilon = 3e-3
width, height = width * 2, height * 2
expected = im2.resize((width, height), Image.NEAREST)
expected = im2.resize((width, height), Image.Resampling.NEAREST)
assert_image_similar(im, expected, epsilon)

View File

@ -112,7 +112,7 @@ class TestFileLibTiff(LibTiffTestCase):
test_file = "Tests/images/hopper_g4_500.tif"
with Image.open(test_file) as orig:
out = str(tmp_path / "temp.tif")
rot = orig.transpose(Image.ROTATE_90)
rot = orig.transpose(Image.Transpose.ROTATE_90)
assert rot.size == (500, 500)
rot.save(out)

View File

@ -77,7 +77,7 @@ def to_rgb_colorsys(im):
def test_wedge():
src = wedge().resize((3 * 32, 32), Image.BILINEAR)
src = wedge().resize((3 * 32, 32), Image.Resampling.BILINEAR)
im = src.convert("HSV")
comparable = to_hsv_colorsys(src)

View File

@ -136,7 +136,7 @@ def test_trns_l(tmp_path):
assert "transparency" in im_p.info
im_p.save(f)
im_p = im.convert("P", palette=Image.ADAPTIVE)
im_p = im.convert("P", palette=Image.Palette.ADAPTIVE)
assert "transparency" in im_p.info
im_p.save(f)
@ -159,13 +159,13 @@ def test_trns_RGB(tmp_path):
assert "transparency" not in im_rgba.info
im_rgba.save(f)
im_p = pytest.warns(UserWarning, im.convert, "P", palette=Image.ADAPTIVE)
im_p = pytest.warns(UserWarning, im.convert, "P", palette=Image.Palette.ADAPTIVE)
assert "transparency" not in im_p.info
im_p.save(f)
im = Image.new("RGB", (1, 1))
im.info["transparency"] = im.getpixel((0, 0))
im_p = im.convert("P", palette=Image.ADAPTIVE)
im_p = im.convert("P", palette=Image.Palette.ADAPTIVE)
assert im_p.info["transparency"] == im_p.getpixel((0, 0))
im_p.save(f)

View File

@ -14,7 +14,7 @@ def test_sanity():
def test_roundtrip():
def getdata(mode):
im = hopper(mode).resize((32, 30), Image.NEAREST)
im = hopper(mode).resize((32, 30), Image.Resampling.NEAREST)
data = im.getdata()
return data[0], len(data), len(list(data))

View File

@ -45,7 +45,7 @@ class TestImagingPaste:
@cached_property
def mask_L(self):
return self.gradient_L.transpose(Image.ROTATE_270)
return self.gradient_L.transpose(Image.Transpose.ROTATE_270)
@cached_property
def gradient_L(self):
@ -62,8 +62,8 @@ class TestImagingPaste:
"RGB",
[
self.gradient_L,
self.gradient_L.transpose(Image.ROTATE_90),
self.gradient_L.transpose(Image.ROTATE_180),
self.gradient_L.transpose(Image.Transpose.ROTATE_90),
self.gradient_L.transpose(Image.Transpose.ROTATE_180),
],
)
@ -73,9 +73,9 @@ class TestImagingPaste:
"RGBA",
[
self.gradient_L,
self.gradient_L.transpose(Image.ROTATE_90),
self.gradient_L.transpose(Image.ROTATE_180),
self.gradient_L.transpose(Image.ROTATE_270),
self.gradient_L.transpose(Image.Transpose.ROTATE_90),
self.gradient_L.transpose(Image.Transpose.ROTATE_180),
self.gradient_L.transpose(Image.Transpose.ROTATE_270),
],
)
@ -85,9 +85,9 @@ class TestImagingPaste:
"RGBa",
[
self.gradient_L,
self.gradient_L.transpose(Image.ROTATE_90),
self.gradient_L.transpose(Image.ROTATE_180),
self.gradient_L.transpose(Image.ROTATE_270),
self.gradient_L.transpose(Image.Transpose.ROTATE_90),
self.gradient_L.transpose(Image.Transpose.ROTATE_180),
self.gradient_L.transpose(Image.Transpose.ROTATE_270),
],
)

View File

@ -21,7 +21,7 @@ def test_sanity():
def test_libimagequant_quantize():
image = hopper()
try:
converted = image.quantize(100, Image.LIBIMAGEQUANT)
converted = image.quantize(100, Image.Quantize.LIBIMAGEQUANT)
except ValueError as ex: # pragma: no cover
if "dependency" in str(ex).lower():
pytest.skip("libimagequant support not available")
@ -34,7 +34,7 @@ def test_libimagequant_quantize():
def test_octree_quantize():
image = hopper()
converted = image.quantize(100, Image.FASTOCTREE)
converted = image.quantize(100, Image.Quantize.FASTOCTREE)
assert converted.mode == "P"
assert_image_similar(converted.convert("RGB"), image, 20)
assert len(converted.getcolors()) == 100
@ -97,10 +97,10 @@ def test_transparent_colors_equal():
@pytest.mark.parametrize(
"method, color",
(
(Image.MEDIANCUT, (0, 0, 0)),
(Image.MAXCOVERAGE, (0, 0, 0)),
(Image.FASTOCTREE, (0, 0, 0)),
(Image.FASTOCTREE, (0, 0, 0, 0)),
(Image.Quantize.MEDIANCUT, (0, 0, 0)),
(Image.Quantize.MAXCOVERAGE, (0, 0, 0)),
(Image.Quantize.FASTOCTREE, (0, 0, 0)),
(Image.Quantize.FASTOCTREE, (0, 0, 0, 0)),
),
)
def test_palette(method, color):

View File

@ -97,7 +97,7 @@ def get_image(mode):
bands = [gradients_image]
for _ in mode_info.bands[1:]:
# rotate previous image
band = bands[-1].transpose(Image.ROTATE_90)
band = bands[-1].transpose(Image.Transpose.ROTATE_90)
bands.append(band)
# Correct alpha channel by transforming completely transparent pixels.
# Low alpha values also emphasize error after alpha multiplication.
@ -138,24 +138,26 @@ def compare_reduce_with_reference(im, factor, average_diff=0.4, max_diff=1):
reference = Image.new(im.mode, reduced.size)
area_size = (im.size[0] // factor[0], im.size[1] // factor[1])
area_box = (0, 0, area_size[0] * factor[0], area_size[1] * factor[1])
area = im.resize(area_size, Image.BOX, area_box)
area = im.resize(area_size, Image.Resampling.BOX, area_box)
reference.paste(area, (0, 0))
if area_size[0] < reduced.size[0]:
assert reduced.size[0] - area_size[0] == 1
last_column_box = (area_box[2], 0, im.size[0], area_box[3])
last_column = im.resize((1, area_size[1]), Image.BOX, last_column_box)
last_column = im.resize(
(1, area_size[1]), Image.Resampling.BOX, last_column_box
)
reference.paste(last_column, (area_size[0], 0))
if area_size[1] < reduced.size[1]:
assert reduced.size[1] - area_size[1] == 1
last_row_box = (0, area_box[3], area_box[2], im.size[1])
last_row = im.resize((area_size[0], 1), Image.BOX, last_row_box)
last_row = im.resize((area_size[0], 1), Image.Resampling.BOX, last_row_box)
reference.paste(last_row, (0, area_size[1]))
if area_size[0] < reduced.size[0] and area_size[1] < reduced.size[1]:
last_pixel_box = (area_box[2], area_box[3], im.size[0], im.size[1])
last_pixel = im.resize((1, 1), Image.BOX, last_pixel_box)
last_pixel = im.resize((1, 1), Image.Resampling.BOX, last_pixel_box)
reference.paste(last_pixel, area_size)
assert_compare_images(reduced, reference, average_diff, max_diff)

View File

@ -24,7 +24,7 @@ class TestImagingResampleVulnerability:
):
with pytest.raises(MemoryError):
# any resampling filter will do here
im.im.resize((xsize, ysize), Image.BILINEAR)
im.im.resize((xsize, ysize), Image.Resampling.BILINEAR)
def test_invalid_size(self):
im = hopper()
@ -103,7 +103,7 @@ class TestImagingCoreResampleAccuracy:
def test_reduce_box(self):
for mode in ["RGBX", "RGB", "La", "L"]:
case = self.make_case(mode, (8, 8), 0xE1)
case = case.resize((4, 4), Image.BOX)
case = case.resize((4, 4), Image.Resampling.BOX)
# fmt: off
data = ("e1 e1"
"e1 e1")
@ -114,7 +114,7 @@ class TestImagingCoreResampleAccuracy:
def test_reduce_bilinear(self):
for mode in ["RGBX", "RGB", "La", "L"]:
case = self.make_case(mode, (8, 8), 0xE1)
case = case.resize((4, 4), Image.BILINEAR)
case = case.resize((4, 4), Image.Resampling.BILINEAR)
# fmt: off
data = ("e1 c9"
"c9 b7")
@ -125,7 +125,7 @@ class TestImagingCoreResampleAccuracy:
def test_reduce_hamming(self):
for mode in ["RGBX", "RGB", "La", "L"]:
case = self.make_case(mode, (8, 8), 0xE1)
case = case.resize((4, 4), Image.HAMMING)
case = case.resize((4, 4), Image.Resampling.HAMMING)
# fmt: off
data = ("e1 da"
"da d3")
@ -136,7 +136,7 @@ class TestImagingCoreResampleAccuracy:
def test_reduce_bicubic(self):
for mode in ["RGBX", "RGB", "La", "L"]:
case = self.make_case(mode, (12, 12), 0xE1)
case = case.resize((6, 6), Image.BICUBIC)
case = case.resize((6, 6), Image.Resampling.BICUBIC)
# fmt: off
data = ("e1 e3 d4"
"e3 e5 d6"
@ -148,7 +148,7 @@ class TestImagingCoreResampleAccuracy:
def test_reduce_lanczos(self):
for mode in ["RGBX", "RGB", "La", "L"]:
case = self.make_case(mode, (16, 16), 0xE1)
case = case.resize((8, 8), Image.LANCZOS)
case = case.resize((8, 8), Image.Resampling.LANCZOS)
# fmt: off
data = ("e1 e0 e4 d7"
"e0 df e3 d6"
@ -161,7 +161,7 @@ class TestImagingCoreResampleAccuracy:
def test_enlarge_box(self):
for mode in ["RGBX", "RGB", "La", "L"]:
case = self.make_case(mode, (2, 2), 0xE1)
case = case.resize((4, 4), Image.BOX)
case = case.resize((4, 4), Image.Resampling.BOX)
# fmt: off
data = ("e1 e1"
"e1 e1")
@ -172,7 +172,7 @@ class TestImagingCoreResampleAccuracy:
def test_enlarge_bilinear(self):
for mode in ["RGBX", "RGB", "La", "L"]:
case = self.make_case(mode, (2, 2), 0xE1)
case = case.resize((4, 4), Image.BILINEAR)
case = case.resize((4, 4), Image.Resampling.BILINEAR)
# fmt: off
data = ("e1 b0"
"b0 98")
@ -183,7 +183,7 @@ class TestImagingCoreResampleAccuracy:
def test_enlarge_hamming(self):
for mode in ["RGBX", "RGB", "La", "L"]:
case = self.make_case(mode, (2, 2), 0xE1)
case = case.resize((4, 4), Image.HAMMING)
case = case.resize((4, 4), Image.Resampling.HAMMING)
# fmt: off
data = ("e1 d2"
"d2 c5")
@ -194,7 +194,7 @@ class TestImagingCoreResampleAccuracy:
def test_enlarge_bicubic(self):
for mode in ["RGBX", "RGB", "La", "L"]:
case = self.make_case(mode, (4, 4), 0xE1)
case = case.resize((8, 8), Image.BICUBIC)
case = case.resize((8, 8), Image.Resampling.BICUBIC)
# fmt: off
data = ("e1 e5 ee b9"
"e5 e9 f3 bc"
@ -207,7 +207,7 @@ class TestImagingCoreResampleAccuracy:
def test_enlarge_lanczos(self):
for mode in ["RGBX", "RGB", "La", "L"]:
case = self.make_case(mode, (6, 6), 0xE1)
case = case.resize((12, 12), Image.LANCZOS)
case = case.resize((12, 12), Image.Resampling.LANCZOS)
data = (
"e1 e0 db ed f5 b8"
"e0 df da ec f3 b7"
@ -220,7 +220,9 @@ class TestImagingCoreResampleAccuracy:
self.check_case(channel, self.make_sample(data, (12, 12)))
def test_box_filter_correct_range(self):
im = Image.new("RGB", (8, 8), "#1688ff").resize((100, 100), Image.BOX)
im = Image.new("RGB", (8, 8), "#1688ff").resize(
(100, 100), Image.Resampling.BOX
)
ref = Image.new("RGB", (100, 100), "#1688ff")
assert_image_equal(im, ref)
@ -228,7 +230,7 @@ class TestImagingCoreResampleAccuracy:
class TestCoreResampleConsistency:
def make_case(self, mode, fill):
im = Image.new(mode, (512, 9), fill)
return im.resize((9, 512), Image.LANCZOS), im.load()[0, 0]
return im.resize((9, 512), Image.Resampling.LANCZOS), im.load()[0, 0]
def run_case(self, case):
channel, color = case
@ -283,20 +285,20 @@ class TestCoreResampleAlphaCorrect:
@pytest.mark.xfail(reason="Current implementation isn't precise enough")
def test_levels_rgba(self):
case = self.make_levels_case("RGBA")
self.run_levels_case(case.resize((512, 32), Image.BOX))
self.run_levels_case(case.resize((512, 32), Image.BILINEAR))
self.run_levels_case(case.resize((512, 32), Image.HAMMING))
self.run_levels_case(case.resize((512, 32), Image.BICUBIC))
self.run_levels_case(case.resize((512, 32), Image.LANCZOS))
self.run_levels_case(case.resize((512, 32), Image.Resampling.BOX))
self.run_levels_case(case.resize((512, 32), Image.Resampling.BILINEAR))
self.run_levels_case(case.resize((512, 32), Image.Resampling.HAMMING))
self.run_levels_case(case.resize((512, 32), Image.Resampling.BICUBIC))
self.run_levels_case(case.resize((512, 32), Image.Resampling.LANCZOS))
@pytest.mark.xfail(reason="Current implementation isn't precise enough")
def test_levels_la(self):
case = self.make_levels_case("LA")
self.run_levels_case(case.resize((512, 32), Image.BOX))
self.run_levels_case(case.resize((512, 32), Image.BILINEAR))
self.run_levels_case(case.resize((512, 32), Image.HAMMING))
self.run_levels_case(case.resize((512, 32), Image.BICUBIC))
self.run_levels_case(case.resize((512, 32), Image.LANCZOS))
self.run_levels_case(case.resize((512, 32), Image.Resampling.BOX))
self.run_levels_case(case.resize((512, 32), Image.Resampling.BILINEAR))
self.run_levels_case(case.resize((512, 32), Image.Resampling.HAMMING))
self.run_levels_case(case.resize((512, 32), Image.Resampling.BICUBIC))
self.run_levels_case(case.resize((512, 32), Image.Resampling.LANCZOS))
def make_dirty_case(self, mode, clean_pixel, dirty_pixel):
i = Image.new(mode, (64, 64), dirty_pixel)
@ -321,19 +323,27 @@ class TestCoreResampleAlphaCorrect:
def test_dirty_pixels_rgba(self):
case = self.make_dirty_case("RGBA", (255, 255, 0, 128), (0, 0, 255, 0))
self.run_dirty_case(case.resize((20, 20), Image.BOX), (255, 255, 0))
self.run_dirty_case(case.resize((20, 20), Image.BILINEAR), (255, 255, 0))
self.run_dirty_case(case.resize((20, 20), Image.HAMMING), (255, 255, 0))
self.run_dirty_case(case.resize((20, 20), Image.BICUBIC), (255, 255, 0))
self.run_dirty_case(case.resize((20, 20), Image.LANCZOS), (255, 255, 0))
self.run_dirty_case(case.resize((20, 20), Image.Resampling.BOX), (255, 255, 0))
self.run_dirty_case(
case.resize((20, 20), Image.Resampling.BILINEAR), (255, 255, 0)
)
self.run_dirty_case(
case.resize((20, 20), Image.Resampling.HAMMING), (255, 255, 0)
)
self.run_dirty_case(
case.resize((20, 20), Image.Resampling.BICUBIC), (255, 255, 0)
)
self.run_dirty_case(
case.resize((20, 20), Image.Resampling.LANCZOS), (255, 255, 0)
)
def test_dirty_pixels_la(self):
case = self.make_dirty_case("LA", (255, 128), (0, 0))
self.run_dirty_case(case.resize((20, 20), Image.BOX), (255,))
self.run_dirty_case(case.resize((20, 20), Image.BILINEAR), (255,))
self.run_dirty_case(case.resize((20, 20), Image.HAMMING), (255,))
self.run_dirty_case(case.resize((20, 20), Image.BICUBIC), (255,))
self.run_dirty_case(case.resize((20, 20), Image.LANCZOS), (255,))
self.run_dirty_case(case.resize((20, 20), Image.Resampling.BOX), (255,))
self.run_dirty_case(case.resize((20, 20), Image.Resampling.BILINEAR), (255,))
self.run_dirty_case(case.resize((20, 20), Image.Resampling.HAMMING), (255,))
self.run_dirty_case(case.resize((20, 20), Image.Resampling.BICUBIC), (255,))
self.run_dirty_case(case.resize((20, 20), Image.Resampling.LANCZOS), (255,))
class TestCoreResamplePasses:
@ -346,26 +356,26 @@ class TestCoreResamplePasses:
def test_horizontal(self):
im = hopper("L")
with self.count(1):
im.resize((im.size[0] - 10, im.size[1]), Image.BILINEAR)
im.resize((im.size[0] - 10, im.size[1]), Image.Resampling.BILINEAR)
def test_vertical(self):
im = hopper("L")
with self.count(1):
im.resize((im.size[0], im.size[1] - 10), Image.BILINEAR)
im.resize((im.size[0], im.size[1] - 10), Image.Resampling.BILINEAR)
def test_both(self):
im = hopper("L")
with self.count(2):
im.resize((im.size[0] - 10, im.size[1] - 10), Image.BILINEAR)
im.resize((im.size[0] - 10, im.size[1] - 10), Image.Resampling.BILINEAR)
def test_box_horizontal(self):
im = hopper("L")
box = (20, 0, im.size[0] - 20, im.size[1])
with self.count(1):
# the same size, but different box
with_box = im.resize(im.size, Image.BILINEAR, box)
with_box = im.resize(im.size, Image.Resampling.BILINEAR, box)
with self.count(2):
cropped = im.crop(box).resize(im.size, Image.BILINEAR)
cropped = im.crop(box).resize(im.size, Image.Resampling.BILINEAR)
assert_image_similar(with_box, cropped, 0.1)
def test_box_vertical(self):
@ -373,9 +383,9 @@ class TestCoreResamplePasses:
box = (0, 20, im.size[0], im.size[1] - 20)
with self.count(1):
# the same size, but different box
with_box = im.resize(im.size, Image.BILINEAR, box)
with_box = im.resize(im.size, Image.Resampling.BILINEAR, box)
with self.count(2):
cropped = im.crop(box).resize(im.size, Image.BILINEAR)
cropped = im.crop(box).resize(im.size, Image.Resampling.BILINEAR)
assert_image_similar(with_box, cropped, 0.1)
@ -388,7 +398,7 @@ class TestCoreResampleCoefficients:
draw = ImageDraw.Draw(i)
draw.rectangle((0, 0, i.size[0] // 2 - 1, 0), test_color)
px = i.resize((5, i.size[1]), Image.BICUBIC).load()
px = i.resize((5, i.size[1]), Image.Resampling.BICUBIC).load()
if px[2, 0] != test_color // 2:
assert test_color // 2 == px[2, 0]
@ -396,7 +406,7 @@ class TestCoreResampleCoefficients:
# regression test for the wrong coefficients calculation
# due to bug https://github.com/python-pillow/Pillow/issues/2161
im = Image.new("RGBA", (1280, 1280), (0x20, 0x40, 0x60, 0xFF))
histogram = im.resize((256, 256), Image.BICUBIC).histogram()
histogram = im.resize((256, 256), Image.Resampling.BICUBIC).histogram()
# first channel
assert histogram[0x100 * 0 + 0x20] == 0x10000
@ -412,12 +422,12 @@ class TestCoreResampleBox:
def test_wrong_arguments(self):
im = hopper()
for resample in (
Image.NEAREST,
Image.BOX,
Image.BILINEAR,
Image.HAMMING,
Image.BICUBIC,
Image.LANCZOS,
Image.Resampling.NEAREST,
Image.Resampling.BOX,
Image.Resampling.BILINEAR,
Image.Resampling.HAMMING,
Image.Resampling.BICUBIC,
Image.Resampling.LANCZOS,
):
im.resize((32, 32), resample, (0, 0, im.width, im.height))
im.resize((32, 32), resample, (20, 20, im.width, im.height))
@ -456,7 +466,7 @@ class TestCoreResampleBox:
for y0, y1 in split_range(dst_size[1], ytiles):
for x0, x1 in split_range(dst_size[0], xtiles):
box = (x0 * scale[0], y0 * scale[1], x1 * scale[0], y1 * scale[1])
tile = im.resize((x1 - x0, y1 - y0), Image.BICUBIC, box)
tile = im.resize((x1 - x0, y1 - y0), Image.Resampling.BICUBIC, box)
tiled.paste(tile, (x0, y0))
return tiled
@ -467,7 +477,7 @@ class TestCoreResampleBox:
with Image.open("Tests/images/flower.jpg") as im:
assert im.size == (480, 360)
dst_size = (251, 188)
reference = im.resize(dst_size, Image.BICUBIC)
reference = im.resize(dst_size, Image.Resampling.BICUBIC)
for tiles in [(1, 1), (3, 3), (9, 7), (100, 100)]:
tiled = self.resize_tiled(im, dst_size, *tiles)
@ -483,12 +493,16 @@ class TestCoreResampleBox:
assert im.size == (480, 360)
dst_size = (48, 36)
# Reference is cropped image resized to destination
reference = im.crop((0, 0, 473, 353)).resize(dst_size, Image.BICUBIC)
# Image.BOX emulates supersampling (480 / 8 = 60, 360 / 8 = 45)
supersampled = im.resize((60, 45), Image.BOX)
reference = im.crop((0, 0, 473, 353)).resize(
dst_size, Image.Resampling.BICUBIC
)
# Image.Resampling.BOX emulates supersampling (480 / 8 = 60, 360 / 8 = 45)
supersampled = im.resize((60, 45), Image.Resampling.BOX)
with_box = supersampled.resize(dst_size, Image.BICUBIC, (0, 0, 59.125, 44.125))
without_box = supersampled.resize(dst_size, Image.BICUBIC)
with_box = supersampled.resize(
dst_size, Image.Resampling.BICUBIC, (0, 0, 59.125, 44.125)
)
without_box = supersampled.resize(dst_size, Image.Resampling.BICUBIC)
# error with box should be much smaller than without
assert_image_similar(reference, with_box, 6)
@ -496,7 +510,7 @@ class TestCoreResampleBox:
assert_image_similar(reference, without_box, 5)
def test_formats(self):
for resample in [Image.NEAREST, Image.BILINEAR]:
for resample in [Image.Resampling.NEAREST, Image.Resampling.BILINEAR]:
for mode in ["RGB", "L", "RGBA", "LA", "I", ""]:
im = hopper(mode)
box = (20, 20, im.size[0] - 20, im.size[1] - 20)
@ -514,7 +528,7 @@ class TestCoreResampleBox:
((40, 50), (10, 0, 50, 50)),
((40, 50), (10, 20, 50, 70)),
]:
res = im.resize(size, Image.LANCZOS, box)
res = im.resize(size, Image.Resampling.LANCZOS, box)
assert res.size == size
assert_image_equal(res, im.crop(box), f">>> {size} {box}")
@ -528,7 +542,7 @@ class TestCoreResampleBox:
((40, 50), (10.4, 0.4, 50.4, 50.4)),
((40, 50), (10.4, 20.4, 50.4, 70.4)),
]:
res = im.resize(size, Image.LANCZOS, box)
res = im.resize(size, Image.Resampling.LANCZOS, box)
assert res.size == size
with pytest.raises(AssertionError, match=r"difference \d"):
# check that the difference at least that much
@ -538,7 +552,7 @@ class TestCoreResampleBox:
# Can skip resize for one dimension
im = hopper()
for flt in [Image.NEAREST, Image.BICUBIC]:
for flt in [Image.Resampling.NEAREST, Image.Resampling.BICUBIC]:
for size, box in [
((40, 50), (0, 0, 40, 90)),
((40, 50), (0, 20, 40, 90)),
@ -559,7 +573,7 @@ class TestCoreResampleBox:
# Can skip resize for one dimension
im = hopper()
for flt in [Image.NEAREST, Image.BICUBIC]:
for flt in [Image.Resampling.NEAREST, Image.Resampling.BICUBIC]:
for size, box in [
((40, 50), (0, 0, 90, 50)),
((40, 50), (20, 0, 90, 50)),

View File

@ -35,33 +35,33 @@ class TestImagingCoreResize:
"I;16",
]: # exotic mode
im = hopper(mode)
r = self.resize(im, (15, 12), Image.NEAREST)
r = self.resize(im, (15, 12), Image.Resampling.NEAREST)
assert r.mode == mode
assert r.size == (15, 12)
assert r.im.bands == im.im.bands
def test_convolution_modes(self):
with pytest.raises(ValueError):
self.resize(hopper("1"), (15, 12), Image.BILINEAR)
self.resize(hopper("1"), (15, 12), Image.Resampling.BILINEAR)
with pytest.raises(ValueError):
self.resize(hopper("P"), (15, 12), Image.BILINEAR)
self.resize(hopper("P"), (15, 12), Image.Resampling.BILINEAR)
with pytest.raises(ValueError):
self.resize(hopper("I;16"), (15, 12), Image.BILINEAR)
self.resize(hopper("I;16"), (15, 12), Image.Resampling.BILINEAR)
for mode in ["L", "I", "F", "RGB", "RGBA", "CMYK", "YCbCr"]:
im = hopper(mode)
r = self.resize(im, (15, 12), Image.BILINEAR)
r = self.resize(im, (15, 12), Image.Resampling.BILINEAR)
assert r.mode == mode
assert r.size == (15, 12)
assert r.im.bands == im.im.bands
def test_reduce_filters(self):
for f in [
Image.NEAREST,
Image.BOX,
Image.BILINEAR,
Image.HAMMING,
Image.BICUBIC,
Image.LANCZOS,
Image.Resampling.NEAREST,
Image.Resampling.BOX,
Image.Resampling.BILINEAR,
Image.Resampling.HAMMING,
Image.Resampling.BICUBIC,
Image.Resampling.LANCZOS,
]:
r = self.resize(hopper("RGB"), (15, 12), f)
assert r.mode == "RGB"
@ -69,12 +69,12 @@ class TestImagingCoreResize:
def test_enlarge_filters(self):
for f in [
Image.NEAREST,
Image.BOX,
Image.BILINEAR,
Image.HAMMING,
Image.BICUBIC,
Image.LANCZOS,
Image.Resampling.NEAREST,
Image.Resampling.BOX,
Image.Resampling.BILINEAR,
Image.Resampling.HAMMING,
Image.Resampling.BICUBIC,
Image.Resampling.LANCZOS,
]:
r = self.resize(hopper("RGB"), (212, 195), f)
assert r.mode == "RGB"
@ -95,12 +95,12 @@ class TestImagingCoreResize:
samples["dirty"].putpixel((1, 1), 128)
for f in [
Image.NEAREST,
Image.BOX,
Image.BILINEAR,
Image.HAMMING,
Image.BICUBIC,
Image.LANCZOS,
Image.Resampling.NEAREST,
Image.Resampling.BOX,
Image.Resampling.BILINEAR,
Image.Resampling.HAMMING,
Image.Resampling.BICUBIC,
Image.Resampling.LANCZOS,
]:
# samples resized with current filter
references = {
@ -124,12 +124,12 @@ class TestImagingCoreResize:
def test_enlarge_zero(self):
for f in [
Image.NEAREST,
Image.BOX,
Image.BILINEAR,
Image.HAMMING,
Image.BICUBIC,
Image.LANCZOS,
Image.Resampling.NEAREST,
Image.Resampling.BOX,
Image.Resampling.BILINEAR,
Image.Resampling.HAMMING,
Image.Resampling.BICUBIC,
Image.Resampling.LANCZOS,
]:
r = self.resize(Image.new("RGB", (0, 0), "white"), (212, 195), f)
assert r.mode == "RGB"
@ -164,15 +164,19 @@ def gradients_image():
class TestReducingGapResize:
def test_reducing_gap_values(self, gradients_image):
ref = gradients_image.resize((52, 34), Image.BICUBIC, reducing_gap=None)
im = gradients_image.resize((52, 34), Image.BICUBIC)
ref = gradients_image.resize(
(52, 34), Image.Resampling.BICUBIC, reducing_gap=None
)
im = gradients_image.resize((52, 34), Image.Resampling.BICUBIC)
assert_image_equal(ref, im)
with pytest.raises(ValueError):
gradients_image.resize((52, 34), Image.BICUBIC, reducing_gap=0)
gradients_image.resize((52, 34), Image.Resampling.BICUBIC, reducing_gap=0)
with pytest.raises(ValueError):
gradients_image.resize((52, 34), Image.BICUBIC, reducing_gap=0.99)
gradients_image.resize(
(52, 34), Image.Resampling.BICUBIC, reducing_gap=0.99
)
def test_reducing_gap_1(self, gradients_image):
for box, epsilon in [
@ -180,9 +184,9 @@ class TestReducingGapResize:
((1.1, 2.2, 510.8, 510.9), 4),
((3, 10, 410, 256), 10),
]:
ref = gradients_image.resize((52, 34), Image.BICUBIC, box=box)
ref = gradients_image.resize((52, 34), Image.Resampling.BICUBIC, box=box)
im = gradients_image.resize(
(52, 34), Image.BICUBIC, box=box, reducing_gap=1.0
(52, 34), Image.Resampling.BICUBIC, box=box, reducing_gap=1.0
)
with pytest.raises(AssertionError):
@ -196,9 +200,9 @@ class TestReducingGapResize:
((1.1, 2.2, 510.8, 510.9), 1.5),
((3, 10, 410, 256), 1),
]:
ref = gradients_image.resize((52, 34), Image.BICUBIC, box=box)
ref = gradients_image.resize((52, 34), Image.Resampling.BICUBIC, box=box)
im = gradients_image.resize(
(52, 34), Image.BICUBIC, box=box, reducing_gap=2.0
(52, 34), Image.Resampling.BICUBIC, box=box, reducing_gap=2.0
)
with pytest.raises(AssertionError):
@ -212,9 +216,9 @@ class TestReducingGapResize:
((1.1, 2.2, 510.8, 510.9), 1),
((3, 10, 410, 256), 0.5),
]:
ref = gradients_image.resize((52, 34), Image.BICUBIC, box=box)
ref = gradients_image.resize((52, 34), Image.Resampling.BICUBIC, box=box)
im = gradients_image.resize(
(52, 34), Image.BICUBIC, box=box, reducing_gap=3.0
(52, 34), Image.Resampling.BICUBIC, box=box, reducing_gap=3.0
)
with pytest.raises(AssertionError):
@ -224,9 +228,9 @@ class TestReducingGapResize:
def test_reducing_gap_8(self, gradients_image):
for box in [None, (1.1, 2.2, 510.8, 510.9), (3, 10, 410, 256)]:
ref = gradients_image.resize((52, 34), Image.BICUBIC, box=box)
ref = gradients_image.resize((52, 34), Image.Resampling.BICUBIC, box=box)
im = gradients_image.resize(
(52, 34), Image.BICUBIC, box=box, reducing_gap=8.0
(52, 34), Image.Resampling.BICUBIC, box=box, reducing_gap=8.0
)
assert_image_equal(ref, im)
@ -236,8 +240,10 @@ class TestReducingGapResize:
((0, 0, 512, 512), 5.5),
((0.9, 1.7, 128, 128), 9.5),
]:
ref = gradients_image.resize((52, 34), Image.BOX, box=box)
im = gradients_image.resize((52, 34), Image.BOX, box=box, reducing_gap=1.0)
ref = gradients_image.resize((52, 34), Image.Resampling.BOX, box=box)
im = gradients_image.resize(
(52, 34), Image.Resampling.BOX, box=box, reducing_gap=1.0
)
assert_image_similar(ref, im, epsilon)
@ -261,12 +267,12 @@ class TestImageResize:
def test_default_filter(self):
for mode in "L", "RGB", "I", "F":
im = hopper(mode)
assert im.resize((20, 20), Image.BICUBIC) == im.resize((20, 20))
assert im.resize((20, 20), Image.Resampling.BICUBIC) == im.resize((20, 20))
for mode in "1", "P":
im = hopper(mode)
assert im.resize((20, 20), Image.NEAREST) == im.resize((20, 20))
assert im.resize((20, 20), Image.Resampling.NEAREST) == im.resize((20, 20))
for mode in "I;16", "I;16L", "I;16B", "BGR;15", "BGR;16":
im = hopper(mode)
assert im.resize((20, 20), Image.NEAREST) == im.resize((20, 20))
assert im.resize((20, 20), Image.Resampling.NEAREST) == im.resize((20, 20))

View File

@ -46,14 +46,14 @@ def test_zero():
def test_resample():
# Target image creation, inspected by eye.
# >>> im = Image.open('Tests/images/hopper.ppm')
# >>> im = im.rotate(45, resample=Image.BICUBIC, expand=True)
# >>> im = im.rotate(45, resample=Image.Resampling.BICUBIC, expand=True)
# >>> im.save('Tests/images/hopper_45.png')
with Image.open("Tests/images/hopper_45.png") as target:
for (resample, epsilon) in (
(Image.NEAREST, 10),
(Image.BILINEAR, 5),
(Image.BICUBIC, 0),
(Image.Resampling.NEAREST, 10),
(Image.Resampling.BILINEAR, 5),
(Image.Resampling.BICUBIC, 0),
):
im = hopper()
im = im.rotate(45, resample=resample, expand=True)
@ -62,7 +62,7 @@ def test_resample():
def test_center_0():
im = hopper()
im = im.rotate(45, center=(0, 0), resample=Image.BICUBIC)
im = im.rotate(45, center=(0, 0), resample=Image.Resampling.BICUBIC)
with Image.open("Tests/images/hopper_45.png") as target:
target_origin = target.size[1] / 2
@ -73,7 +73,7 @@ def test_center_0():
def test_center_14():
im = hopper()
im = im.rotate(45, center=(14, 14), resample=Image.BICUBIC)
im = im.rotate(45, center=(14, 14), resample=Image.Resampling.BICUBIC)
with Image.open("Tests/images/hopper_45.png") as target:
target_origin = target.size[1] / 2 - 14
@ -90,7 +90,7 @@ def test_translate():
(target_origin, target_origin, target_origin + 128, target_origin + 128)
)
im = im.rotate(45, translate=(5, 5), resample=Image.BICUBIC)
im = im.rotate(45, translate=(5, 5), resample=Image.Resampling.BICUBIC)
assert_image_similar(im, target, 1)

View File

@ -97,24 +97,24 @@ def test_DCT_scaling_edges():
thumb = fromstring(tostring(im, "JPEG", quality=99, subsampling=0))
# small reducing_gap to amplify the effect
thumb.thumbnail((32, 32), Image.BICUBIC, reducing_gap=1.0)
thumb.thumbnail((32, 32), Image.Resampling.BICUBIC, reducing_gap=1.0)
ref = im.resize((32, 32), Image.BICUBIC)
ref = im.resize((32, 32), Image.Resampling.BICUBIC)
# This is still JPEG, some error is present. Without the fix it is 11.5
assert_image_similar(thumb, ref, 1.5)
def test_reducing_gap_values():
im = hopper()
im.thumbnail((18, 18), Image.BICUBIC)
im.thumbnail((18, 18), Image.Resampling.BICUBIC)
ref = hopper()
ref.thumbnail((18, 18), Image.BICUBIC, reducing_gap=2.0)
ref.thumbnail((18, 18), Image.Resampling.BICUBIC, reducing_gap=2.0)
# reducing_gap=2.0 should be the default
assert_image_equal(ref, im)
ref = hopper()
ref.thumbnail((18, 18), Image.BICUBIC, reducing_gap=None)
ref.thumbnail((18, 18), Image.Resampling.BICUBIC, reducing_gap=None)
with pytest.raises(AssertionError):
assert_image_equal(ref, im)
@ -125,9 +125,9 @@ def test_reducing_gap_for_DCT_scaling():
with Image.open("Tests/images/hopper.jpg") as ref:
# thumbnail should call draft with reducing_gap scale
ref.draft(None, (18 * 3, 18 * 3))
ref = ref.resize((18, 18), Image.BICUBIC)
ref = ref.resize((18, 18), Image.Resampling.BICUBIC)
with Image.open("Tests/images/hopper.jpg") as im:
im.thumbnail((18, 18), Image.BICUBIC, reducing_gap=3.0)
im.thumbnail((18, 18), Image.Resampling.BICUBIC, reducing_gap=3.0)
assert_image_equal(ref, im)

View File

@ -34,20 +34,22 @@ class TestImageTransform:
def test_palette(self):
with Image.open("Tests/images/hopper.gif") as im:
transformed = im.transform(im.size, Image.AFFINE, [1, 0, 0, 0, 1, 0])
transformed = im.transform(
im.size, Image.Transform.AFFINE, [1, 0, 0, 0, 1, 0]
)
assert im.palette.palette == transformed.palette.palette
def test_extent(self):
im = hopper("RGB")
(w, h) = im.size
# fmt: off
transformed = im.transform(im.size, Image.EXTENT,
transformed = im.transform(im.size, Image.Transform.EXTENT,
(0, 0,
w//2, h//2), # ul -> lr
Image.BILINEAR)
Image.Resampling.BILINEAR)
# fmt: on
scaled = im.resize((w * 2, h * 2), Image.BILINEAR).crop((0, 0, w, h))
scaled = im.resize((w * 2, h * 2), Image.Resampling.BILINEAR).crop((0, 0, w, h))
# undone -- precision?
assert_image_similar(transformed, scaled, 23)
@ -57,15 +59,18 @@ class TestImageTransform:
im = hopper("RGB")
(w, h) = im.size
# fmt: off
transformed = im.transform(im.size, Image.QUAD,
transformed = im.transform(im.size, Image.Transform.QUAD,
(0, 0, 0, h//2,
# ul -> ccw around quad:
w//2, h//2, w//2, 0),
Image.BILINEAR)
Image.Resampling.BILINEAR)
# fmt: on
scaled = im.transform(
(w, h), Image.AFFINE, (0.5, 0, 0, 0, 0.5, 0), Image.BILINEAR
(w, h),
Image.Transform.AFFINE,
(0.5, 0, 0, 0, 0.5, 0),
Image.Resampling.BILINEAR,
)
assert_image_equal(transformed, scaled)
@ -80,9 +85,9 @@ class TestImageTransform:
(w, h) = im.size
transformed = im.transform(
im.size,
Image.EXTENT,
Image.Transform.EXTENT,
(0, 0, w * 2, h * 2),
Image.BILINEAR,
Image.Resampling.BILINEAR,
fillcolor="red",
)
@ -93,18 +98,21 @@ class TestImageTransform:
im = hopper("RGBA")
(w, h) = im.size
# fmt: off
transformed = im.transform(im.size, Image.MESH,
transformed = im.transform(im.size, Image.Transform.MESH,
[((0, 0, w//2, h//2), # box
(0, 0, 0, h,
w, h, w, 0)), # ul -> ccw around quad
((w//2, h//2, w, h), # box
(0, 0, 0, h,
w, h, w, 0))], # ul -> ccw around quad
Image.BILINEAR)
Image.Resampling.BILINEAR)
# fmt: on
scaled = im.transform(
(w // 2, h // 2), Image.AFFINE, (2, 0, 0, 0, 2, 0), Image.BILINEAR
(w // 2, h // 2),
Image.Transform.AFFINE,
(2, 0, 0, 0, 2, 0),
Image.Resampling.BILINEAR,
)
checker = Image.new("RGBA", im.size)
@ -137,14 +145,16 @@ class TestImageTransform:
def test_alpha_premult_resize(self):
def op(im, sz):
return im.resize(sz, Image.BILINEAR)
return im.resize(sz, Image.Resampling.BILINEAR)
self._test_alpha_premult(op)
def test_alpha_premult_transform(self):
def op(im, sz):
(w, h) = im.size
return im.transform(sz, Image.EXTENT, (0, 0, w, h), Image.BILINEAR)
return im.transform(
sz, Image.Transform.EXTENT, (0, 0, w, h), Image.Resampling.BILINEAR
)
self._test_alpha_premult(op)
@ -171,7 +181,7 @@ class TestImageTransform:
@pytest.mark.parametrize("mode", ("RGBA", "LA"))
def test_nearest_resize(self, mode):
def op(im, sz):
return im.resize(sz, Image.NEAREST)
return im.resize(sz, Image.Resampling.NEAREST)
self._test_nearest(op, mode)
@ -179,7 +189,9 @@ class TestImageTransform:
def test_nearest_transform(self, mode):
def op(im, sz):
(w, h) = im.size
return im.transform(sz, Image.EXTENT, (0, 0, w, h), Image.NEAREST)
return im.transform(
sz, Image.Transform.EXTENT, (0, 0, w, h), Image.Resampling.NEAREST
)
self._test_nearest(op, mode)
@ -213,13 +225,15 @@ class TestImageTransform:
def test_unknown_resampling_filter(self):
with hopper() as im:
(w, h) = im.size
for resample in (Image.BOX, "unknown"):
for resample in (Image.Resampling.BOX, "unknown"):
with pytest.raises(ValueError):
im.transform((100, 100), Image.EXTENT, (0, 0, w, h), resample)
im.transform(
(100, 100), Image.Transform.EXTENT, (0, 0, w, h), resample
)
class TestImageTransformAffine:
transform = Image.AFFINE
transform = Image.Transform.AFFINE
def _test_image(self):
im = hopper("RGB")
@ -247,7 +261,11 @@ class TestImageTransformAffine:
else:
transposed = im
for resample in [Image.NEAREST, Image.BILINEAR, Image.BICUBIC]:
for resample in [
Image.Resampling.NEAREST,
Image.Resampling.BILINEAR,
Image.Resampling.BICUBIC,
]:
transformed = im.transform(
transposed.size, self.transform, matrix, resample
)
@ -257,13 +275,13 @@ class TestImageTransformAffine:
self._test_rotate(0, None)
def test_rotate_90_deg(self):
self._test_rotate(90, Image.ROTATE_90)
self._test_rotate(90, Image.Transpose.ROTATE_90)
def test_rotate_180_deg(self):
self._test_rotate(180, Image.ROTATE_180)
self._test_rotate(180, Image.Transpose.ROTATE_180)
def test_rotate_270_deg(self):
self._test_rotate(270, Image.ROTATE_270)
self._test_rotate(270, Image.Transpose.ROTATE_270)
def _test_resize(self, scale, epsilonscale):
im = self._test_image()
@ -273,9 +291,9 @@ class TestImageTransformAffine:
matrix_down = [scale, 0, 0, 0, scale, 0, 0, 0]
for resample, epsilon in [
(Image.NEAREST, 0),
(Image.BILINEAR, 2),
(Image.BICUBIC, 1),
(Image.Resampling.NEAREST, 0),
(Image.Resampling.BILINEAR, 2),
(Image.Resampling.BICUBIC, 1),
]:
transformed = im.transform(size_up, self.transform, matrix_up, resample)
transformed = transformed.transform(
@ -306,9 +324,9 @@ class TestImageTransformAffine:
matrix_down = [1, 0, x, 0, 1, y, 0, 0]
for resample, epsilon in [
(Image.NEAREST, 0),
(Image.BILINEAR, 1.5),
(Image.BICUBIC, 1),
(Image.Resampling.NEAREST, 0),
(Image.Resampling.BILINEAR, 1.5),
(Image.Resampling.BICUBIC, 1),
]:
transformed = im.transform(size_up, self.transform, matrix_up, resample)
transformed = transformed.transform(
@ -328,4 +346,4 @@ class TestImageTransformAffine:
class TestImageTransformPerspective(TestImageTransformAffine):
# Repeat all tests for AFFINE transformations with PERSPECTIVE
transform = Image.PERSPECTIVE
transform = Image.Transform.PERSPECTIVE

View File

@ -1,12 +1,4 @@
from PIL.Image import (
FLIP_LEFT_RIGHT,
FLIP_TOP_BOTTOM,
ROTATE_90,
ROTATE_180,
ROTATE_270,
TRANSPOSE,
TRANSVERSE,
)
from PIL.Image import Transpose
from . import helper
from .helper import assert_image_equal
@ -20,7 +12,7 @@ HOPPER = {
def test_flip_left_right():
def transpose(mode):
im = HOPPER[mode]
out = im.transpose(FLIP_LEFT_RIGHT)
out = im.transpose(Transpose.FLIP_LEFT_RIGHT)
assert out.mode == mode
assert out.size == im.size
@ -37,7 +29,7 @@ def test_flip_left_right():
def test_flip_top_bottom():
def transpose(mode):
im = HOPPER[mode]
out = im.transpose(FLIP_TOP_BOTTOM)
out = im.transpose(Transpose.FLIP_TOP_BOTTOM)
assert out.mode == mode
assert out.size == im.size
@ -54,7 +46,7 @@ def test_flip_top_bottom():
def test_rotate_90():
def transpose(mode):
im = HOPPER[mode]
out = im.transpose(ROTATE_90)
out = im.transpose(Transpose.ROTATE_90)
assert out.mode == mode
assert out.size == im.size[::-1]
@ -71,7 +63,7 @@ def test_rotate_90():
def test_rotate_180():
def transpose(mode):
im = HOPPER[mode]
out = im.transpose(ROTATE_180)
out = im.transpose(Transpose.ROTATE_180)
assert out.mode == mode
assert out.size == im.size
@ -88,7 +80,7 @@ def test_rotate_180():
def test_rotate_270():
def transpose(mode):
im = HOPPER[mode]
out = im.transpose(ROTATE_270)
out = im.transpose(Transpose.ROTATE_270)
assert out.mode == mode
assert out.size == im.size[::-1]
@ -105,7 +97,7 @@ def test_rotate_270():
def test_transpose():
def transpose(mode):
im = HOPPER[mode]
out = im.transpose(TRANSPOSE)
out = im.transpose(Transpose.TRANSPOSE)
assert out.mode == mode
assert out.size == im.size[::-1]
@ -122,7 +114,7 @@ def test_transpose():
def test_tranverse():
def transpose(mode):
im = HOPPER[mode]
out = im.transpose(TRANSVERSE)
out = im.transpose(Transpose.TRANSVERSE)
assert out.mode == mode
assert out.size == im.size[::-1]
@ -143,20 +135,31 @@ def test_roundtrip():
def transpose(first, second):
return im.transpose(first).transpose(second)
assert_image_equal(im, transpose(FLIP_LEFT_RIGHT, FLIP_LEFT_RIGHT))
assert_image_equal(im, transpose(FLIP_TOP_BOTTOM, FLIP_TOP_BOTTOM))
assert_image_equal(im, transpose(ROTATE_90, ROTATE_270))
assert_image_equal(im, transpose(ROTATE_180, ROTATE_180))
assert_image_equal(
im.transpose(TRANSPOSE), transpose(ROTATE_90, FLIP_TOP_BOTTOM)
im, transpose(Transpose.FLIP_LEFT_RIGHT, Transpose.FLIP_LEFT_RIGHT)
)
assert_image_equal(
im.transpose(TRANSPOSE), transpose(ROTATE_270, FLIP_LEFT_RIGHT)
im, transpose(Transpose.FLIP_TOP_BOTTOM, Transpose.FLIP_TOP_BOTTOM)
)
assert_image_equal(im, transpose(Transpose.ROTATE_90, Transpose.ROTATE_270))
assert_image_equal(im, transpose(Transpose.ROTATE_180, Transpose.ROTATE_180))
assert_image_equal(
im.transpose(Transpose.TRANSPOSE),
transpose(Transpose.ROTATE_90, Transpose.FLIP_TOP_BOTTOM),
)
assert_image_equal(
im.transpose(TRANSVERSE), transpose(ROTATE_90, FLIP_LEFT_RIGHT)
im.transpose(Transpose.TRANSPOSE),
transpose(Transpose.ROTATE_270, Transpose.FLIP_LEFT_RIGHT),
)
assert_image_equal(
im.transpose(TRANSVERSE), transpose(ROTATE_270, FLIP_TOP_BOTTOM)
im.transpose(Transpose.TRANSVERSE),
transpose(Transpose.ROTATE_90, Transpose.FLIP_LEFT_RIGHT),
)
assert_image_equal(
im.transpose(Transpose.TRANSVERSE),
transpose(Transpose.ROTATE_270, Transpose.FLIP_TOP_BOTTOM),
)
assert_image_equal(
im.transpose(Transpose.TRANSVERSE),
transpose(Transpose.ROTATE_180, Transpose.TRANSPOSE),
)
assert_image_equal(im.transpose(TRANSVERSE), transpose(ROTATE_180, TRANSPOSE))

View File

@ -140,7 +140,7 @@ def test_intent():
skip_missing()
assert ImageCms.getDefaultIntent(SRGB) == 0
support = ImageCms.isIntentSupported(
SRGB, ImageCms.INTENT_ABSOLUTE_COLORIMETRIC, ImageCms.DIRECTION_INPUT
SRGB, ImageCms.Intent.ABSOLUTE_COLORIMETRIC, ImageCms.Direction.INPUT
)
assert support == 1
@ -153,7 +153,7 @@ def test_profile_object():
# ["sRGB built-in", "", "WhitePoint : D65 (daylight)", "", ""]
assert ImageCms.getDefaultIntent(p) == 0
support = ImageCms.isIntentSupported(
p, ImageCms.INTENT_ABSOLUTE_COLORIMETRIC, ImageCms.DIRECTION_INPUT
p, ImageCms.Intent.ABSOLUTE_COLORIMETRIC, ImageCms.Direction.INPUT
)
assert support == 1

View File

@ -183,7 +183,7 @@ def test_bitmap():
im = Image.new("RGB", (W, H))
draw = ImageDraw.Draw(im)
with Image.open("Tests/images/pil123rgba.png") as small:
small = small.resize((50, 50), Image.NEAREST)
small = small.resize((50, 50), Image.Resampling.NEAREST)
# Act
draw.bitmap((10, 10), small)
@ -319,7 +319,7 @@ def test_ellipse_symmetric():
im = Image.new("RGB", (width, 100))
draw = ImageDraw.Draw(im)
draw.ellipse(bbox, fill="green", outline="blue")
assert_image_equal(im, im.transpose(Image.FLIP_LEFT_RIGHT))
assert_image_equal(im, im.transpose(Image.Transpose.FLIP_LEFT_RIGHT))
def test_ellipse_width():

View File

@ -23,7 +23,7 @@ class TestImageFile:
def test_parser(self):
def roundtrip(format):
im = hopper("L").resize((1000, 1000), Image.NEAREST)
im = hopper("L").resize((1000, 1000), Image.Resampling.NEAREST)
if format in ("MSP", "XBM"):
im = im.convert("1")

View File

@ -29,7 +29,7 @@ pytestmark = skip_unless_feature("freetype2")
class TestImageFont:
LAYOUT_ENGINE = ImageFont.LAYOUT_BASIC
LAYOUT_ENGINE = ImageFont.Layout.BASIC
def get_font(self):
return ImageFont.truetype(
@ -94,12 +94,12 @@ class TestImageFont:
try:
ttf = ImageFont.truetype(
FONT_PATH, FONT_SIZE, layout_engine=ImageFont.LAYOUT_RAQM
FONT_PATH, FONT_SIZE, layout_engine=ImageFont.Layout.RAQM
)
finally:
ImageFont.core.HAVE_RAQM = have_raqm
assert ttf.layout_engine == ImageFont.LAYOUT_BASIC
assert ttf.layout_engine == ImageFont.Layout.BASIC
def _render(self, font):
txt = "Hello World!"
@ -182,7 +182,7 @@ class TestImageFont:
im = Image.new(mode, (1, 1), 0)
d = ImageDraw.Draw(im)
if self.LAYOUT_ENGINE == ImageFont.LAYOUT_BASIC:
if self.LAYOUT_ENGINE == ImageFont.Layout.BASIC:
length = d.textlength(text, f)
assert length == length_basic
else:
@ -294,7 +294,7 @@ class TestImageFont:
word = "testing"
font = self.get_font()
orientation = Image.ROTATE_90
orientation = Image.Transpose.ROTATE_90
transposed_font = ImageFont.TransposedFont(font, orientation=orientation)
# Original font
@ -333,7 +333,7 @@ class TestImageFont:
# Arrange
text = "mask this"
font = self.get_font()
orientation = Image.ROTATE_90
orientation = Image.Transpose.ROTATE_90
transposed_font = ImageFont.TransposedFont(font, orientation=orientation)
# Act
@ -604,7 +604,7 @@ class TestImageFont:
# Arrange
t = self.get_font()
# Act / Assert
if t.layout_engine == ImageFont.LAYOUT_BASIC:
if t.layout_engine == ImageFont.Layout.BASIC:
with pytest.raises(KeyError):
t.getmask("абвг", direction="rtl")
with pytest.raises(KeyError):
@ -753,7 +753,7 @@ class TestImageFont:
name, text = "quick", "Quick"
path = f"Tests/images/test_anchor_{name}_{anchor}.png"
if self.LAYOUT_ENGINE == ImageFont.LAYOUT_RAQM:
if self.LAYOUT_ENGINE == ImageFont.Layout.RAQM:
width, height = (129, 44)
else:
width, height = (128, 44)
@ -993,7 +993,7 @@ class TestImageFont:
@skip_unless_feature("raqm")
class TestImageFont_RaqmLayout(TestImageFont):
LAYOUT_ENGINE = ImageFont.LAYOUT_RAQM
LAYOUT_ENGINE = ImageFont.Layout.RAQM
def test_render_mono_size():
@ -1004,7 +1004,7 @@ def test_render_mono_size():
ttf = ImageFont.truetype(
"Tests/fonts/DejaVuSans/DejaVuSans.ttf",
18,
layout_engine=ImageFont.LAYOUT_BASIC,
layout_engine=ImageFont.Layout.BASIC,
)
draw.text((10, 10), "r" * 10, "black", ttf)

View File

@ -34,7 +34,7 @@ def test_basic(tmp_path):
imOut = imIn.copy()
verify(imOut) # copy
imOut = imIn.transform((w, h), Image.EXTENT, (0, 0, w, h))
imOut = imIn.transform((w, h), Image.Transform.EXTENT, (0, 0, w, h))
verify(imOut) # transform
filename = str(tmp_path / "temp.im")

View File

@ -696,12 +696,12 @@ parameter must be set to ``True``. The following parameters can also be set:
operation to be used for this frame before rendering the next frame.
Defaults to 0.
* 0 (:py:data:`~PIL.PngImagePlugin.APNG_DISPOSE_OP_NONE`, default) -
* 0 (:py:data:`~PIL.PngImagePlugin.Disposal.OP_NONE`, default) -
No disposal is done on this frame before rendering the next frame.
* 1 (:py:data:`PIL.PngImagePlugin.APNG_DISPOSE_OP_BACKGROUND`) -
* 1 (:py:data:`PIL.PngImagePlugin.Disposal.OP_BACKGROUND`) -
This frame's modified region is cleared to fully transparent black before
rendering the next frame.
* 2 (:py:data:`~PIL.PngImagePlugin.APNG_DISPOSE_OP_PREVIOUS`) -
* 2 (:py:data:`~PIL.PngImagePlugin.Disposal.OP_PREVIOUS`) -
This frame's modified region is reverted to the previous frame's contents before
rendering the next frame.
@ -710,10 +710,10 @@ parameter must be set to ``True``. The following parameters can also be set:
operation to be used for this frame before rendering the next frame.
Defaults to 0.
* 0 (:py:data:`~PIL.PngImagePlugin.APNG_BLEND_OP_SOURCE`) -
* 0 (:py:data:`~PIL.PngImagePlugin.Blend.OP_SOURCE`) -
All color components of this frame, including alpha, overwrite the previous output
image contents.
* 1 (:py:data:`~PIL.PngImagePlugin.APNG_BLEND_OP_OVER`) -
* 1 (:py:data:`~PIL.PngImagePlugin.Blend.OP_OVER`) -
This frame should be alpha composited with the previous output image contents.
.. note::

View File

@ -155,7 +155,7 @@ Processing a subrectangle, and pasting it back
::
region = region.transpose(Image.ROTATE_180)
region = region.transpose(Image.Transpose.ROTATE_180)
im.paste(region, box)
When pasting regions back, the size of the region must match the given region
@ -238,11 +238,11 @@ Transposing an image
::
out = im.transpose(Image.FLIP_LEFT_RIGHT)
out = im.transpose(Image.FLIP_TOP_BOTTOM)
out = im.transpose(Image.ROTATE_90)
out = im.transpose(Image.ROTATE_180)
out = im.transpose(Image.ROTATE_270)
out = im.transpose(Image.Transpose.FLIP_LEFT_RIGHT)
out = im.transpose(Image.Transpose.FLIP_TOP_BOTTOM)
out = im.transpose(Image.Transpose.ROTATE_90)
out = im.transpose(Image.Transpose.ROTATE_180)
out = im.transpose(Image.Transpose.ROTATE_270)
``transpose(ROTATE)`` operations can also be performed identically with
:py:meth:`~PIL.Image.Image.rotate` operations, provided the ``expand`` flag is

View File

@ -254,7 +254,8 @@ This rotates the input image by ``theta`` degrees counter clockwise:
.. automethod:: PIL.Image.Image.transform
.. automethod:: PIL.Image.Image.transpose
This flips the input image by using the :data:`FLIP_LEFT_RIGHT` method.
This flips the input image by using the :data:`PIL.Image.Transpose.FLIP_LEFT_RIGHT`
method.
.. code-block:: python
@ -263,9 +264,9 @@ This flips the input image by using the :data:`FLIP_LEFT_RIGHT` method.
with Image.open("hopper.jpg") as im:
# Flip the image from left to right
im_flipped = im.transpose(method=Image.FLIP_LEFT_RIGHT)
im_flipped = im.transpose(method=Image.Transpose.FLIP_LEFT_RIGHT)
# To flip the image from top to bottom,
# use the method "Image.FLIP_TOP_BOTTOM"
# use the method "Image.Transpose.FLIP_TOP_BOTTOM"
.. automethod:: PIL.Image.Image.verify
@ -389,68 +390,57 @@ Transpose methods
Used to specify the :meth:`Image.transpose` method to use.
.. data:: FLIP_LEFT_RIGHT
.. data:: FLIP_TOP_BOTTOM
.. data:: ROTATE_90
.. data:: ROTATE_180
.. data:: ROTATE_270
.. data:: TRANSPOSE
.. data:: TRANSVERSE
.. autoclass:: Transpose
:members:
:undoc-members:
Transform methods
^^^^^^^^^^^^^^^^^
Used to specify the :meth:`Image.transform` method to use.
.. data:: AFFINE
.. py:class:: Transform
Affine transform
.. py:attribute:: AFFINE
.. data:: EXTENT
Affine transform
Cut out a rectangular subregion
.. py:attribute:: EXTENT
.. data:: PERSPECTIVE
Cut out a rectangular subregion
Perspective transform
.. py:attribute:: PERSPECTIVE
.. data:: QUAD
Perspective transform
Map a quadrilateral to a rectangle
.. py:attribute:: QUAD
.. data:: MESH
Map a quadrilateral to a rectangle
Map a number of source quadrilaterals in one operation
.. py:attribute:: MESH
Map a number of source quadrilaterals in one operation
Resampling filters
^^^^^^^^^^^^^^^^^^
See :ref:`concept-filters` for details.
.. data:: NEAREST
:noindex:
.. data:: BOX
:noindex:
.. data:: BILINEAR
:noindex:
.. data:: HAMMING
:noindex:
.. data:: BICUBIC
:noindex:
.. data:: LANCZOS
:noindex:
.. autoclass:: Resampling
:members:
:undoc-members:
Some filters are also available under the following names for backwards compatibility:
Some deprecated filters are also available under the following names:
.. data:: NONE
:noindex:
:value: NEAREST
:value: Resampling.NEAREST
.. data:: LINEAR
:value: BILINEAR
:value: Resampling.BILINEAR
.. data:: CUBIC
:value: BICUBIC
:value: Resampling.BICUBIC
.. data:: ANTIALIAS
:value: LANCZOS
:value: Resampling.LANCZOS
Dither modes
^^^^^^^^^^^^
@ -458,48 +448,56 @@ Dither modes
Used to specify the dithering method to use for the
:meth:`~Image.convert` and :meth:`~Image.quantize` methods.
.. data:: NONE
:noindex:
.. py:class:: Dither
No dither
.. py:attribute:: NONE
.. comment: (not implemented)
.. data:: ORDERED
.. data:: RASTERIZE
No dither
.. data:: FLOYDSTEINBERG
.. py:attribute:: ORDERED
Floyd-Steinberg dither
Not implemented
.. py:attribute:: RASTERIZE
Not implemented
.. py:attribute:: FLOYDSTEINBERG
Floyd-Steinberg dither
Palettes
^^^^^^^^
Used to specify the pallete to use for the :meth:`~Image.convert` method.
.. data:: WEB
.. data:: ADAPTIVE
.. autoclass:: Palette
:members:
:undoc-members:
Quantization methods
^^^^^^^^^^^^^^^^^^^^
Used to specify the quantization method to use for the :meth:`~Image.quantize` method.
.. data:: MEDIANCUT
.. py:class:: Quantize
Median cut. Default method, except for RGBA images. This method does not support
RGBA images.
.. py:attribute:: MEDIANCUT
.. data:: MAXCOVERAGE
Median cut. Default method, except for RGBA images. This method does not support
RGBA images.
Maximum coverage. This method does not support RGBA images.
.. py:attribute:: MAXCOVERAGE
.. data:: FASTOCTREE
Maximum coverage. This method does not support RGBA images.
Fast octree. Default method for RGBA images.
.. py:attribute:: FASTOCTREE
.. data:: LIBIMAGEQUANT
Fast octree. Default method for RGBA images.
libimagequant
.. py:attribute:: LIBIMAGEQUANT
Check support using :py:func:`PIL.features.check_feature`
with ``feature="libimagequant"``.
libimagequant
Check support using :py:func:`PIL.features.check_feature` with
``feature="libimagequant"``.

View File

@ -118,8 +118,8 @@ can be easily displayed in a chromaticity diagram, for example).
another profile (usually overridden at run-time, but provided here
for DeviceLink and embedded source profiles, see 7.2.15 of ICC.1:2010).
One of ``ImageCms.INTENT_ABSOLUTE_COLORIMETRIC``, ``ImageCms.INTENT_PERCEPTUAL``,
``ImageCms.INTENT_RELATIVE_COLORIMETRIC`` and ``ImageCms.INTENT_SATURATION``.
One of ``ImageCms.Intent.ABSOLUTE_COLORIMETRIC``, ``ImageCms.Intent.PERCEPTUAL``,
``ImageCms.Intent.RELATIVE_COLORIMETRIC`` and ``ImageCms.Intent.SATURATION``.
.. py:attribute:: profile_id
:type: bytes
@ -313,14 +313,14 @@ can be easily displayed in a chromaticity diagram, for example).
the CLUT model.
The dictionary is indexed by intents
(``ImageCms.INTENT_ABSOLUTE_COLORIMETRIC``,
``ImageCms.INTENT_PERCEPTUAL``,
``ImageCms.INTENT_RELATIVE_COLORIMETRIC`` and
``ImageCms.INTENT_SATURATION``).
(``ImageCms.Intent.ABSOLUTE_COLORIMETRIC``,
``ImageCms.Intent.PERCEPTUAL``,
``ImageCms.Intent.RELATIVE_COLORIMETRIC`` and
``ImageCms.Intent.SATURATION``).
The values are 3-tuples indexed by directions
(``ImageCms.DIRECTION_INPUT``, ``ImageCms.DIRECTION_OUTPUT``,
``ImageCms.DIRECTION_PROOF``).
(``ImageCms.Direction.INPUT``, ``ImageCms.Direction.OUTPUT``,
``ImageCms.Direction.PROOF``).
The elements of the tuple are booleans. If the value is ``True``,
that intent is supported for that direction.
@ -331,14 +331,14 @@ can be easily displayed in a chromaticity diagram, for example).
Returns a dictionary of all supported intents and directions.
The dictionary is indexed by intents
(``ImageCms.INTENT_ABSOLUTE_COLORIMETRIC``,
``ImageCms.INTENT_PERCEPTUAL``,
``ImageCms.INTENT_RELATIVE_COLORIMETRIC`` and
``ImageCms.INTENT_SATURATION``).
(``ImageCms.Intent.ABSOLUTE_COLORIMETRIC``,
``ImageCms.Intent.PERCEPTUAL``,
``ImageCms.Intent.RELATIVE_COLORIMETRIC`` and
``ImageCms.Intent.SATURATION``).
The values are 3-tuples indexed by directions
(``ImageCms.DIRECTION_INPUT``, ``ImageCms.DIRECTION_OUTPUT``,
``ImageCms.DIRECTION_PROOF``).
(``ImageCms.Direction.INPUT``, ``ImageCms.Direction.OUTPUT``,
``ImageCms.Direction.PROOF``).
The elements of the tuple are booleans. If the value is ``True``,
that intent is supported for that direction.
@ -352,11 +352,11 @@ can be easily displayed in a chromaticity diagram, for example).
Note that you can also get this information for all intents and directions
with :py:attr:`.intent_supported`.
:param intent: One of ``ImageCms.INTENT_ABSOLUTE_COLORIMETRIC``,
``ImageCms.INTENT_PERCEPTUAL``,
``ImageCms.INTENT_RELATIVE_COLORIMETRIC``
and ``ImageCms.INTENT_SATURATION``.
:param direction: One of ``ImageCms.DIRECTION_INPUT``,
``ImageCms.DIRECTION_OUTPUT``
and ``ImageCms.DIRECTION_PROOF``
:param intent: One of ``ImageCms.Intent.ABSOLUTE_COLORIMETRIC``,
``ImageCms.Intent.PERCEPTUAL``,
``ImageCms.Intent.RELATIVE_COLORIMETRIC``
and ``ImageCms.Intent.SATURATION``.
:param direction: One of ``ImageCms.Direction.INPUT``,
``ImageCms.Direction.OUTPUT``
and ``ImageCms.Direction.PROOF``
:return: Boolean if the intent and direction is supported.

View File

@ -60,12 +60,12 @@ Methods
Constants
---------
.. data:: PIL.ImageFont.LAYOUT_BASIC
.. data:: PIL.ImageFont.Layout.BASIC
Use basic text layout for TrueType font.
Advanced features such as text direction are not supported.
.. data:: PIL.ImageFont.LAYOUT_RAQM
.. data:: PIL.ImageFont.Layout.RAQM
Use Raqm text layout for TrueType font.
Advanced features are supported.

View File

@ -57,7 +57,7 @@ Support for the following features can be checked:
* ``transp_webp``: Support for transparency in WebP images.
* ``webp_mux``: (compile time) Support for EXIF data in WebP images.
* ``webp_anim``: (compile time) Support for animated WebP images.
* ``raqm``: Raqm library, required for ``ImageFont.LAYOUT_RAQM`` in :py:func:`PIL.ImageFont.truetype`. Run-time version number is available for Raqm 0.7.0 or newer.
* ``raqm``: Raqm library, required for ``ImageFont.Layout.RAQM`` in :py:func:`PIL.ImageFont.truetype`. Run-time version number is available for Raqm 0.7.0 or newer.
* ``libimagequant``: (compile time) ImageQuant quantization support in :py:func:`PIL.Image.Image.quantize`. Run-time version number is available.
* ``xcb``: (compile time) Support for X11 in :py:func:`PIL.ImageGrab.grab` via the XCB library.

View File

@ -230,8 +230,7 @@ Plugin reference
.. automodule:: PIL.PngImagePlugin
:members: ChunkStream, PngImageFile, PngStream, getchunks, is_cid, putchunk,
MAX_TEXT_CHUNK, MAX_TEXT_MEMORY, APNG_BLEND_OP_SOURCE, APNG_BLEND_OP_OVER,
APNG_DISPOSE_OP_NONE, APNG_DISPOSE_OP_BACKGROUND, APNG_DISPOSE_OP_PREVIOUS
Blend, Disposal, MAX_TEXT_CHUNK, MAX_TEXT_MEMORY
:undoc-members:
:show-inheritance:
:member-order: groupwise

View File

@ -111,16 +111,14 @@ downscaling with libjpeg, which uses supersampling internally, not convolutions.
Image transposition
-------------------
A new method :py:data:`PIL.Image.TRANSPOSE` has been added for the
A new method ``TRANSPOSE`` has been added for the
:py:meth:`~PIL.Image.Image.transpose` operation in addition to
:py:data:`~PIL.Image.FLIP_LEFT_RIGHT`, :py:data:`~PIL.Image.FLIP_TOP_BOTTOM`,
:py:data:`~PIL.Image.ROTATE_90`, :py:data:`~PIL.Image.ROTATE_180`,
:py:data:`~PIL.Image.ROTATE_270`. :py:data:`~PIL.Image.TRANSPOSE` is an algebra
transpose, with an image reflected across its main diagonal.
``FLIP_LEFT_RIGHT``, ``FLIP_TOP_BOTTOM``, ``ROTATE_90``, ``ROTATE_180``,
``ROTATE_270``. ``TRANSPOSE`` is an algebra transpose, with an image reflected
across its main diagonal.
The speed of :py:data:`~PIL.Image.ROTATE_90`, :py:data:`~PIL.Image.ROTATE_270`
and :py:data:`~PIL.Image.TRANSPOSE` has been significantly improved for large
images which don't fit in the processor cache.
The speed of ``ROTATE_90``, ``ROTATE_270`` and ``TRANSPOSE`` has been significantly
improved for large images which don't fit in the processor cache.
Gaussian blur and unsharp mask
------------------------------

View File

@ -97,9 +97,9 @@ def testimage():
10456
>>> len(im.tobytes())
49152
>>> _info(im.transform((512, 512), Image.AFFINE, (1,0,0,0,1,0)))
>>> _info(im.transform((512, 512), Image.Transform.AFFINE, (1,0,0,0,1,0)))
(None, 'RGB', (512, 512))
>>> _info(im.transform((512, 512), Image.EXTENT, (32,32,96,96)))
>>> _info(im.transform((512, 512), Image.Transform.EXTENT, (32,32,96,96)))
(None, 'RGB', (512, 512))
The ImageDraw module lets you draw stuff in raster images:

View File

@ -30,19 +30,33 @@ BLP files come in many different flavours:
"""
import struct
from enum import IntEnum
from io import BytesIO
from . import Image, ImageFile
BLP_FORMAT_JPEG = 0
BLP_ENCODING_UNCOMPRESSED = 1
BLP_ENCODING_DXT = 2
BLP_ENCODING_UNCOMPRESSED_RAW_BGRA = 3
class Format(IntEnum):
JPEG = 0
BLP_ALPHA_ENCODING_DXT1 = 0
BLP_ALPHA_ENCODING_DXT3 = 1
BLP_ALPHA_ENCODING_DXT5 = 7
class Encoding(IntEnum):
UNCOMPRESSED = 1
DXT = 2
UNCOMPRESSED_RAW_BGRA = 3
class AlphaEncoding(IntEnum):
DXT1 = 0
DXT3 = 1
DXT5 = 7
globals().update({"BLP_FORMAT_" + k: v for k, v in Format.__members__.items()})
globals().update({"BLP_ENCODING_" + k: v for k, v in Encoding.__members__.items()})
globals().update(
{"BLP_ALPHA_ENCODING_" + k: v for k, v in AlphaEncoding.__members__.items()}
)
def unpack_565(i):
@ -320,7 +334,7 @@ class _BLPBaseDecoder(ImageFile.PyDecoder):
class BLP1Decoder(_BLPBaseDecoder):
def _load(self):
if self._blp_compression == BLP_FORMAT_JPEG:
if self._blp_compression == Format.JPEG:
self._decode_jpeg_stream()
elif self._blp_compression == 1:
@ -372,7 +386,7 @@ class BLP2Decoder(_BLPBaseDecoder):
if self._blp_compression == 1:
# Uncompressed or DirectX compression
if self._blp_encoding == BLP_ENCODING_UNCOMPRESSED:
if self._blp_encoding == Encoding.UNCOMPRESSED:
_data = BytesIO(self._safe_read(self._blp_lengths[0]))
while True:
try:
@ -382,8 +396,8 @@ class BLP2Decoder(_BLPBaseDecoder):
b, g, r, a = palette[offset]
data.extend((r, g, b))
elif self._blp_encoding == BLP_ENCODING_DXT:
if self._blp_alpha_encoding == BLP_ALPHA_ENCODING_DXT1:
elif self._blp_encoding == Encoding.DXT:
if self._blp_alpha_encoding == AlphaEncoding.DXT1:
linesize = (self.size[0] + 3) // 4 * 8
for yb in range((self.size[1] + 3) // 4):
for d in decode_dxt1(
@ -391,13 +405,13 @@ class BLP2Decoder(_BLPBaseDecoder):
):
data += d
elif self._blp_alpha_encoding == BLP_ALPHA_ENCODING_DXT3:
elif self._blp_alpha_encoding == AlphaEncoding.DXT3:
linesize = (self.size[0] + 3) // 4 * 16
for yb in range((self.size[1] + 3) // 4):
for d in decode_dxt3(self._safe_read(linesize)):
data += d
elif self._blp_alpha_encoding == BLP_ALPHA_ENCODING_DXT5:
elif self._blp_alpha_encoding == AlphaEncoding.DXT5:
linesize = (self.size[0] + 3) // 4 * 16
for yb in range((self.size[1] + 3) // 4):
for d in decode_dxt5(self._safe_read(linesize)):

View File

@ -52,13 +52,20 @@ Note: All data is stored in little-Endian (Intel) byte order.
"""
import struct
from enum import IntEnum
from io import BytesIO
from . import Image, ImageFile
MAGIC = b"FTEX"
FORMAT_DXT1 = 0
FORMAT_UNCOMPRESSED = 1
class Format(IntEnum):
DXT1 = 0
UNCOMPRESSED = 1
globals().update({"FORMAT_" + k: v for k, v in Format.__members__.items()})
class FtexImageFile(ImageFile.ImageFile):
@ -83,10 +90,10 @@ class FtexImageFile(ImageFile.ImageFile):
data = self.fp.read(mipmap_size)
if format == FORMAT_DXT1:
if format == Format.DXT1:
self.mode = "RGBA"
self.tile = [("bcn", (0, 0) + self.size, 0, (1))]
elif format == FORMAT_UNCOMPRESSED:
elif format == Format.UNCOMPRESSED:
self.tile = [("raw", (0, 0) + self.size, 0, ("RGB", 0, 1))]
else:
raise ValueError(f"Invalid texture compression format: {repr(format)}")

View File

@ -169,12 +169,12 @@ class GifImageFile(ImageFile.ImageFile):
if "transparency" in self.info:
self.mode = "RGBA"
self.im.putpalettealpha(self.info["transparency"], 0)
self.im = self.im.convert("RGBA", Image.FLOYDSTEINBERG)
self.im = self.im.convert("RGBA", Image.Dither.FLOYDSTEINBERG)
del self.info["transparency"]
else:
self.mode = "RGB"
self.im = self.im.convert("RGB", Image.FLOYDSTEINBERG)
self.im = self.im.convert("RGB", Image.Dither.FLOYDSTEINBERG)
if self.dispose:
self.im.paste(self.dispose, self.dispose_extent)
@ -425,7 +425,7 @@ def _normalize_mode(im, initial_call=False):
palette_size = 256
if im.palette:
palette_size = len(im.palette.getdata()[1]) // 3
im = im.convert("P", palette=Image.ADAPTIVE, colors=palette_size)
im = im.convert("P", palette=Image.Palette.ADAPTIVE, colors=palette_size)
if im.palette.mode == "RGBA":
for rgba in im.palette.colors.keys():
if rgba[3] == 0:

View File

@ -69,7 +69,7 @@ def _save(im, fp, filename):
if not tmp:
# TODO: invent a more convenient method for proportional scalings
tmp = im.copy()
tmp.thumbnail(size, Image.LANCZOS, reducing_gap=None)
tmp.thumbnail(size, Image.Resampling.LANCZOS, reducing_gap=None)
bits = BmpImagePlugin.SAVE[tmp.mode][1] if bmp else 32
fp.write(struct.pack("<H", bits)) # wBitCount(2)

View File

@ -37,6 +37,7 @@ import sys
import tempfile
import warnings
from collections.abc import Callable, MutableMapping
from enum import IntEnum
from pathlib import Path
try:
@ -139,46 +140,68 @@ def isImageType(t):
# Constants
# transpose
FLIP_LEFT_RIGHT = 0
FLIP_TOP_BOTTOM = 1
ROTATE_90 = 2
ROTATE_180 = 3
ROTATE_270 = 4
TRANSPOSE = 5
TRANSVERSE = 6
class Transpose(IntEnum):
FLIP_LEFT_RIGHT = 0
FLIP_TOP_BOTTOM = 1
ROTATE_90 = 2
ROTATE_180 = 3
ROTATE_270 = 4
TRANSPOSE = 5
TRANSVERSE = 6
# transforms (also defined in Imaging.h)
AFFINE = 0
EXTENT = 1
PERSPECTIVE = 2
QUAD = 3
MESH = 4
class Transform(IntEnum):
AFFINE = 0
EXTENT = 1
PERSPECTIVE = 2
QUAD = 3
MESH = 4
# resampling filters (also defined in Imaging.h)
NEAREST = NONE = 0
BOX = 4
BILINEAR = LINEAR = 2
HAMMING = 5
BICUBIC = CUBIC = 3
LANCZOS = ANTIALIAS = 1
class Resampling(IntEnum):
NEAREST = 0
BOX = 4
BILINEAR = 2
HAMMING = 5
BICUBIC = 3
LANCZOS = 1
_filters_support = {BOX: 0.5, BILINEAR: 1.0, HAMMING: 1.0, BICUBIC: 2.0, LANCZOS: 3.0}
_filters_support = {
Resampling.BOX: 0.5,
Resampling.BILINEAR: 1.0,
Resampling.HAMMING: 1.0,
Resampling.BICUBIC: 2.0,
Resampling.LANCZOS: 3.0,
}
# dithers
NEAREST = NONE = 0
ORDERED = 1 # Not yet implemented
RASTERIZE = 2 # Not yet implemented
FLOYDSTEINBERG = 3 # default
class Dither(IntEnum):
NONE = 0
ORDERED = 1 # Not yet implemented
RASTERIZE = 2 # Not yet implemented
FLOYDSTEINBERG = 3 # default
# palettes/quantizers
WEB = 0
ADAPTIVE = 1
class Palette(IntEnum):
WEB = 0
ADAPTIVE = 1
MEDIANCUT = 0
MAXCOVERAGE = 1
FASTOCTREE = 2
LIBIMAGEQUANT = 3
class Quantize(IntEnum):
MEDIANCUT = 0
MAXCOVERAGE = 1
FASTOCTREE = 2
LIBIMAGEQUANT = 3
for enum in (Transpose, Transform, Resampling, Dither, Palette, Quantize):
globals().update(enum.__members__)
NEAREST = NONE = 0
if hasattr(core, "DEFAULT_STRATEGY"):
DEFAULT_STRATEGY = core.DEFAULT_STRATEGY
@ -846,7 +869,9 @@ class Image:
"""
pass
def convert(self, mode=None, matrix=None, dither=None, palette=WEB, colors=256):
def convert(
self, mode=None, matrix=None, dither=None, palette=Palette.WEB, colors=256
):
"""
Returns a converted copy of this image. For the "P" mode, this
method translates pixels through the palette. If mode is
@ -865,7 +890,7 @@ class Image:
The default method of converting a greyscale ("L") or "RGB"
image into a bilevel (mode "1") image uses Floyd-Steinberg
dither to approximate the original image luminosity levels. If
dither is :data:`NONE`, all values larger than 127 are set to 255 (white),
dither is ``None``, all values larger than 127 are set to 255 (white),
all other values to 0 (black). To use other thresholds, use the
:py:meth:`~PIL.Image.Image.point` method.
@ -878,12 +903,13 @@ class Image:
should be 4- or 12-tuple containing floating point values.
:param dither: Dithering method, used when converting from
mode "RGB" to "P" or from "RGB" or "L" to "1".
Available methods are :data:`NONE` or :data:`FLOYDSTEINBERG` (default).
Note that this is not used when ``matrix`` is supplied.
Available methods are :data:`Dither.NONE` or :data:`Dither.FLOYDSTEINBERG`
(default). Note that this is not used when ``matrix`` is supplied.
:param palette: Palette to use when converting from mode "RGB"
to "P". Available palettes are :data:`WEB` or :data:`ADAPTIVE`.
:param colors: Number of colors to use for the :data:`ADAPTIVE` palette.
Defaults to 256.
to "P". Available palettes are :data:`Palette.WEB` or
:data:`Palette.ADAPTIVE`.
:param colors: Number of colors to use for the :data:`Palette.ADAPTIVE`
palette. Defaults to 256.
:rtype: :py:class:`~PIL.Image.Image`
:returns: An :py:class:`~PIL.Image.Image` object.
"""
@ -990,7 +1016,7 @@ class Image:
else:
raise ValueError("Transparency for P mode should be bytes or int")
if mode == "P" and palette == ADAPTIVE:
if mode == "P" and palette == Palette.ADAPTIVE:
im = self.im.quantize(colors)
new = self._new(im)
from . import ImagePalette
@ -1012,7 +1038,7 @@ class Image:
# colorspace conversion
if dither is None:
dither = FLOYDSTEINBERG
dither = Dither.FLOYDSTEINBERG
try:
im = self.im.convert(mode, dither)
@ -1025,7 +1051,7 @@ class Image:
raise ValueError("illegal conversion") from e
new_im = self._new(im)
if mode == "P" and palette != ADAPTIVE:
if mode == "P" and palette != Palette.ADAPTIVE:
from . import ImagePalette
new_im.palette = ImagePalette.ImagePalette("RGB", list(range(256)) * 3)
@ -1054,24 +1080,25 @@ class Image:
of colors.
:param colors: The desired number of colors, <= 256
:param method: :data:`MEDIANCUT` (median cut),
:data:`MAXCOVERAGE` (maximum coverage),
:data:`FASTOCTREE` (fast octree),
:data:`LIBIMAGEQUANT` (libimagequant; check support using
:py:func:`PIL.features.check_feature`
with ``feature="libimagequant"``).
:param method: :data:`Quantize.MEDIANCUT` (median cut),
:data:`Quantize.MAXCOVERAGE` (maximum coverage),
:data:`Quantize.FASTOCTREE` (fast octree),
:data:`Quantize.LIBIMAGEQUANT` (libimagequant; check support
using :py:func:`PIL.features.check_feature` with
``feature="libimagequant"``).
By default, :data:`MEDIANCUT` will be used.
By default, :data:`Quantize.MEDIANCUT` will be used.
The exception to this is RGBA images. :data:`MEDIANCUT` and
:data:`MAXCOVERAGE` do not support RGBA images, so
:data:`FASTOCTREE` is used by default instead.
The exception to this is RGBA images. :data:`Quantize.MEDIANCUT`
and :data:`Quantize.MAXCOVERAGE` do not support RGBA images, so
:data:`Quantize.FASTOCTREE` is used by default instead.
:param kmeans: Integer
:param palette: Quantize to the palette of given
:py:class:`PIL.Image.Image`.
:param dither: Dithering method, used when converting from
mode "RGB" to "P" or from "RGB" or "L" to "1".
Available methods are :data:`NONE` or :data:`FLOYDSTEINBERG` (default).
Available methods are :data:`Dither.NONE` or :data:`Dither.FLOYDSTEINBERG`
(default).
Default: 1 (legacy setting)
:returns: A new image
@ -1081,11 +1108,14 @@ class Image:
if method is None:
# defaults:
method = MEDIANCUT
method = Quantize.MEDIANCUT
if self.mode == "RGBA":
method = FASTOCTREE
method = Quantize.FASTOCTREE
if self.mode == "RGBA" and method not in (FASTOCTREE, LIBIMAGEQUANT):
if self.mode == "RGBA" and method not in (
Quantize.FASTOCTREE,
Quantize.LIBIMAGEQUANT,
):
# Caller specified an invalid mode.
raise ValueError(
"Fast Octree (method == 2) and libimagequant (method == 3) "
@ -1890,15 +1920,18 @@ class Image:
:param size: The requested size in pixels, as a 2-tuple:
(width, height).
:param resample: An optional resampling filter. This can be
one of :py:data:`PIL.Image.NEAREST`, :py:data:`PIL.Image.BOX`,
:py:data:`PIL.Image.BILINEAR`, :py:data:`PIL.Image.HAMMING`,
:py:data:`PIL.Image.BICUBIC` or :py:data:`PIL.Image.LANCZOS`.
one of :py:data:`PIL.Image.Resampling.NEAREST`,
:py:data:`PIL.Image.Resampling.BOX`,
:py:data:`PIL.Image.Resampling.BILINEAR`,
:py:data:`PIL.Image.Resampling.HAMMING`,
:py:data:`PIL.Image.Resampling.BICUBIC` or
:py:data:`PIL.Image.Resampling.LANCZOS`.
If the image has mode "1" or "P", it is always set to
:py:data:`PIL.Image.NEAREST`.
:py:data:`PIL.Image.Resampling.NEAREST`.
If the image mode specifies a number of bits, such as "I;16", then the
default filter is :py:data:`PIL.Image.NEAREST`.
Otherwise, the default filter is :py:data:`PIL.Image.BICUBIC`.
See: :ref:`concept-filters`.
default filter is :py:data:`PIL.Image.Resampling.NEAREST`.
Otherwise, the default filter is
:py:data:`PIL.Image.Resampling.BICUBIC`. See: :ref:`concept-filters`.
:param box: An optional 4-tuple of floats providing
the source image region to be scaled.
The values must be within (0, 0, width, height) rectangle.
@ -1920,19 +1953,26 @@ class Image:
if resample is None:
type_special = ";" in self.mode
resample = NEAREST if type_special else BICUBIC
elif resample not in (NEAREST, BILINEAR, BICUBIC, LANCZOS, BOX, HAMMING):
resample = Resampling.NEAREST if type_special else Resampling.BICUBIC
elif resample not in (
Resampling.NEAREST,
Resampling.BILINEAR,
Resampling.BICUBIC,
Resampling.LANCZOS,
Resampling.BOX,
Resampling.HAMMING,
):
message = f"Unknown resampling filter ({resample})."
filters = [
f"{filter[1]} ({filter[0]})"
for filter in (
(NEAREST, "Image.NEAREST"),
(LANCZOS, "Image.LANCZOS"),
(BILINEAR, "Image.BILINEAR"),
(BICUBIC, "Image.BICUBIC"),
(BOX, "Image.BOX"),
(HAMMING, "Image.HAMMING"),
(Resampling.NEAREST, "Image.Resampling.NEAREST"),
(Resampling.LANCZOS, "Image.Resampling.LANCZOS"),
(Resampling.BILINEAR, "Image.Resampling.BILINEAR"),
(Resampling.BICUBIC, "Image.Resampling.BICUBIC"),
(Resampling.BOX, "Image.Resampling.BOX"),
(Resampling.HAMMING, "Image.Resampling.HAMMING"),
)
]
raise ValueError(
@ -1953,16 +1993,16 @@ class Image:
return self.copy()
if self.mode in ("1", "P"):
resample = NEAREST
resample = Resampling.NEAREST
if self.mode in ["LA", "RGBA"] and resample != NEAREST:
if self.mode in ["LA", "RGBA"] and resample != Resampling.NEAREST:
im = self.convert({"LA": "La", "RGBA": "RGBa"}[self.mode])
im = im.resize(size, resample, box)
return im.convert(self.mode)
self.load()
if reducing_gap is not None and resample != NEAREST:
if reducing_gap is not None and resample != Resampling.NEAREST:
factor_x = int((box[2] - box[0]) / size[0] / reducing_gap) or 1
factor_y = int((box[3] - box[1]) / size[1] / reducing_gap) or 1
if factor_x > 1 or factor_y > 1:
@ -2017,7 +2057,7 @@ class Image:
def rotate(
self,
angle,
resample=NEAREST,
resample=Resampling.NEAREST,
expand=0,
center=None,
translate=None,
@ -2030,12 +2070,12 @@ class Image:
:param angle: In degrees counter clockwise.
:param resample: An optional resampling filter. This can be
one of :py:data:`PIL.Image.NEAREST` (use nearest neighbour),
one of :py:data:`PIL.Image.Resampling.NEAREST` (use nearest neighbour),
:py:data:`PIL.Image.BILINEAR` (linear interpolation in a 2x2
environment), or :py:data:`PIL.Image.BICUBIC`
environment), or :py:data:`PIL.Image.Resampling.BICUBIC`
(cubic spline interpolation in a 4x4 environment).
If omitted, or if the image has mode "1" or "P", it is
set to :py:data:`PIL.Image.NEAREST`. See :ref:`concept-filters`.
set to :py:data:`PIL.Image.Resampling.NEAREST`. See :ref:`concept-filters`.
:param expand: Optional expansion flag. If true, expands the output
image to make it large enough to hold the entire rotated image.
If false or omitted, make the output image the same size as the
@ -2056,9 +2096,11 @@ class Image:
if angle == 0:
return self.copy()
if angle == 180:
return self.transpose(ROTATE_180)
return self.transpose(Transpose.ROTATE_180)
if angle in (90, 270) and (expand or self.width == self.height):
return self.transpose(ROTATE_90 if angle == 90 else ROTATE_270)
return self.transpose(
Transpose.ROTATE_90 if angle == 90 else Transpose.ROTATE_270
)
# Calculate the affine matrix. Note that this is the reverse
# transformation (from destination image to source) because we
@ -2127,7 +2169,9 @@ class Image:
matrix[2], matrix[5] = transform(-(nw - w) / 2.0, -(nh - h) / 2.0, matrix)
w, h = nw, nh
return self.transform((w, h), AFFINE, matrix, resample, fillcolor=fillcolor)
return self.transform(
(w, h), Transform.AFFINE, matrix, resample, fillcolor=fillcolor
)
def save(self, fp, format=None, **params):
"""
@ -2313,7 +2357,7 @@ class Image:
"""
return 0
def thumbnail(self, size, resample=BICUBIC, reducing_gap=2.0):
def thumbnail(self, size, resample=Resampling.BICUBIC, reducing_gap=2.0):
"""
Make this image into a thumbnail. This method modifies the
image to contain a thumbnail version of itself, no larger than
@ -2329,11 +2373,14 @@ class Image:
:param size: Requested size.
:param resample: Optional resampling filter. This can be one
of :py:data:`PIL.Image.NEAREST`, :py:data:`PIL.Image.BOX`,
:py:data:`PIL.Image.BILINEAR`, :py:data:`PIL.Image.HAMMING`,
:py:data:`PIL.Image.BICUBIC` or :py:data:`PIL.Image.LANCZOS`.
If omitted, it defaults to :py:data:`PIL.Image.BICUBIC`.
(was :py:data:`PIL.Image.NEAREST` prior to version 2.5.0).
of :py:data:`PIL.Image.Resampling.NEAREST`,
:py:data:`PIL.Image.Resampling.BOX`,
:py:data:`PIL.Image.Resampling.BILINEAR`,
:py:data:`PIL.Image.Resampling.HAMMING`,
:py:data:`PIL.Image.Resampling.BICUBIC` or
:py:data:`PIL.Image.Resampling.LANCZOS`.
If omitted, it defaults to :py:data:`PIL.Image.Resampling.BICUBIC`.
(was :py:data:`PIL.Image.Resampling.NEAREST` prior to version 2.5.0).
See: :ref:`concept-filters`.
:param reducing_gap: Apply optimization by resizing the image
in two steps. First, reducing the image by integer times
@ -2388,7 +2435,13 @@ class Image:
# FIXME: the different transform methods need further explanation
# instead of bloating the method docs, add a separate chapter.
def transform(
self, size, method, data=None, resample=NEAREST, fill=1, fillcolor=None
self,
size,
method,
data=None,
resample=Resampling.NEAREST,
fill=1,
fillcolor=None,
):
"""
Transforms this image. This method creates a new image with the
@ -2397,11 +2450,11 @@ class Image:
:param size: The output size.
:param method: The transformation method. This is one of
:py:data:`PIL.Image.EXTENT` (cut out a rectangular subregion),
:py:data:`PIL.Image.AFFINE` (affine transform),
:py:data:`PIL.Image.PERSPECTIVE` (perspective transform),
:py:data:`PIL.Image.QUAD` (map a quadrilateral to a rectangle), or
:py:data:`PIL.Image.MESH` (map a number of source quadrilaterals
:py:data:`PIL.Image.Transform.EXTENT` (cut out a rectangular subregion),
:py:data:`PIL.Image.Transform.AFFINE` (affine transform),
:py:data:`PIL.Image.Transform.PERSPECTIVE` (perspective transform),
:py:data:`PIL.Image.Transform.QUAD` (map a quadrilateral to a rectangle), or
:py:data:`PIL.Image.Transform.MESH` (map a number of source quadrilaterals
in one operation).
It may also be an :py:class:`~PIL.Image.ImageTransformHandler`
@ -2416,16 +2469,16 @@ class Image:
class Example:
def getdata(self):
method = Image.EXTENT
method = Image.Transform.EXTENT
data = (0, 0, 100, 100)
return method, data
:param data: Extra data to the transformation method.
:param resample: Optional resampling filter. It can be one of
:py:data:`PIL.Image.NEAREST` (use nearest neighbour),
:py:data:`PIL.Image.BILINEAR` (linear interpolation in a 2x2
:py:data:`PIL.Image.Resampling.NEAREST` (use nearest neighbour),
:py:data:`PIL.Image.Resampling.BILINEAR` (linear interpolation in a 2x2
environment), or :py:data:`PIL.Image.BICUBIC` (cubic spline
interpolation in a 4x4 environment). If omitted, or if the image
has mode "1" or "P", it is set to :py:data:`PIL.Image.NEAREST`.
has mode "1" or "P", it is set to :py:data:`PIL.Image.Resampling.NEAREST`.
See: :ref:`concept-filters`.
:param fill: If ``method`` is an
:py:class:`~PIL.Image.ImageTransformHandler` object, this is one of
@ -2435,7 +2488,7 @@ class Image:
:returns: An :py:class:`~PIL.Image.Image` object.
"""
if self.mode in ("LA", "RGBA") and resample != NEAREST:
if self.mode in ("LA", "RGBA") and resample != Resampling.NEAREST:
return (
self.convert({"LA": "La", "RGBA": "RGBa"}[self.mode])
.transform(size, method, data, resample, fill, fillcolor)
@ -2456,10 +2509,12 @@ class Image:
if self.mode == "P" and self.palette:
im.palette = self.palette.copy()
im.info = self.info.copy()
if method == MESH:
if method == Transform.MESH:
# list of quads
for box, quad in data:
im.__transformer(box, self, QUAD, quad, resample, fillcolor is None)
im.__transformer(
box, self, Transform.QUAD, quad, resample, fillcolor is None
)
else:
im.__transformer(
(0, 0) + size, self, method, data, resample, fillcolor is None
@ -2467,25 +2522,27 @@ class Image:
return im
def __transformer(self, box, image, method, data, resample=NEAREST, fill=1):
def __transformer(
self, box, image, method, data, resample=Resampling.NEAREST, fill=1
):
w = box[2] - box[0]
h = box[3] - box[1]
if method == AFFINE:
if method == Transform.AFFINE:
data = data[0:6]
elif method == EXTENT:
elif method == Transform.EXTENT:
# convert extent to an affine transform
x0, y0, x1, y1 = data
xs = (x1 - x0) / w
ys = (y1 - y0) / h
method = AFFINE
method = Transform.AFFINE
data = (xs, 0, x0, 0, ys, y0)
elif method == PERSPECTIVE:
elif method == Transform.PERSPECTIVE:
data = data[0:8]
elif method == QUAD:
elif method == Transform.QUAD:
# quadrilateral warp. data specifies the four corners
# given as NW, SW, SE, and NE.
nw = data[0:2]
@ -2509,12 +2566,16 @@ class Image:
else:
raise ValueError("unknown transformation method")
if resample not in (NEAREST, BILINEAR, BICUBIC):
if resample in (BOX, HAMMING, LANCZOS):
if resample not in (
Resampling.NEAREST,
Resampling.BILINEAR,
Resampling.BICUBIC,
):
if resample in (Resampling.BOX, Resampling.HAMMING, Resampling.LANCZOS):
message = {
BOX: "Image.BOX",
HAMMING: "Image.HAMMING",
LANCZOS: "Image.LANCZOS/Image.ANTIALIAS",
Resampling.BOX: "Image.Resampling.BOX",
Resampling.HAMMING: "Image.Resampling.HAMMING",
Resampling.LANCZOS: "Image.Resampling.LANCZOS",
}[resample] + f" ({resample}) cannot be used."
else:
message = f"Unknown resampling filter ({resample})."
@ -2522,9 +2583,9 @@ class Image:
filters = [
f"{filter[1]} ({filter[0]})"
for filter in (
(NEAREST, "Image.NEAREST"),
(BILINEAR, "Image.BILINEAR"),
(BICUBIC, "Image.BICUBIC"),
(Resampling.NEAREST, "Image.Resampling.NEAREST"),
(Resampling.BILINEAR, "Image.Resampling.BILINEAR"),
(Resampling.BICUBIC, "Image.Resampling.BICUBIC"),
)
]
raise ValueError(
@ -2536,7 +2597,7 @@ class Image:
self.load()
if image.mode in ("1", "P"):
resample = NEAREST
resample = Resampling.NEAREST
self.im.transform2(box, image.im, method, data, resample, fill)
@ -2544,10 +2605,13 @@ class Image:
"""
Transpose image (flip or rotate in 90 degree steps)
:param method: One of :py:data:`PIL.Image.FLIP_LEFT_RIGHT`,
:py:data:`PIL.Image.FLIP_TOP_BOTTOM`, :py:data:`PIL.Image.ROTATE_90`,
:py:data:`PIL.Image.ROTATE_180`, :py:data:`PIL.Image.ROTATE_270`,
:py:data:`PIL.Image.TRANSPOSE` or :py:data:`PIL.Image.TRANSVERSE`.
:param method: One of :py:data:`PIL.Image.Transpose.FLIP_LEFT_RIGHT`,
:py:data:`PIL.Image.Transpose.FLIP_TOP_BOTTOM`,
:py:data:`PIL.Image.Transpose.ROTATE_90`,
:py:data:`PIL.Image.Transpose.ROTATE_180`,
:py:data:`PIL.Image.Transpose.ROTATE_270`,
:py:data:`PIL.Image.Transpose.TRANSPOSE` or
:py:data:`PIL.Image.Transpose.TRANSVERSE`.
:returns: Returns a flipped or rotated copy of this image.
"""

View File

@ -16,6 +16,7 @@
# below for the original description.
import sys
from enum import IntEnum
from PIL import Image
@ -100,14 +101,22 @@ core = _imagingcms
#
# intent/direction values
INTENT_PERCEPTUAL = 0
INTENT_RELATIVE_COLORIMETRIC = 1
INTENT_SATURATION = 2
INTENT_ABSOLUTE_COLORIMETRIC = 3
DIRECTION_INPUT = 0
DIRECTION_OUTPUT = 1
DIRECTION_PROOF = 2
class Intent(IntEnum):
PERCEPTUAL = 0
RELATIVE_COLORIMETRIC = 1
SATURATION = 2
ABSOLUTE_COLORIMETRIC = 3
class Direction(IntEnum):
INPUT = 0
OUTPUT = 1
PROOF = 2
globals().update({"INTENT_" + k: v for k, v in Intent.__members__.items()})
globals().update({"DIRECTION_" + k: v for k, v in Direction.__members__.items()})
#
# flags
@ -211,9 +220,9 @@ class ImageCmsTransform(Image.ImagePointHandler):
output,
input_mode,
output_mode,
intent=INTENT_PERCEPTUAL,
intent=Intent.PERCEPTUAL,
proof=None,
proof_intent=INTENT_ABSOLUTE_COLORIMETRIC,
proof_intent=Intent.ABSOLUTE_COLORIMETRIC,
flags=0,
):
if proof is None:
@ -295,7 +304,7 @@ def profileToProfile(
im,
inputProfile,
outputProfile,
renderingIntent=INTENT_PERCEPTUAL,
renderingIntent=Intent.PERCEPTUAL,
outputMode=None,
inPlace=False,
flags=0,
@ -331,10 +340,10 @@ def profileToProfile(
:param renderingIntent: Integer (0-3) specifying the rendering intent you
wish to use for the transform
ImageCms.INTENT_PERCEPTUAL = 0 (DEFAULT)
ImageCms.INTENT_RELATIVE_COLORIMETRIC = 1
ImageCms.INTENT_SATURATION = 2
ImageCms.INTENT_ABSOLUTE_COLORIMETRIC = 3
ImageCms.Intent.PERCEPTUAL = 0 (DEFAULT)
ImageCms.Intent.RELATIVE_COLORIMETRIC = 1
ImageCms.Intent.SATURATION = 2
ImageCms.Intent.ABSOLUTE_COLORIMETRIC = 3
see the pyCMS documentation for details on rendering intents and what
they do.
@ -412,7 +421,7 @@ def buildTransform(
outputProfile,
inMode,
outMode,
renderingIntent=INTENT_PERCEPTUAL,
renderingIntent=Intent.PERCEPTUAL,
flags=0,
):
"""
@ -458,10 +467,10 @@ def buildTransform(
:param renderingIntent: Integer (0-3) specifying the rendering intent you
wish to use for the transform
ImageCms.INTENT_PERCEPTUAL = 0 (DEFAULT)
ImageCms.INTENT_RELATIVE_COLORIMETRIC = 1
ImageCms.INTENT_SATURATION = 2
ImageCms.INTENT_ABSOLUTE_COLORIMETRIC = 3
ImageCms.Intent.PERCEPTUAL = 0 (DEFAULT)
ImageCms.Intent.RELATIVE_COLORIMETRIC = 1
ImageCms.Intent.SATURATION = 2
ImageCms.Intent.ABSOLUTE_COLORIMETRIC = 3
see the pyCMS documentation for details on rendering intents and what
they do.
@ -494,8 +503,8 @@ def buildProofTransform(
proofProfile,
inMode,
outMode,
renderingIntent=INTENT_PERCEPTUAL,
proofRenderingIntent=INTENT_ABSOLUTE_COLORIMETRIC,
renderingIntent=Intent.PERCEPTUAL,
proofRenderingIntent=Intent.ABSOLUTE_COLORIMETRIC,
flags=FLAGS["SOFTPROOFING"],
):
"""
@ -550,20 +559,20 @@ def buildProofTransform(
:param renderingIntent: Integer (0-3) specifying the rendering intent you
wish to use for the input->proof (simulated) transform
ImageCms.INTENT_PERCEPTUAL = 0 (DEFAULT)
ImageCms.INTENT_RELATIVE_COLORIMETRIC = 1
ImageCms.INTENT_SATURATION = 2
ImageCms.INTENT_ABSOLUTE_COLORIMETRIC = 3
ImageCms.Intent.PERCEPTUAL = 0 (DEFAULT)
ImageCms.Intent.RELATIVE_COLORIMETRIC = 1
ImageCms.Intent.SATURATION = 2
ImageCms.Intent.ABSOLUTE_COLORIMETRIC = 3
see the pyCMS documentation for details on rendering intents and what
they do.
:param proofRenderingIntent: Integer (0-3) specifying the rendering intent
you wish to use for proof->output transform
ImageCms.INTENT_PERCEPTUAL = 0 (DEFAULT)
ImageCms.INTENT_RELATIVE_COLORIMETRIC = 1
ImageCms.INTENT_SATURATION = 2
ImageCms.INTENT_ABSOLUTE_COLORIMETRIC = 3
ImageCms.Intent.PERCEPTUAL = 0 (DEFAULT)
ImageCms.Intent.RELATIVE_COLORIMETRIC = 1
ImageCms.Intent.SATURATION = 2
ImageCms.Intent.ABSOLUTE_COLORIMETRIC = 3
see the pyCMS documentation for details on rendering intents and what
they do.
@ -922,10 +931,10 @@ def getDefaultIntent(profile):
:returns: Integer 0-3 specifying the default rendering intent for this
profile.
ImageCms.INTENT_PERCEPTUAL = 0 (DEFAULT)
ImageCms.INTENT_RELATIVE_COLORIMETRIC = 1
ImageCms.INTENT_SATURATION = 2
ImageCms.INTENT_ABSOLUTE_COLORIMETRIC = 3
ImageCms.Intent.PERCEPTUAL = 0 (DEFAULT)
ImageCms.Intent.RELATIVE_COLORIMETRIC = 1
ImageCms.Intent.SATURATION = 2
ImageCms.Intent.ABSOLUTE_COLORIMETRIC = 3
see the pyCMS documentation for details on rendering intents and what
they do.
@ -960,19 +969,19 @@ def isIntentSupported(profile, intent, direction):
:param intent: Integer (0-3) specifying the rendering intent you wish to
use with this profile
ImageCms.INTENT_PERCEPTUAL = 0 (DEFAULT)
ImageCms.INTENT_RELATIVE_COLORIMETRIC = 1
ImageCms.INTENT_SATURATION = 2
ImageCms.INTENT_ABSOLUTE_COLORIMETRIC = 3
ImageCms.Intent.PERCEPTUAL = 0 (DEFAULT)
ImageCms.Intent.RELATIVE_COLORIMETRIC = 1
ImageCms.Intent.SATURATION = 2
ImageCms.Intent.ABSOLUTE_COLORIMETRIC = 3
see the pyCMS documentation for details on rendering intents and what
they do.
:param direction: Integer specifying if the profile is to be used for
input, output, or proof
INPUT = 0 (or use ImageCms.DIRECTION_INPUT)
OUTPUT = 1 (or use ImageCms.DIRECTION_OUTPUT)
PROOF = 2 (or use ImageCms.DIRECTION_PROOF)
INPUT = 0 (or use ImageCms.Direction.INPUT)
OUTPUT = 1 (or use ImageCms.Direction.OUTPUT)
PROOF = 2 (or use ImageCms.Direction.PROOF)
:returns: 1 if the intent/direction are supported, -1 if they are not.
:exception PyCMSError:

View File

@ -529,7 +529,7 @@ class Color3DLUT(MultibandFilter):
return image.color_lut_3d(
self.mode or image.mode,
Image.LINEAR,
Image.Resampling.BILINEAR,
self.channels,
self.size[0],
self.size[1],

View File

@ -28,13 +28,19 @@
import base64
import os
import sys
from enum import IntEnum
from io import BytesIO
from . import Image
from ._util import isDirectory, isPath
LAYOUT_BASIC = 0
LAYOUT_RAQM = 1
class Layout(IntEnum):
BASIC = 0
RAQM = 1
globals().update({"LAYOUT_" + k: v for k, v in Layout.__members__.items()})
class _imagingft_not_installed:
@ -164,12 +170,12 @@ class FreeTypeFont:
self.index = index
self.encoding = encoding
if layout_engine not in (LAYOUT_BASIC, LAYOUT_RAQM):
layout_engine = LAYOUT_BASIC
if layout_engine not in (Layout.BASIC, Layout.RAQM):
layout_engine = Layout.BASIC
if core.HAVE_RAQM:
layout_engine = LAYOUT_RAQM
elif layout_engine == LAYOUT_RAQM and not core.HAVE_RAQM:
layout_engine = LAYOUT_BASIC
layout_engine = Layout.RAQM
elif layout_engine == Layout.RAQM and not core.HAVE_RAQM:
layout_engine = Layout.BASIC
self.layout_engine = layout_engine
@ -751,15 +757,16 @@ class TransposedFont:
:param font: A font object.
:param orientation: An optional orientation. If given, this should
be one of Image.FLIP_LEFT_RIGHT, Image.FLIP_TOP_BOTTOM,
Image.ROTATE_90, Image.ROTATE_180, or Image.ROTATE_270.
be one of Image.Transpose.FLIP_LEFT_RIGHT, Image.Transpose.FLIP_TOP_BOTTOM,
Image.Transpose.ROTATE_90, Image.Transpose.ROTATE_180, or
Image.Transpose.ROTATE_270.
"""
self.font = font
self.orientation = orientation # any 'transpose' argument, or None
def getsize(self, text, *args, **kwargs):
w, h = self.font.getsize(text)
if self.orientation in (Image.ROTATE_90, Image.ROTATE_270):
if self.orientation in (Image.Transpose.ROTATE_90, Image.Transpose.ROTATE_270):
return h, w
return w, h
@ -827,7 +834,7 @@ def truetype(font=None, size=10, index=0, encoding="", layout_engine=None):
This specifies the character set to use. It does not alter the
encoding of any text provided in subsequent operations.
:param layout_engine: Which layout engine to use, if available:
:data:`.ImageFont.LAYOUT_BASIC` or :data:`.ImageFont.LAYOUT_RAQM`.
:data:`.ImageFont.Layout.BASIC` or :data:`.ImageFont.Layout.RAQM`.
You can check support for Raqm layout using
:py:func:`PIL.features.check_feature` with ``feature="raqm"``.

View File

@ -237,7 +237,7 @@ def colorize(image, black, white, mid=None, blackpoint=0, whitepoint=255, midpoi
return _lut(image, red + green + blue)
def contain(image, size, method=Image.BICUBIC):
def contain(image, size, method=Image.Resampling.BICUBIC):
"""
Returns a resized version of the image, set to the maximum width and height
within the requested size, while maintaining the original aspect ratio.
@ -265,7 +265,7 @@ def contain(image, size, method=Image.BICUBIC):
return image.resize(size, resample=method)
def pad(image, size, method=Image.BICUBIC, color=None, centering=(0.5, 0.5)):
def pad(image, size, method=Image.Resampling.BICUBIC, color=None, centering=(0.5, 0.5)):
"""
Returns a resized and padded version of the image, expanded to fill the
requested aspect ratio and size.
@ -315,7 +315,7 @@ def crop(image, border=0):
return image.crop((left, top, image.size[0] - right, image.size[1] - bottom))
def scale(image, factor, resample=Image.BICUBIC):
def scale(image, factor, resample=Image.Resampling.BICUBIC):
"""
Returns a rescaled image by a specific factor given in parameter.
A factor greater than 1 expands the image, between 0 and 1 contracts the
@ -336,7 +336,7 @@ def scale(image, factor, resample=Image.BICUBIC):
return image.resize(size, resample)
def deform(image, deformer, resample=Image.BILINEAR):
def deform(image, deformer, resample=Image.Resampling.BILINEAR):
"""
Deform the image.
@ -347,7 +347,9 @@ def deform(image, deformer, resample=Image.BILINEAR):
in the PIL.Image.transform function.
:return: An image.
"""
return image.transform(image.size, Image.MESH, deformer.getmesh(image), resample)
return image.transform(
image.size, Image.Transform.MESH, deformer.getmesh(image), resample
)
def equalize(image, mask=None):
@ -408,7 +410,7 @@ def expand(image, border=0, fill=0):
return out
def fit(image, size, method=Image.BICUBIC, bleed=0.0, centering=(0.5, 0.5)):
def fit(image, size, method=Image.Resampling.BICUBIC, bleed=0.0, centering=(0.5, 0.5)):
"""
Returns a resized and cropped version of the image, cropped to the
requested aspect ratio and size.
@ -500,7 +502,7 @@ def flip(image):
:param image: The image to flip.
:return: An image.
"""
return image.transpose(Image.FLIP_TOP_BOTTOM)
return image.transpose(Image.Transpose.FLIP_TOP_BOTTOM)
def grayscale(image):
@ -533,7 +535,7 @@ def mirror(image):
:param image: The image to mirror.
:return: An image.
"""
return image.transpose(Image.FLIP_LEFT_RIGHT)
return image.transpose(Image.Transpose.FLIP_LEFT_RIGHT)
def posterize(image, bits):
@ -579,13 +581,13 @@ def exif_transpose(image):
exif = image.getexif()
orientation = exif.get(0x0112)
method = {
2: Image.FLIP_LEFT_RIGHT,
3: Image.ROTATE_180,
4: Image.FLIP_TOP_BOTTOM,
5: Image.TRANSPOSE,
6: Image.ROTATE_270,
7: Image.TRANSVERSE,
8: Image.ROTATE_90,
2: Image.Transpose.FLIP_LEFT_RIGHT,
3: Image.Transpose.ROTATE_180,
4: Image.Transpose.FLIP_TOP_BOTTOM,
5: Image.Transpose.TRANSPOSE,
6: Image.Transpose.ROTATE_270,
7: Image.Transpose.TRANSVERSE,
8: Image.Transpose.ROTATE_90,
}.get(orientation)
if method is not None:
transposed_image = image.transpose(method)

View File

@ -47,7 +47,7 @@ class AffineTransform(Transform):
from an affine transform matrix.
"""
method = Image.AFFINE
method = Image.Transform.AFFINE
class ExtentTransform(Transform):
@ -69,7 +69,7 @@ class ExtentTransform(Transform):
input image's coordinate system. See :ref:`coordinate-system`.
"""
method = Image.EXTENT
method = Image.Transform.EXTENT
class QuadTransform(Transform):
@ -86,7 +86,7 @@ class QuadTransform(Transform):
source quadrilateral.
"""
method = Image.QUAD
method = Image.Transform.QUAD
class MeshTransform(Transform):
@ -99,4 +99,4 @@ class MeshTransform(Transform):
:param data: A list of (bbox, quad) tuples.
"""
method = Image.MESH
method = Image.Transform.MESH

View File

@ -37,6 +37,7 @@ import re
import struct
import warnings
import zlib
from enum import IntEnum
from . import Image, ImageChops, ImageFile, ImagePalette, ImageSequence
from ._binary import i16be as i16
@ -94,36 +95,43 @@ See :ref:`Text in PNG File Format<png-text>`.
# APNG frame disposal modes
APNG_DISPOSE_OP_NONE = 0
"""
No disposal is done on this frame before rendering the next frame.
See :ref:`Saving APNG sequences<apng-saving>`.
"""
APNG_DISPOSE_OP_BACKGROUND = 1
"""
This frames modified region is cleared to fully transparent black before rendering
the next frame.
See :ref:`Saving APNG sequences<apng-saving>`.
"""
APNG_DISPOSE_OP_PREVIOUS = 2
"""
This frames modified region is reverted to the previous frames contents before
rendering the next frame.
See :ref:`Saving APNG sequences<apng-saving>`.
"""
class Disposal(IntEnum):
OP_NONE = 0
"""
No disposal is done on this frame before rendering the next frame.
See :ref:`Saving APNG sequences<apng-saving>`.
"""
OP_BACKGROUND = 1
"""
This frames modified region is cleared to fully transparent black before rendering
the next frame.
See :ref:`Saving APNG sequences<apng-saving>`.
"""
OP_PREVIOUS = 2
"""
This frames modified region is reverted to the previous frames contents before
rendering the next frame.
See :ref:`Saving APNG sequences<apng-saving>`.
"""
# APNG frame blend modes
APNG_BLEND_OP_SOURCE = 0
"""
All color components of this frame, including alpha, overwrite the previous output
image contents.
See :ref:`Saving APNG sequences<apng-saving>`.
"""
APNG_BLEND_OP_OVER = 1
"""
This frame should be alpha composited with the previous output image contents.
See :ref:`Saving APNG sequences<apng-saving>`.
"""
class Blend(IntEnum):
OP_SOURCE = 0
"""
All color components of this frame, including alpha, overwrite the previous output
image contents.
See :ref:`Saving APNG sequences<apng-saving>`.
"""
OP_OVER = 1
"""
This frame should be alpha composited with the previous output image contents.
See :ref:`Saving APNG sequences<apng-saving>`.
"""
globals().update({"APNG_DISPOSE_" + k: v for k, v in Disposal.__members__.items()})
globals().update(Blend.__members__)
def _safe_zlib_decompress(s):
@ -861,13 +869,13 @@ class PngImageFile(ImageFile.ImageFile):
raise EOFError
# setup frame disposal (actual disposal done when needed in the next _seek())
if self._prev_im is None and self.dispose_op == APNG_DISPOSE_OP_PREVIOUS:
self.dispose_op = APNG_DISPOSE_OP_BACKGROUND
if self._prev_im is None and self.dispose_op == Disposal.OP_PREVIOUS:
self.dispose_op = Disposal.OP_BACKGROUND
if self.dispose_op == APNG_DISPOSE_OP_PREVIOUS:
if self.dispose_op == Disposal.OP_PREVIOUS:
self.dispose = self._prev_im.copy()
self.dispose = self._crop(self.dispose, self.dispose_extent)
elif self.dispose_op == APNG_DISPOSE_OP_BACKGROUND:
elif self.dispose_op == Disposal.OP_BACKGROUND:
self.dispose = Image.core.fill(self.mode, self.size)
self.dispose = self._crop(self.dispose, self.dispose_extent)
else:
@ -956,7 +964,7 @@ class PngImageFile(ImageFile.ImageFile):
self.png.close()
self.png = None
else:
if self._prev_im and self.blend_op == APNG_BLEND_OP_OVER:
if self._prev_im and self.blend_op == Blend.OP_OVER:
updated = self._crop(self.im, self.dispose_extent)
self._prev_im.paste(
updated, self.dispose_extent, updated.convert("RGBA")
@ -1061,10 +1069,8 @@ def _write_multiple_frames(im, fp, chunk, rawmode):
default_image = im.encoderinfo.get("default_image", im.info.get("default_image"))
duration = im.encoderinfo.get("duration", im.info.get("duration", 0))
loop = im.encoderinfo.get("loop", im.info.get("loop", 0))
disposal = im.encoderinfo.get(
"disposal", im.info.get("disposal", APNG_DISPOSE_OP_NONE)
)
blend = im.encoderinfo.get("blend", im.info.get("blend", APNG_BLEND_OP_SOURCE))
disposal = im.encoderinfo.get("disposal", im.info.get("disposal", Disposal.OP_NONE))
blend = im.encoderinfo.get("blend", im.info.get("blend", Blend.OP_SOURCE))
if default_image:
chain = itertools.chain(im.encoderinfo.get("append_images", []))
@ -1094,10 +1100,10 @@ def _write_multiple_frames(im, fp, chunk, rawmode):
previous = im_frames[-1]
prev_disposal = previous["encoderinfo"].get("disposal")
prev_blend = previous["encoderinfo"].get("blend")
if prev_disposal == APNG_DISPOSE_OP_PREVIOUS and len(im_frames) < 2:
prev_disposal = APNG_DISPOSE_OP_BACKGROUND
if prev_disposal == Disposal.OP_PREVIOUS and len(im_frames) < 2:
prev_disposal = Disposal.OP_BACKGROUND
if prev_disposal == APNG_DISPOSE_OP_BACKGROUND:
if prev_disposal == Disposal.OP_BACKGROUND:
base_im = previous["im"]
dispose = Image.core.fill("RGBA", im.size, (0, 0, 0, 0))
bbox = previous["bbox"]
@ -1106,7 +1112,7 @@ def _write_multiple_frames(im, fp, chunk, rawmode):
else:
bbox = (0, 0) + im.size
base_im.paste(dispose, bbox)
elif prev_disposal == APNG_DISPOSE_OP_PREVIOUS:
elif prev_disposal == Disposal.OP_PREVIOUS:
base_im = im_frames[-2]["im"]
else:
base_im = previous["im"]

View File

@ -316,7 +316,7 @@ if __name__ == "__main__":
outfile = sys.argv[2]
# perform some image operation
im = im.transpose(Image.FLIP_LEFT_RIGHT)
im = im.transpose(Image.Transpose.FLIP_LEFT_RIGHT)
print(
f"saving a flipped version of {os.path.basename(filename)} "
f"as {outfile} "

View File

@ -152,7 +152,7 @@ class TgaImageFile(ImageFile.ImageFile):
def load_end(self):
if self._flip_horizontally:
self.im = self.im.transpose(Image.FLIP_LEFT_RIGHT)
self.im = self.im.transpose(Image.Transpose.FLIP_LEFT_RIGHT)
#

View File

@ -1136,13 +1136,13 @@ class TiffImageFile(ImageFile.ImageFile):
def load_end(self):
if self._tile_orientation:
method = {
2: Image.FLIP_LEFT_RIGHT,
3: Image.ROTATE_180,
4: Image.FLIP_TOP_BOTTOM,
5: Image.TRANSPOSE,
6: Image.ROTATE_270,
7: Image.TRANSVERSE,
8: Image.ROTATE_90,
2: Image.Transpose.FLIP_LEFT_RIGHT,
3: Image.Transpose.ROTATE_180,
4: Image.Transpose.FLIP_TOP_BOTTOM,
5: Image.Transpose.TRANSPOSE,
6: Image.Transpose.ROTATE_270,
7: Image.Transpose.TRANSVERSE,
8: Image.Transpose.ROTATE_90,
}.get(self._tile_orientation)
if method is not None:
self.im = self.im.transpose(method)