mirror of
https://github.com/python-pillow/Pillow.git
synced 2025-01-27 17:54:32 +03:00
parametrize tests
This commit is contained in:
parent
f0be6845f7
commit
fa591e1198
|
@ -38,58 +38,64 @@ gradients_image = Image.open("Tests/images/radial_gradients.png")
|
||||||
gradients_image.load()
|
gradients_image.load()
|
||||||
|
|
||||||
|
|
||||||
def test_args_factor():
|
@pytest.mark.parametrize(
|
||||||
|
"size,expected",
|
||||||
|
(
|
||||||
|
(3, (4, 4)),
|
||||||
|
((3, 1), (4, 10)),
|
||||||
|
((1, 3), (10, 4)),
|
||||||
|
),
|
||||||
|
)
|
||||||
|
def test_args_factor(size, expected):
|
||||||
im = Image.new("L", (10, 10))
|
im = Image.new("L", (10, 10))
|
||||||
|
assert expected == im.reduce(size).size
|
||||||
assert (4, 4) == im.reduce(3).size
|
|
||||||
assert (4, 10) == im.reduce((3, 1)).size
|
|
||||||
assert (10, 4) == im.reduce((1, 3)).size
|
|
||||||
|
|
||||||
with pytest.raises(ValueError):
|
|
||||||
im.reduce(0)
|
|
||||||
with pytest.raises(TypeError):
|
|
||||||
im.reduce(2.0)
|
|
||||||
with pytest.raises(ValueError):
|
|
||||||
im.reduce((0, 10))
|
|
||||||
|
|
||||||
|
|
||||||
def test_args_box():
|
@pytest.mark.parametrize(
|
||||||
|
"size,error", ((0, ValueError), (2.0, TypeError), ((0, 10), ValueError))
|
||||||
|
)
|
||||||
|
def test_args_factor_error(size, error):
|
||||||
im = Image.new("L", (10, 10))
|
im = Image.new("L", (10, 10))
|
||||||
|
with pytest.raises(error):
|
||||||
assert (5, 5) == im.reduce(2, (0, 0, 10, 10)).size
|
im.reduce(size)
|
||||||
assert (1, 1) == im.reduce(2, (5, 5, 6, 6)).size
|
|
||||||
|
|
||||||
with pytest.raises(TypeError):
|
|
||||||
im.reduce(2, "stri")
|
|
||||||
with pytest.raises(TypeError):
|
|
||||||
im.reduce(2, 2)
|
|
||||||
with pytest.raises(ValueError):
|
|
||||||
im.reduce(2, (0, 0, 11, 10))
|
|
||||||
with pytest.raises(ValueError):
|
|
||||||
im.reduce(2, (0, 0, 10, 11))
|
|
||||||
with pytest.raises(ValueError):
|
|
||||||
im.reduce(2, (-1, 0, 10, 10))
|
|
||||||
with pytest.raises(ValueError):
|
|
||||||
im.reduce(2, (0, -1, 10, 10))
|
|
||||||
with pytest.raises(ValueError):
|
|
||||||
im.reduce(2, (0, 5, 10, 5))
|
|
||||||
with pytest.raises(ValueError):
|
|
||||||
im.reduce(2, (5, 0, 5, 10))
|
|
||||||
|
|
||||||
|
|
||||||
def test_unsupported_modes():
|
@pytest.mark.parametrize(
|
||||||
|
"size,expected",
|
||||||
|
(
|
||||||
|
((0, 0, 10, 10), (5, 5)),
|
||||||
|
((5, 5, 6, 6), (1, 1)),
|
||||||
|
),
|
||||||
|
)
|
||||||
|
def test_args_box(size, expected):
|
||||||
|
im = Image.new("L", (10, 10))
|
||||||
|
assert expected == im.reduce(2, size).size
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize(
|
||||||
|
"size,error",
|
||||||
|
(
|
||||||
|
("stri", TypeError),
|
||||||
|
((0, 0, 11, 10), ValueError),
|
||||||
|
((0, 0, 10, 11), ValueError),
|
||||||
|
((-1, 0, 10, 10), ValueError),
|
||||||
|
((0, -1, 10, 10), ValueError),
|
||||||
|
((0, 5, 10, 5), ValueError),
|
||||||
|
((5, 0, 5, 10), ValueError),
|
||||||
|
),
|
||||||
|
)
|
||||||
|
def test_args_box_error(size, error):
|
||||||
|
im = Image.new("L", (10, 10))
|
||||||
|
with pytest.raises(error):
|
||||||
|
im.reduce(2, size).size
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize("mode", ("P", "1", "I;16"))
|
||||||
|
def test_unsupported_modes(mode):
|
||||||
im = Image.new("P", (10, 10))
|
im = Image.new("P", (10, 10))
|
||||||
with pytest.raises(ValueError):
|
with pytest.raises(ValueError):
|
||||||
im.reduce(3)
|
im.reduce(3)
|
||||||
|
|
||||||
im = Image.new("1", (10, 10))
|
|
||||||
with pytest.raises(ValueError):
|
|
||||||
im.reduce(3)
|
|
||||||
|
|
||||||
im = Image.new("I;16", (10, 10))
|
|
||||||
with pytest.raises(ValueError):
|
|
||||||
im.reduce(3)
|
|
||||||
|
|
||||||
|
|
||||||
def get_image(mode):
|
def get_image(mode):
|
||||||
mode_info = ImageMode.getmode(mode)
|
mode_info = ImageMode.getmode(mode)
|
||||||
|
@ -197,63 +203,69 @@ def test_mode_L():
|
||||||
compare_reduce_with_box(im, factor)
|
compare_reduce_with_box(im, factor)
|
||||||
|
|
||||||
|
|
||||||
def test_mode_LA():
|
@pytest.mark.parametrize("factor", remarkable_factors)
|
||||||
|
def test_mode_LA(factor):
|
||||||
im = get_image("LA")
|
im = get_image("LA")
|
||||||
for factor in remarkable_factors:
|
compare_reduce_with_reference(im, factor, 0.8, 5)
|
||||||
compare_reduce_with_reference(im, factor, 0.8, 5)
|
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize("factor", remarkable_factors)
|
||||||
|
def test_mode_LA_opaque(factor):
|
||||||
|
im = get_image("LA")
|
||||||
# With opaque alpha, an error should be way smaller.
|
# With opaque alpha, an error should be way smaller.
|
||||||
im.putalpha(Image.new("L", im.size, 255))
|
im.putalpha(Image.new("L", im.size, 255))
|
||||||
for factor in remarkable_factors:
|
compare_reduce_with_reference(im, factor)
|
||||||
compare_reduce_with_reference(im, factor)
|
compare_reduce_with_box(im, factor)
|
||||||
compare_reduce_with_box(im, factor)
|
|
||||||
|
|
||||||
|
|
||||||
def test_mode_La():
|
@pytest.mark.parametrize("factor", remarkable_factors)
|
||||||
|
def test_mode_La(factor):
|
||||||
im = get_image("La")
|
im = get_image("La")
|
||||||
for factor in remarkable_factors:
|
compare_reduce_with_reference(im, factor)
|
||||||
compare_reduce_with_reference(im, factor)
|
compare_reduce_with_box(im, factor)
|
||||||
compare_reduce_with_box(im, factor)
|
|
||||||
|
|
||||||
|
|
||||||
def test_mode_RGB():
|
@pytest.mark.parametrize("factor", remarkable_factors)
|
||||||
|
def test_mode_RGB(factor):
|
||||||
im = get_image("RGB")
|
im = get_image("RGB")
|
||||||
for factor in remarkable_factors:
|
compare_reduce_with_reference(im, factor)
|
||||||
compare_reduce_with_reference(im, factor)
|
compare_reduce_with_box(im, factor)
|
||||||
compare_reduce_with_box(im, factor)
|
|
||||||
|
|
||||||
|
|
||||||
def test_mode_RGBA():
|
@pytest.mark.parametrize("factor", remarkable_factors)
|
||||||
|
def test_mode_RGBA(factor):
|
||||||
im = get_image("RGBA")
|
im = get_image("RGBA")
|
||||||
for factor in remarkable_factors:
|
compare_reduce_with_reference(im, factor, 0.8, 5)
|
||||||
compare_reduce_with_reference(im, factor, 0.8, 5)
|
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize("factor", remarkable_factors)
|
||||||
|
def test_mode_RGBA_opaque(factor):
|
||||||
|
im = get_image("RGBA")
|
||||||
# With opaque alpha, an error should be way smaller.
|
# With opaque alpha, an error should be way smaller.
|
||||||
im.putalpha(Image.new("L", im.size, 255))
|
im.putalpha(Image.new("L", im.size, 255))
|
||||||
for factor in remarkable_factors:
|
compare_reduce_with_reference(im, factor)
|
||||||
compare_reduce_with_reference(im, factor)
|
compare_reduce_with_box(im, factor)
|
||||||
compare_reduce_with_box(im, factor)
|
|
||||||
|
|
||||||
|
|
||||||
def test_mode_RGBa():
|
@pytest.mark.parametrize("factor", remarkable_factors)
|
||||||
|
def test_mode_RGBa(factor):
|
||||||
im = get_image("RGBa")
|
im = get_image("RGBa")
|
||||||
for factor in remarkable_factors:
|
compare_reduce_with_reference(im, factor)
|
||||||
compare_reduce_with_reference(im, factor)
|
compare_reduce_with_box(im, factor)
|
||||||
compare_reduce_with_box(im, factor)
|
|
||||||
|
|
||||||
|
|
||||||
def test_mode_I():
|
@pytest.mark.parametrize("factor", remarkable_factors)
|
||||||
|
def test_mode_I(factor):
|
||||||
im = get_image("I")
|
im = get_image("I")
|
||||||
for factor in remarkable_factors:
|
compare_reduce_with_reference(im, factor)
|
||||||
compare_reduce_with_reference(im, factor)
|
compare_reduce_with_box(im, factor)
|
||||||
compare_reduce_with_box(im, factor)
|
|
||||||
|
|
||||||
|
|
||||||
def test_mode_F():
|
@pytest.mark.parametrize("factor", remarkable_factors)
|
||||||
|
def test_mode_F(factor):
|
||||||
im = get_image("F")
|
im = get_image("F")
|
||||||
for factor in remarkable_factors:
|
compare_reduce_with_reference(im, factor, 0, 0)
|
||||||
compare_reduce_with_reference(im, factor, 0, 0)
|
compare_reduce_with_box(im, factor)
|
||||||
compare_reduce_with_box(im, factor)
|
|
||||||
|
|
||||||
|
|
||||||
@skip_unless_feature("jpg_2000")
|
@skip_unless_feature("jpg_2000")
|
||||||
|
|
Loading…
Reference in New Issue
Block a user