/* * The Python Imaging Library * $Id$ * * apply convolution kernel to image * * history: * 1995-11-26 fl Created, supports 3x3 kernels * 1995-11-27 fl Added 5x5 kernels, copy border * 1999-07-26 fl Eliminated a few compiler warnings * 2002-06-09 fl Moved kernel definitions to Python * 2002-06-11 fl Support floating point kernels * 2003-09-15 fl Added ImagingExpand helper * * Copyright (c) Secret Labs AB 1997-2002. All rights reserved. * Copyright (c) Fredrik Lundh 1995. * * See the README file for information on usage and redistribution. */ /* * FIXME: Support RGB and RGBA/CMYK modes as well * FIXME: Expand image border (current version leaves border as is) * FIXME: Implement image processing gradient filters */ #include "Imaging.h" static inline UINT8 clip8(float in) { if (in <= 0.0) return 0; if (in >= 255.0) return 255; return (UINT8) in; } Imaging ImagingExpand(Imaging imIn, int xmargin, int ymargin, int mode) { Imaging imOut; int x, y; ImagingSectionCookie cookie; if (xmargin < 0 && ymargin < 0) return (Imaging) ImagingError_ValueError("bad kernel size"); imOut = ImagingNewDirty( imIn->mode, imIn->xsize+2*xmargin, imIn->ysize+2*ymargin); if (!imOut) return NULL; #define EXPAND_LINE(type, image, yin, yout) {\ for (x = 0; x < xmargin; x++)\ imOut->image[yout][x] = imIn->image[yin][0];\ for (x = 0; x < imIn->xsize; x++)\ imOut->image[yout][x+xmargin] = imIn->image[yin][x];\ for (x = 0; x < xmargin; x++)\ imOut->image[yout][xmargin+imIn->xsize+x] =\ imIn->image[yin][imIn->xsize-1];\ } #define EXPAND(type, image) {\ for (y = 0; y < ymargin; y++)\ EXPAND_LINE(type, image, 0, y);\ for (y = 0; y < imIn->ysize; y++)\ EXPAND_LINE(type, image, y, y+ymargin);\ for (y = 0; y < ymargin; y++)\ EXPAND_LINE(type, image, imIn->ysize-1, ymargin+imIn->ysize+y);\ } ImagingSectionEnter(&cookie); if (imIn->image8) { EXPAND(UINT8, image8); } else { EXPAND(INT32, image32); } ImagingSectionLeave(&cookie); ImagingCopyPalette(imOut, imIn); return imOut; } void ImagingFilter3x3(Imaging imOut, Imaging im, const float* kernel, float offset) { #define KERNEL1x3(in0, x, kernel, d) ( \ _i2f((UINT8) in0[x-d]) * (kernel)[0] + \ _i2f((UINT8) in0[x]) * (kernel)[1] + \ _i2f((UINT8) in0[x+d]) * (kernel)[2]) int x = 0, y = 0; memcpy(imOut->image[0], im->image[0], im->linesize); if (im->bands == 1) { // Add one time for rounding offset += 0.5; for (y = 1; y < im->ysize-1; y++) { UINT8* in_1 = (UINT8*) im->image[y-1]; UINT8* in0 = (UINT8*) im->image[y]; UINT8* in1 = (UINT8*) im->image[y+1]; UINT8* out = (UINT8*) imOut->image[y]; out[0] = in0[0]; for (x = 1; x < im->xsize-1; x++) { float ss = offset; ss += KERNEL1x3(in1, x, &kernel[0], 1); ss += KERNEL1x3(in0, x, &kernel[3], 1); ss += KERNEL1x3(in_1, x, &kernel[6], 1); out[x] = clip8(ss); } out[x] = in0[x]; } } else { // Add one time for rounding offset += 0.5; for (y = 1; y < im->ysize-1; y++) { UINT8* in_1 = (UINT8*) im->image[y-1]; UINT8* in0 = (UINT8*) im->image[y]; UINT8* in1 = (UINT8*) im->image[y+1]; UINT32* out = (UINT32*) imOut->image[y]; memcpy(out, in0, sizeof(UINT32)); if (im->bands == 2) { for (x = 1; x < im->xsize-1; x++) { float ss0 = offset; float ss3 = offset; ss0 += KERNEL1x3(in1, x*4+0, &kernel[0], 4); ss3 += KERNEL1x3(in1, x*4+3, &kernel[0], 4); ss0 += KERNEL1x3(in0, x*4+0, &kernel[3], 4); ss3 += KERNEL1x3(in0, x*4+3, &kernel[3], 4); ss0 += KERNEL1x3(in_1, x*4+0, &kernel[6], 4); ss3 += KERNEL1x3(in_1, x*4+3, &kernel[6], 4); out[x] = MAKE_UINT32(clip8(ss0), 0, 0, clip8(ss3)); } } else if (im->bands == 3) { for (x = 1; x < im->xsize-1; x++) { float ss0 = offset; float ss1 = offset; float ss2 = offset; ss0 += KERNEL1x3(in1, x*4+0, &kernel[0], 4); ss1 += KERNEL1x3(in1, x*4+1, &kernel[0], 4); ss2 += KERNEL1x3(in1, x*4+2, &kernel[0], 4); ss0 += KERNEL1x3(in0, x*4+0, &kernel[3], 4); ss1 += KERNEL1x3(in0, x*4+1, &kernel[3], 4); ss2 += KERNEL1x3(in0, x*4+2, &kernel[3], 4); ss0 += KERNEL1x3(in_1, x*4+0, &kernel[6], 4); ss1 += KERNEL1x3(in_1, x*4+1, &kernel[6], 4); ss2 += KERNEL1x3(in_1, x*4+2, &kernel[6], 4); out[x] = MAKE_UINT32( clip8(ss0), clip8(ss1), clip8(ss2), 0); } } else if (im->bands == 4) { for (x = 1; x < im->xsize-1; x++) { float ss0 = offset; float ss1 = offset; float ss2 = offset; float ss3 = offset; ss0 += KERNEL1x3(in1, x*4+0, &kernel[0], 4); ss1 += KERNEL1x3(in1, x*4+1, &kernel[0], 4); ss2 += KERNEL1x3(in1, x*4+2, &kernel[0], 4); ss3 += KERNEL1x3(in1, x*4+3, &kernel[0], 4); ss0 += KERNEL1x3(in0, x*4+0, &kernel[3], 4); ss1 += KERNEL1x3(in0, x*4+1, &kernel[3], 4); ss2 += KERNEL1x3(in0, x*4+2, &kernel[3], 4); ss3 += KERNEL1x3(in0, x*4+3, &kernel[3], 4); ss0 += KERNEL1x3(in_1, x*4+0, &kernel[6], 4); ss1 += KERNEL1x3(in_1, x*4+1, &kernel[6], 4); ss2 += KERNEL1x3(in_1, x*4+2, &kernel[6], 4); ss3 += KERNEL1x3(in_1, x*4+3, &kernel[6], 4); out[x] = MAKE_UINT32( clip8(ss0), clip8(ss1), clip8(ss2), clip8(ss3)); } } out[x] = ((UINT32*) in0)[x]; } } memcpy(imOut->image[y], im->image[y], im->linesize); } void ImagingFilter5x5(Imaging imOut, Imaging im, const float* kernel, float offset) { #define KERNEL1x5(in0, x, kernel, d) ( \ _i2f((UINT8) in0[x-d-d]) * (kernel)[0] + \ _i2f((UINT8) in0[x-d]) * (kernel)[1] + \ _i2f((UINT8) in0[x]) * (kernel)[2] + \ _i2f((UINT8) in0[x+d]) * (kernel)[3] + \ _i2f((UINT8) in0[x+d+d]) * (kernel)[4]) int x = 0, y = 0; memcpy(imOut->image[0], im->image[0], im->linesize); memcpy(imOut->image[1], im->image[1], im->linesize); if (im->bands == 1) { // Add one time for rounding offset += 0.5; for (y = 2; y < im->ysize-2; y++) { UINT8* in_2 = (UINT8*) im->image[y-2]; UINT8* in_1 = (UINT8*) im->image[y-1]; UINT8* in0 = (UINT8*) im->image[y]; UINT8* in1 = (UINT8*) im->image[y+1]; UINT8* in2 = (UINT8*) im->image[y+2]; UINT8* out = (UINT8*) imOut->image[y]; out[0] = in0[0]; out[1] = in0[1]; for (x = 2; x < im->xsize-2; x++) { float ss = offset; ss += KERNEL1x5(in2, x, &kernel[0], 1); ss += KERNEL1x5(in1, x, &kernel[5], 1); ss += KERNEL1x5(in0, x, &kernel[10], 1); ss += KERNEL1x5(in_1, x, &kernel[15], 1); ss += KERNEL1x5(in_2, x, &kernel[20], 1); out[x] = clip8(ss); } out[x+0] = in0[x+0]; out[x+1] = in0[x+1]; } } else { // Add one time for rounding offset += 0.5; for (y = 2; y < im->ysize-2; y++) { UINT8* in_2 = (UINT8*) im->image[y-2]; UINT8* in_1 = (UINT8*) im->image[y-1]; UINT8* in0 = (UINT8*) im->image[y]; UINT8* in1 = (UINT8*) im->image[y+1]; UINT8* in2 = (UINT8*) im->image[y+2]; UINT32* out = (UINT32*) imOut->image[y]; memcpy(out, in0, sizeof(UINT32) * 2); if (im->bands == 2) { for (x = 2; x < im->xsize-2; x++) { float ss0 = offset; float ss3 = offset; ss0 += KERNEL1x5(in2, x*4+0, &kernel[0], 4); ss3 += KERNEL1x5(in2, x*4+3, &kernel[0], 4); ss0 += KERNEL1x5(in1, x*4+0, &kernel[5], 4); ss3 += KERNEL1x5(in1, x*4+3, &kernel[5], 4); ss0 += KERNEL1x5(in0, x*4+0, &kernel[10], 4); ss3 += KERNEL1x5(in0, x*4+3, &kernel[10], 4); ss0 += KERNEL1x5(in_1, x*4+0, &kernel[15], 4); ss3 += KERNEL1x5(in_1, x*4+3, &kernel[15], 4); ss0 += KERNEL1x5(in_2, x*4+0, &kernel[20], 4); ss3 += KERNEL1x5(in_2, x*4+3, &kernel[20], 4); out[x] = MAKE_UINT32(clip8(ss0), 0, 0, clip8(ss3)); } } else if (im->bands == 3) { for (x = 2; x < im->xsize-2; x++) { float ss0 = offset; float ss1 = offset; float ss2 = offset; ss0 += KERNEL1x5(in2, x*4+0, &kernel[0], 4); ss1 += KERNEL1x5(in2, x*4+1, &kernel[0], 4); ss2 += KERNEL1x5(in2, x*4+2, &kernel[0], 4); ss0 += KERNEL1x5(in1, x*4+0, &kernel[5], 4); ss1 += KERNEL1x5(in1, x*4+1, &kernel[5], 4); ss2 += KERNEL1x5(in1, x*4+2, &kernel[5], 4); ss0 += KERNEL1x5(in0, x*4+0, &kernel[10], 4); ss1 += KERNEL1x5(in0, x*4+1, &kernel[10], 4); ss2 += KERNEL1x5(in0, x*4+2, &kernel[10], 4); ss0 += KERNEL1x5(in_1, x*4+0, &kernel[15], 4); ss1 += KERNEL1x5(in_1, x*4+1, &kernel[15], 4); ss2 += KERNEL1x5(in_1, x*4+2, &kernel[15], 4); ss0 += KERNEL1x5(in_2, x*4+0, &kernel[20], 4); ss1 += KERNEL1x5(in_2, x*4+1, &kernel[20], 4); ss2 += KERNEL1x5(in_2, x*4+2, &kernel[20], 4); out[x] = MAKE_UINT32( clip8(ss0), clip8(ss1), clip8(ss2), 0); } } else if (im->bands == 4) { for (x = 2; x < im->xsize-2; x++) { float ss0 = offset; float ss1 = offset; float ss2 = offset; float ss3 = offset; ss0 += KERNEL1x5(in2, x*4+0, &kernel[0], 4); ss1 += KERNEL1x5(in2, x*4+1, &kernel[0], 4); ss2 += KERNEL1x5(in2, x*4+2, &kernel[0], 4); ss3 += KERNEL1x5(in2, x*4+3, &kernel[0], 4); ss0 += KERNEL1x5(in1, x*4+0, &kernel[5], 4); ss1 += KERNEL1x5(in1, x*4+1, &kernel[5], 4); ss2 += KERNEL1x5(in1, x*4+2, &kernel[5], 4); ss3 += KERNEL1x5(in1, x*4+3, &kernel[5], 4); ss0 += KERNEL1x5(in0, x*4+0, &kernel[10], 4); ss1 += KERNEL1x5(in0, x*4+1, &kernel[10], 4); ss2 += KERNEL1x5(in0, x*4+2, &kernel[10], 4); ss3 += KERNEL1x5(in0, x*4+3, &kernel[10], 4); ss0 += KERNEL1x5(in_1, x*4+0, &kernel[15], 4); ss1 += KERNEL1x5(in_1, x*4+1, &kernel[15], 4); ss2 += KERNEL1x5(in_1, x*4+2, &kernel[15], 4); ss3 += KERNEL1x5(in_1, x*4+3, &kernel[15], 4); ss0 += KERNEL1x5(in_2, x*4+0, &kernel[20], 4); ss1 += KERNEL1x5(in_2, x*4+1, &kernel[20], 4); ss2 += KERNEL1x5(in_2, x*4+2, &kernel[20], 4); ss3 += KERNEL1x5(in_2, x*4+3, &kernel[20], 4); out[x] = MAKE_UINT32( clip8(ss0), clip8(ss1), clip8(ss2), clip8(ss3)); } } out[x] = ((UINT32*) in0)[x]; out[x+1] = ((UINT32*) in0)[x+1]; } } memcpy(imOut->image[y], im->image[y], im->linesize); memcpy(imOut->image[y+1], im->image[y+1], im->linesize); } Imaging ImagingFilter(Imaging im, int xsize, int ysize, const FLOAT32* kernel, FLOAT32 offset) { Imaging imOut; ImagingSectionCookie cookie; if ( ! im || im->type != IMAGING_TYPE_UINT8) return (Imaging) ImagingError_ModeError(); if (im->xsize < xsize || im->ysize < ysize) return ImagingCopy(im); if ((xsize != 3 && xsize != 5) || xsize != ysize) return (Imaging) ImagingError_ValueError("bad kernel size"); imOut = ImagingNewDirty(im->mode, im->xsize, im->ysize); if (!imOut) return NULL; ImagingSectionEnter(&cookie); if (xsize == 3) { /* 3x3 kernel. */ ImagingFilter3x3(imOut, im, kernel, offset); } else { /* 5x5 kernel. */ ImagingFilter5x5(imOut, im, kernel, offset); } ImagingSectionLeave(&cookie); return imOut; }