# # The Python Imaging Library. # $Id$ # # standard image operations # # History: # 2001-10-20 fl Created # 2001-10-23 fl Added autocontrast operator # 2001-12-18 fl Added Kevin's fit operator # 2004-03-14 fl Fixed potential division by zero in equalize # 2005-05-05 fl Fixed equalize for low number of values # # Copyright (c) 2001-2004 by Secret Labs AB # Copyright (c) 2001-2004 by Fredrik Lundh # # See the README file for information on usage and redistribution. # from PIL import Image from PIL._util import isStringType import operator import functools # # helpers def _border(border): if isinstance(border, tuple): if len(border) == 2: left, top = right, bottom = border elif len(border) == 4: left, top, right, bottom = border else: left = top = right = bottom = border return left, top, right, bottom def _color(color, mode): if isStringType(color): from PIL import ImageColor color = ImageColor.getcolor(color, mode) return color def _lut(image, lut): if image.mode == "P": # FIXME: apply to lookup table, not image data raise NotImplementedError("mode P support coming soon") elif image.mode in ("L", "RGB"): if image.mode == "RGB" and len(lut) == 256: lut = lut + lut + lut return image.point(lut) else: raise IOError("not supported for this image mode") # # actions def autocontrast(image, cutoff=0, ignore=None): """ Maximize (normalize) image contrast. This function calculates a histogram of the input image, removes **cutoff** percent of the lightest and darkest pixels from the histogram, and remaps the image so that the darkest pixel becomes black (0), and the lightest becomes white (255). :param image: The image to process. :param cutoff: How many percent to cut off from the histogram. :param ignore: The background pixel value (use None for no background). :return: An image. """ histogram = image.histogram() lut = [] for layer in range(0, len(histogram), 256): h = histogram[layer:layer+256] if ignore is not None: # get rid of outliers try: h[ignore] = 0 except TypeError: # assume sequence for ix in ignore: h[ix] = 0 if cutoff: # cut off pixels from both ends of the histogram # get number of pixels n = 0 for ix in range(256): n = n + h[ix] # remove cutoff% pixels from the low end cut = n * cutoff // 100 for lo in range(256): if cut > h[lo]: cut = cut - h[lo] h[lo] = 0 else: h[lo] -= cut cut = 0 if cut <= 0: break # remove cutoff% samples from the hi end cut = n * cutoff // 100 for hi in range(255, -1, -1): if cut > h[hi]: cut = cut - h[hi] h[hi] = 0 else: h[hi] -= cut cut = 0 if cut <= 0: break # find lowest/highest samples after preprocessing for lo in range(256): if h[lo]: break for hi in range(255, -1, -1): if h[hi]: break if hi <= lo: # don't bother lut.extend(list(range(256))) else: scale = 255.0 / (hi - lo) offset = -lo * scale for ix in range(256): ix = int(ix * scale + offset) if ix < 0: ix = 0 elif ix > 255: ix = 255 lut.append(ix) return _lut(image, lut) def colorize(image, black, white): """ Colorize grayscale image. The **black** and **white** arguments should be RGB tuples; this function calculates a color wedge mapping all black pixels in the source image to the first color, and all white pixels to the second color. :param image: The image to colorize. :param black: The color to use for black input pixels. :param white: The color to use for white input pixels. :return: An image. """ assert image.mode == "L" black = _color(black, "RGB") white = _color(white, "RGB") red = [] green = [] blue = [] for i in range(256): red.append(black[0]+i*(white[0]-black[0])//255) green.append(black[1]+i*(white[1]-black[1])//255) blue.append(black[2]+i*(white[2]-black[2])//255) image = image.convert("RGB") return _lut(image, red + green + blue) def crop(image, border=0): """ Remove border from image. The same amount of pixels are removed from all four sides. This function works on all image modes. .. seealso:: :py:meth:`~PIL.Image.Image.crop` :param image: The image to crop. :param border: The number of pixels to remove. :return: An image. """ left, top, right, bottom = _border(border) return image.crop( (left, top, image.size[0]-right, image.size[1]-bottom) ) def scale(image, factor, resample=Image.NEAREST): """ Returns a rescaled image by a specific factor given in parameter. A factor greater than 1 expands the image, between 0 and 1 contracts the image. :param factor: The expansion factor, as a float. :param resample: An optional resampling filter. Same values possible as in the PIL.Image.resize function. :returns: An :py:class:`~PIL.Image.Image` object. """ if factor == 1: return image.copy() elif factor <= 0: raise ValueError("the factor must be greater than 0") else: size = (int(round(factor * image.width)), int(round(factor * image.height))) return image.resize(size, resample) def deform(image, deformer, resample=Image.BILINEAR): """ Deform the image. :param image: The image to deform. :param deformer: A deformer object. Any object that implements a **getmesh** method can be used. :param resample: An optional resampling filter. Same values possible as in the PIL.Image.transform function. :return: An image. """ return image.transform( image.size, Image.MESH, deformer.getmesh(image), resample ) def equalize(image, mask=None): """ Equalize the image histogram. This function applies a non-linear mapping to the input image, in order to create a uniform distribution of grayscale values in the output image. :param image: The image to equalize. :param mask: An optional mask. If given, only the pixels selected by the mask are included in the analysis. :return: An image. """ if image.mode == "P": image = image.convert("RGB") h = image.histogram(mask) lut = [] for b in range(0, len(h), 256): histo = [_f for _f in h[b:b+256] if _f] if len(histo) <= 1: lut.extend(list(range(256))) else: step = (functools.reduce(operator.add, histo) - histo[-1]) // 255 if not step: lut.extend(list(range(256))) else: n = step // 2 for i in range(256): lut.append(n // step) n = n + h[i+b] return _lut(image, lut) def expand(image, border=0, fill=0): """ Add border to the image :param image: The image to expand. :param border: Border width, in pixels. :param fill: Pixel fill value (a color value). Default is 0 (black). :return: An image. """ left, top, right, bottom = _border(border) width = left + image.size[0] + right height = top + image.size[1] + bottom out = Image.new(image.mode, (width, height), _color(fill, image.mode)) out.paste(image, (left, top)) return out def fit(image, size, method=Image.NEAREST, bleed=0.0, centering=(0.5, 0.5)): """ Returns a sized and cropped version of the image, cropped to the requested aspect ratio and size. This function was contributed by Kevin Cazabon. :param size: The requested output size in pixels, given as a (width, height) tuple. :param method: What resampling method to use. Default is :py:attr:`PIL.Image.NEAREST`. :param bleed: Remove a border around the outside of the image (from all four edges. The value is a decimal percentage (use 0.01 for one percent). The default value is 0 (no border). :param centering: Control the cropping position. Use (0.5, 0.5) for center cropping (e.g. if cropping the width, take 50% off of the left side, and therefore 50% off the right side). (0.0, 0.0) will crop from the top left corner (i.e. if cropping the width, take all of the crop off of the right side, and if cropping the height, take all of it off the bottom). (1.0, 0.0) will crop from the bottom left corner, etc. (i.e. if cropping the width, take all of the crop off the left side, and if cropping the height take none from the top, and therefore all off the bottom). :return: An image. """ # by Kevin Cazabon, Feb 17/2000 # kevin@cazabon.com # http://www.cazabon.com # ensure inputs are valid if not isinstance(centering, list): centering = [centering[0], centering[1]] if centering[0] > 1.0 or centering[0] < 0.0: centering[0] = 0.50 if centering[1] > 1.0 or centering[1] < 0.0: centering[1] = 0.50 if bleed > 0.49999 or bleed < 0.0: bleed = 0.0 # calculate the area to use for resizing and cropping, subtracting # the 'bleed' around the edges # number of pixels to trim off on Top and Bottom, Left and Right bleedPixels = ( int((float(bleed) * float(image.size[0])) + 0.5), int((float(bleed) * float(image.size[1])) + 0.5) ) liveArea = (0, 0, image.size[0], image.size[1]) if bleed > 0.0: liveArea = ( bleedPixels[0], bleedPixels[1], image.size[0] - bleedPixels[0] - 1, image.size[1] - bleedPixels[1] - 1 ) liveSize = (liveArea[2] - liveArea[0], liveArea[3] - liveArea[1]) # calculate the aspect ratio of the liveArea liveAreaAspectRatio = float(liveSize[0])/float(liveSize[1]) # calculate the aspect ratio of the output image aspectRatio = float(size[0]) / float(size[1]) # figure out if the sides or top/bottom will be cropped off if liveAreaAspectRatio >= aspectRatio: # liveArea is wider than what's needed, crop the sides cropWidth = int((aspectRatio * float(liveSize[1])) + 0.5) cropHeight = liveSize[1] else: # liveArea is taller than what's needed, crop the top and bottom cropWidth = liveSize[0] cropHeight = int((float(liveSize[0])/aspectRatio) + 0.5) # make the crop leftSide = int(liveArea[0] + (float(liveSize[0]-cropWidth) * centering[0])) if leftSide < 0: leftSide = 0 topSide = int(liveArea[1] + (float(liveSize[1]-cropHeight) * centering[1])) if topSide < 0: topSide = 0 out = image.crop( (leftSide, topSide, leftSide + cropWidth, topSide + cropHeight) ) # resize the image and return it return out.resize(size, method) def flip(image): """ Flip the image vertically (top to bottom). :param image: The image to flip. :return: An image. """ return image.transpose(Image.FLIP_TOP_BOTTOM) def grayscale(image): """ Convert the image to grayscale. :param image: The image to convert. :return: An image. """ return image.convert("L") def invert(image): """ Invert (negate) the image. :param image: The image to invert. :return: An image. """ lut = [] for i in range(256): lut.append(255-i) return _lut(image, lut) def mirror(image): """ Flip image horizontally (left to right). :param image: The image to mirror. :return: An image. """ return image.transpose(Image.FLIP_LEFT_RIGHT) def posterize(image, bits): """ Reduce the number of bits for each color channel. :param image: The image to posterize. :param bits: The number of bits to keep for each channel (1-8). :return: An image. """ lut = [] mask = ~(2**(8-bits)-1) for i in range(256): lut.append(i & mask) return _lut(image, lut) def solarize(image, threshold=128): """ Invert all pixel values above a threshold. :param image: The image to solarize. :param threshold: All pixels above this greyscale level are inverted. :return: An image. """ lut = [] for i in range(256): if i < threshold: lut.append(i) else: lut.append(255-i) return _lut(image, lut) # -------------------------------------------------------------------- # PIL USM components, from Kevin Cazabon. def gaussian_blur(im, radius=None): """ PIL_usm.gblur(im, [radius])""" if radius is None: radius = 5.0 im.load() return im.im.gaussian_blur(radius) gblur = gaussian_blur def unsharp_mask(im, radius=None, percent=None, threshold=None): """ PIL_usm.usm(im, [radius, percent, threshold])""" if radius is None: radius = 5.0 if percent is None: percent = 150 if threshold is None: threshold = 3 im.load() return im.im.unsharp_mask(radius, percent, threshold) usm = unsharp_mask def box_blur(image, radius): """ Blur the image by setting each pixel to the average value of the pixels in a square box extending radius pixels in each direction. Supports float radius of arbitrary size. Uses an optimized implementation which runs in linear time relative to the size of the image for any radius value. :param image: The image to blur. :param radius: Size of the box in one direction. Radius 0 does not blur, returns an identical image. Radius 1 takes 1 pixel in each direction, i.e. 9 pixels in total. :return: An image. """ image.load() return image._new(image.im.box_blur(radius))