/* * The Python Imaging Library * $Id$ * * apply convolution kernel to image * * history: * 1995-11-26 fl Created, supports 3x3 kernels * 1995-11-27 fl Added 5x5 kernels, copy border * 1999-07-26 fl Eliminated a few compiler warnings * 2002-06-09 fl Moved kernel definitions to Python * 2002-06-11 fl Support floating point kernels * 2003-09-15 fl Added ImagingExpand helper * * Copyright (c) Secret Labs AB 1997-2002. All rights reserved. * Copyright (c) Fredrik Lundh 1995. * * See the README file for information on usage and redistribution. */ /* * FIXME: Support RGB and RGBA/CMYK modes as well * FIXME: Expand image border (current version leaves border as is) * FIXME: Implement image processing gradient filters */ #include "Imaging.h" static inline UINT8 clip8(float in) { if (in <= 0.0) return 0; if (in >= 255.0) return 255; return (UINT8) in; } Imaging ImagingExpand(Imaging imIn, int xmargin, int ymargin, int mode) { Imaging imOut; int x, y; if (xmargin < 0 && ymargin < 0) return (Imaging) ImagingError_ValueError("bad kernel size"); imOut = ImagingNew( imIn->mode, imIn->xsize+2*xmargin, imIn->ysize+2*ymargin ); if (!imOut) return NULL; #define EXPAND_LINE(type, image, yin, yout) {\ for (x = 0; x < xmargin; x++)\ imOut->image[yout][x] = imIn->image[yin][0];\ for (x = 0; x < imIn->xsize; x++)\ imOut->image[yout][x+xmargin] = imIn->image[yin][x];\ for (x = 0; x < xmargin; x++)\ imOut->image[yout][xmargin+imIn->xsize+x] =\ imIn->image[yin][imIn->xsize-1];\ } #define EXPAND(type, image) {\ for (y = 0; y < ymargin; y++)\ EXPAND_LINE(type, image, 0, y);\ for (y = 0; y < imIn->ysize; y++)\ EXPAND_LINE(type, image, y, y+ymargin);\ for (y = 0; y < ymargin; y++)\ EXPAND_LINE(type, image, imIn->ysize-1, ymargin+imIn->ysize+y);\ } if (imIn->image8) { EXPAND(UINT8, image8); } else { EXPAND(INT32, image32); } ImagingCopyInfo(imOut, imIn); return imOut; } void ImagingFilter3x3(Imaging imOut, Imaging im, const float* kernel, float offset) { #define KERNEL3x3(in_1, in, in1, kernel, d) ( \ (UINT8) in1[x-d] * kernel[0] + \ (UINT8) in1[x] * kernel[1] + \ (UINT8) in1[x+d] * kernel[2] + \ (UINT8) in0[x-d] * kernel[3] + \ (UINT8) in0[x] * kernel[4] + \ (UINT8) in0[x+d] * kernel[5] + \ (UINT8) in_1[x-d] * kernel[6] + \ (UINT8) in_1[x] * kernel[7] + \ (UINT8) in_1[x+d] * kernel[8]) int x, y; memcpy(imOut->image[0], im->image[0], im->linesize); for (y = 1; y < im->ysize-1; y++) { UINT8* in_1 = (UINT8*) im->image[y-1]; UINT8* in0 = (UINT8*) im->image[y]; UINT8* in1 = (UINT8*) im->image[y+1]; UINT8* out = (UINT8*) imOut->image[y]; out[0] = in0[0]; for (x = 1; x < im->xsize-1; x++) { float sum = KERNEL3x3(in_1, in, in1, kernel, 1) + offset; out[x] = clip8(sum); } out[x] = in0[x]; } memcpy(imOut->image[y], im->image[y], im->linesize); } Imaging ImagingFilter(Imaging im, int xsize, int ysize, const FLOAT32* kernel, FLOAT32 offset) { Imaging imOut; int x, y; if (!im || strcmp(im->mode, "L") != 0) return (Imaging) ImagingError_ModeError(); if (im->xsize < xsize || im->ysize < ysize) return ImagingCopy(im); if ((xsize != 3 && xsize != 5) || xsize != ysize) return (Imaging) ImagingError_ValueError("bad kernel size"); imOut = ImagingNew(im->mode, im->xsize, im->ysize); if (!imOut) return NULL; #define KERNEL5x5(image, kernel, d) ( \ (int) image[y+2][x-d-d] * kernel[0] + \ (int) image[y+2][x-d] * kernel[1] + \ (int) image[y+2][x] * kernel[2] + \ (int) image[y+2][x+d] * kernel[3] + \ (int) image[y+2][x+d+d] * kernel[4] + \ (int) image[y+1][x-d-d] * kernel[5] + \ (int) image[y+1][x-d] * kernel[6] + \ (int) image[y+1][x] * kernel[7] + \ (int) image[y+1][x+d] * kernel[8] + \ (int) image[y+1][x+d+d] * kernel[9] + \ (int) image[y][x-d-d] * kernel[10] + \ (int) image[y][x-d] * kernel[11] + \ (int) image[y][x] * kernel[12] + \ (int) image[y][x+d] * kernel[13] + \ (int) image[y][x+d+d] * kernel[14] + \ (int) image[y-1][x-d-d] * kernel[15] + \ (int) image[y-1][x-d] * kernel[16] + \ (int) image[y-1][x] * kernel[17] + \ (int) image[y-1][x+d] * kernel[18] + \ (int) image[y-1][x+d+d] * kernel[19] + \ (int) image[y-2][x-d-d] * kernel[20] + \ (int) image[y-2][x-d] * kernel[21] + \ (int) image[y-2][x] * kernel[22] + \ (int) image[y-2][x+d] * kernel[23] + \ (int) image[y-2][x+d+d] * kernel[24]) if (xsize == 3) { /* 3x3 kernel. */ ImagingFilter3x3(imOut, im, kernel, offset); } else { /* 5x5 kernel. */ memcpy(imOut->image[0], im->image[0], im->linesize); memcpy(imOut->image[1], im->image[1], im->linesize); for (y = 2; y < im->ysize-2; y++) { for (x = 0; x < 2; x++) imOut->image8[y][x] = im->image8[y][x]; for (; x < im->xsize-2; x++) { float sum = KERNEL5x5(im->image8, kernel, 1) + offset; imOut->image8[y][x] = clip8(sum); } for (; x < im->xsize; x++) imOut->image8[y][x] = im->image8[y][x]; } memcpy(imOut->image[y], im->image[y], im->linesize); memcpy(imOut->image[y+1], im->image[y+1], im->linesize); } return imOut; }