# # The Python Imaging Library. # $Id$ # # the Image class wrapper # # partial release history: # 1995-09-09 fl Created # 1996-03-11 fl PIL release 0.0 (proof of concept) # 1996-04-30 fl PIL release 0.1b1 # 1999-07-28 fl PIL release 1.0 final # 2000-06-07 fl PIL release 1.1 # 2000-10-20 fl PIL release 1.1.1 # 2001-05-07 fl PIL release 1.1.2 # 2002-03-15 fl PIL release 1.1.3 # 2003-05-10 fl PIL release 1.1.4 # 2005-03-28 fl PIL release 1.1.5 # 2006-12-02 fl PIL release 1.1.6 # 2009-11-15 fl PIL release 1.1.7 # # Copyright (c) 1997-2009 by Secret Labs AB. All rights reserved. # Copyright (c) 1995-2009 by Fredrik Lundh. # # See the README file for information on usage and redistribution. # from __future__ import print_function from PIL import VERSION, PILLOW_VERSION, _plugins import logging import warnings import math logger = logging.getLogger(__name__) class DecompressionBombWarning(RuntimeWarning): pass class _imaging_not_installed(object): # module placeholder def __getattr__(self, id): raise ImportError("The _imaging C module is not installed") # Limit to around a quarter gigabyte for a 24 bit (3 bpp) image MAX_IMAGE_PIXELS = int(1024 * 1024 * 1024 / 4 / 3) try: # give Tk a chance to set up the environment, in case we're # using an _imaging module linked against libtcl/libtk (use # __import__ to hide this from naive packagers; we don't really # depend on Tk unless ImageTk is used, and that module already # imports Tkinter) __import__("FixTk") except ImportError: pass try: # If the _imaging C module is not present, Pillow will not load. # Note that other modules should not refer to _imaging directly; # import Image and use the Image.core variable instead. # Also note that Image.core is not a publicly documented interface, # and should be considered private and subject to change. from PIL import _imaging as core if PILLOW_VERSION != getattr(core, 'PILLOW_VERSION', None): raise ImportError("The _imaging extension was built for another " " version of Pillow or PIL") except ImportError as v: core = _imaging_not_installed() # Explanations for ways that we know we might have an import error if str(v).startswith("Module use of python"): # The _imaging C module is present, but not compiled for # the right version (windows only). Print a warning, if # possible. warnings.warn( "The _imaging extension was built for another version " "of Python.", RuntimeWarning ) elif str(v).startswith("The _imaging extension"): warnings.warn(str(v), RuntimeWarning) elif "Symbol not found: _PyUnicodeUCS2_" in str(v): # should match _PyUnicodeUCS2_FromString and # _PyUnicodeUCS2_AsLatin1String warnings.warn( "The _imaging extension was built for Python with UCS2 support; " "recompile Pillow or build Python --without-wide-unicode. ", RuntimeWarning ) elif "Symbol not found: _PyUnicodeUCS4_" in str(v): # should match _PyUnicodeUCS4_FromString and # _PyUnicodeUCS4_AsLatin1String warnings.warn( "The _imaging extension was built for Python with UCS4 support; " "recompile Pillow or build Python --with-wide-unicode. ", RuntimeWarning ) # Fail here anyway. Don't let people run with a mostly broken Pillow. # see docs/porting.rst raise try: import builtins except ImportError: import __builtin__ builtins = __builtin__ from PIL import ImageMode from PIL._binary import i8 from PIL._util import isPath from PIL._util import isStringType from PIL._util import deferred_error import os import sys import io import struct # type stuff import collections import numbers # works everywhere, win for pypy, not cpython USE_CFFI_ACCESS = hasattr(sys, 'pypy_version_info') try: import cffi HAS_CFFI = True except ImportError: HAS_CFFI = False def isImageType(t): """ Checks if an object is an image object. .. warning:: This function is for internal use only. :param t: object to check if it's an image :returns: True if the object is an image """ return hasattr(t, "im") # # Constants (also defined in _imagingmodule.c!) NONE = 0 # transpose FLIP_LEFT_RIGHT = 0 FLIP_TOP_BOTTOM = 1 ROTATE_90 = 2 ROTATE_180 = 3 ROTATE_270 = 4 TRANSPOSE = 5 # transforms AFFINE = 0 EXTENT = 1 PERSPECTIVE = 2 QUAD = 3 MESH = 4 # resampling filters NEAREST = NONE = 0 BOX = 4 BILINEAR = LINEAR = 2 HAMMING = 5 BICUBIC = CUBIC = 3 LANCZOS = ANTIALIAS = 1 # dithers NEAREST = NONE = 0 ORDERED = 1 # Not yet implemented RASTERIZE = 2 # Not yet implemented FLOYDSTEINBERG = 3 # default # palettes/quantizers WEB = 0 ADAPTIVE = 1 MEDIANCUT = 0 MAXCOVERAGE = 1 FASTOCTREE = 2 LIBIMAGEQUANT = 3 # categories NORMAL = 0 SEQUENCE = 1 CONTAINER = 2 if hasattr(core, 'DEFAULT_STRATEGY'): DEFAULT_STRATEGY = core.DEFAULT_STRATEGY FILTERED = core.FILTERED HUFFMAN_ONLY = core.HUFFMAN_ONLY RLE = core.RLE FIXED = core.FIXED # -------------------------------------------------------------------- # Registries ID = [] OPEN = {} MIME = {} SAVE = {} SAVE_ALL = {} EXTENSION = {} # -------------------------------------------------------------------- # Modes supported by this version _MODEINFO = { # NOTE: this table will be removed in future versions. use # getmode* functions or ImageMode descriptors instead. # official modes "1": ("L", "L", ("1",)), "L": ("L", "L", ("L",)), "I": ("L", "I", ("I",)), "F": ("L", "F", ("F",)), "P": ("RGB", "L", ("P",)), "RGB": ("RGB", "L", ("R", "G", "B")), "RGBX": ("RGB", "L", ("R", "G", "B", "X")), "RGBA": ("RGB", "L", ("R", "G", "B", "A")), "CMYK": ("RGB", "L", ("C", "M", "Y", "K")), "YCbCr": ("RGB", "L", ("Y", "Cb", "Cr")), "LAB": ("RGB", "L", ("L", "A", "B")), "HSV": ("RGB", "L", ("H", "S", "V")), # Experimental modes include I;16, I;16L, I;16B, RGBa, BGR;15, and # BGR;24. Use these modes only if you know exactly what you're # doing... } if sys.byteorder == 'little': _ENDIAN = '<' else: _ENDIAN = '>' _MODE_CONV = { # official modes "1": ('|b1', None), # broken "L": ('|u1', None), "LA": ('|u1', 2), "I": (_ENDIAN + 'i4', None), "F": (_ENDIAN + 'f4', None), "P": ('|u1', None), "RGB": ('|u1', 3), "RGBX": ('|u1', 4), "RGBA": ('|u1', 4), "CMYK": ('|u1', 4), "YCbCr": ('|u1', 3), "LAB": ('|u1', 3), # UNDONE - unsigned |u1i1i1 "HSV": ('|u1', 3), # I;16 == I;16L, and I;32 == I;32L "I;16": ('u2', None), "I;16L": ('i2', None), "I;16LS": ('u4', None), "I;32L": ('i4', None), "I;32LS": ('= 1: return try: from PIL import BmpImagePlugin except ImportError: pass try: from PIL import GifImagePlugin except ImportError: pass try: from PIL import JpegImagePlugin except ImportError: pass try: from PIL import PpmImagePlugin except ImportError: pass try: from PIL import PngImagePlugin except ImportError: pass # try: # import TiffImagePlugin # except ImportError: # pass _initialized = 1 def init(): """ Explicitly initializes the Python Imaging Library. This function loads all available file format drivers. """ global _initialized if _initialized >= 2: return 0 for plugin in _plugins: try: logger.debug("Importing %s", plugin) __import__("PIL.%s" % plugin, globals(), locals(), []) except ImportError as e: logger.debug("Image: failed to import %s: %s", plugin, e) if OPEN or SAVE: _initialized = 2 return 1 # -------------------------------------------------------------------- # Codec factories (used by tobytes/frombytes and ImageFile.load) def _getdecoder(mode, decoder_name, args, extra=()): # tweak arguments if args is None: args = () elif not isinstance(args, tuple): args = (args,) try: # get decoder decoder = getattr(core, decoder_name + "_decoder") # print(decoder, mode, args + extra) return decoder(mode, *args + extra) except AttributeError: raise IOError("decoder %s not available" % decoder_name) def _getencoder(mode, encoder_name, args, extra=()): # tweak arguments if args is None: args = () elif not isinstance(args, tuple): args = (args,) try: # get encoder encoder = getattr(core, encoder_name + "_encoder") # print(encoder, mode, args + extra) return encoder(mode, *args + extra) except AttributeError: raise IOError("encoder %s not available" % encoder_name) # -------------------------------------------------------------------- # Simple expression analyzer def coerce_e(value): return value if isinstance(value, _E) else _E(value) class _E(object): def __init__(self, data): self.data = data def __add__(self, other): return _E((self.data, "__add__", coerce_e(other).data)) def __mul__(self, other): return _E((self.data, "__mul__", coerce_e(other).data)) def _getscaleoffset(expr): stub = ["stub"] data = expr(_E(stub)).data try: (a, b, c) = data # simplified syntax if (a is stub and b == "__mul__" and isinstance(c, numbers.Number)): return c, 0.0 if a is stub and b == "__add__" and isinstance(c, numbers.Number): return 1.0, c except TypeError: pass try: ((a, b, c), d, e) = data # full syntax if (a is stub and b == "__mul__" and isinstance(c, numbers.Number) and d == "__add__" and isinstance(e, numbers.Number)): return c, e except TypeError: pass raise ValueError("illegal expression") # -------------------------------------------------------------------- # Implementation wrapper class Image(object): """ This class represents an image object. To create :py:class:`~PIL.Image.Image` objects, use the appropriate factory functions. There's hardly ever any reason to call the Image constructor directly. * :py:func:`~PIL.Image.open` * :py:func:`~PIL.Image.new` * :py:func:`~PIL.Image.frombytes` """ format = None format_description = None def __init__(self): # FIXME: take "new" parameters / other image? # FIXME: turn mode and size into delegating properties? self.im = None self.mode = "" self.size = (0, 0) self.palette = None self.info = {} self.category = NORMAL self.readonly = 0 self.pyaccess = None @property def width(self): return self.size[0] @property def height(self): return self.size[1] def _new(self, im): new = Image() new.im = im new.mode = im.mode new.size = im.size if self.palette: new.palette = self.palette.copy() if im.mode == "P" and not new.palette: from PIL import ImagePalette new.palette = ImagePalette.ImagePalette() new.info = self.info.copy() return new _makeself = _new # compatibility # Context Manager Support def __enter__(self): return self def __exit__(self, *args): self.close() def close(self): """ Closes the file pointer, if possible. This operation will destroy the image core and release its memory. The image data will be unusable afterward. This function is only required to close images that have not had their file read and closed by the :py:meth:`~PIL.Image.Image.load` method. """ try: self.fp.close() except Exception as msg: logger.debug("Error closing: %s", msg) # Instead of simply setting to None, we're setting up a # deferred error that will better explain that the core image # object is gone. self.im = deferred_error(ValueError("Operation on closed image")) def _copy(self): self.load() self.im = self.im.copy() self.pyaccess = None self.readonly = 0 def _dump(self, file=None, format=None): import tempfile suffix = '' if format: suffix = '.'+format if not file: f, file = tempfile.mkstemp(suffix) os.close(f) self.load() if not format or format == "PPM": self.im.save_ppm(file) else: if not file.endswith(format): file = file + "." + format self.save(file, format) return file def __eq__(self, other): return (self.__class__.__name__ == other.__class__.__name__ and self.mode == other.mode and self.size == other.size and self.info == other.info and self.category == other.category and self.readonly == other.readonly and self.getpalette() == other.getpalette() and self.tobytes() == other.tobytes()) def __ne__(self, other): eq = (self == other) return not eq def __repr__(self): return "<%s.%s image mode=%s size=%dx%d at 0x%X>" % ( self.__class__.__module__, self.__class__.__name__, self.mode, self.size[0], self.size[1], id(self) ) def _repr_png_(self): """ iPython display hook support :returns: png version of the image as bytes """ from io import BytesIO b = BytesIO() self.save(b, 'PNG') return b.getvalue() def __getattr__(self, name): if name == "__array_interface__": # numpy array interface support new = {} shape, typestr = _conv_type_shape(self) new['shape'] = shape new['typestr'] = typestr new['data'] = self.tobytes() new['version'] = 3 return new raise AttributeError(name) def __getstate__(self): return [ self.info, self.mode, self.size, self.getpalette(), self.tobytes()] def __setstate__(self, state): Image.__init__(self) self.tile = [] info, mode, size, palette, data = state self.info = info self.mode = mode self.size = size self.im = core.new(mode, size) if mode in ("L", "P") and palette: self.putpalette(palette) self.frombytes(data) def tobytes(self, encoder_name="raw", *args): """ Return image as a bytes object. .. warning:: This method returns the raw image data from the internal storage. For compressed image data (e.g. PNG, JPEG) use :meth:`~.save`, with a BytesIO parameter for in-memory data. :param encoder_name: What encoder to use. The default is to use the standard "raw" encoder. :param args: Extra arguments to the encoder. :rtype: A bytes object. """ # may pass tuple instead of argument list if len(args) == 1 and isinstance(args[0], tuple): args = args[0] if encoder_name == "raw" and args == (): args = self.mode self.load() # unpack data e = _getencoder(self.mode, encoder_name, args) e.setimage(self.im) bufsize = max(65536, self.size[0] * 4) # see RawEncode.c data = [] while True: l, s, d = e.encode(bufsize) data.append(d) if s: break if s < 0: raise RuntimeError("encoder error %d in tobytes" % s) return b"".join(data) def tostring(self, *args, **kw): raise NotImplementedError("tostring() has been removed. " + "Please call tobytes() instead.") def tobitmap(self, name="image"): """ Returns the image converted to an X11 bitmap. .. note:: This method only works for mode "1" images. :param name: The name prefix to use for the bitmap variables. :returns: A string containing an X11 bitmap. :raises ValueError: If the mode is not "1" """ self.load() if self.mode != "1": raise ValueError("not a bitmap") data = self.tobytes("xbm") return b"".join([ ("#define %s_width %d\n" % (name, self.size[0])).encode('ascii'), ("#define %s_height %d\n" % (name, self.size[1])).encode('ascii'), ("static char %s_bits[] = {\n" % name).encode('ascii'), data, b"};" ]) def frombytes(self, data, decoder_name="raw", *args): """ Loads this image with pixel data from a bytes object. This method is similar to the :py:func:`~PIL.Image.frombytes` function, but loads data into this image instead of creating a new image object. """ # may pass tuple instead of argument list if len(args) == 1 and isinstance(args[0], tuple): args = args[0] # default format if decoder_name == "raw" and args == (): args = self.mode # unpack data d = _getdecoder(self.mode, decoder_name, args) d.setimage(self.im) s = d.decode(data) if s[0] >= 0: raise ValueError("not enough image data") if s[1] != 0: raise ValueError("cannot decode image data") def fromstring(self, *args, **kw): raise NotImplementedError("fromstring() has been removed. " + "Please call frombytes() instead.") def load(self): """ Allocates storage for the image and loads the pixel data. In normal cases, you don't need to call this method, since the Image class automatically loads an opened image when it is accessed for the first time. This method will close the file associated with the image. :returns: An image access object. :rtype: :ref:`PixelAccess` or :py:class:`PIL.PyAccess` """ if self.im and self.palette and self.palette.dirty: # realize palette self.im.putpalette(*self.palette.getdata()) self.palette.dirty = 0 self.palette.mode = "RGB" self.palette.rawmode = None if "transparency" in self.info: if isinstance(self.info["transparency"], int): self.im.putpalettealpha(self.info["transparency"], 0) else: self.im.putpalettealphas(self.info["transparency"]) self.palette.mode = "RGBA" if self.im: if HAS_CFFI and USE_CFFI_ACCESS: if self.pyaccess: return self.pyaccess from PIL import PyAccess self.pyaccess = PyAccess.new(self, self.readonly) if self.pyaccess: return self.pyaccess return self.im.pixel_access(self.readonly) def verify(self): """ Verifies the contents of a file. For data read from a file, this method attempts to determine if the file is broken, without actually decoding the image data. If this method finds any problems, it raises suitable exceptions. If you need to load the image after using this method, you must reopen the image file. """ pass def convert(self, mode=None, matrix=None, dither=None, palette=WEB, colors=256): """ Returns a converted copy of this image. For the "P" mode, this method translates pixels through the palette. If mode is omitted, a mode is chosen so that all information in the image and the palette can be represented without a palette. The current version supports all possible conversions between "L", "RGB" and "CMYK." The **matrix** argument only supports "L" and "RGB". When translating a color image to black and white (mode "L"), the library uses the ITU-R 601-2 luma transform:: L = R * 299/1000 + G * 587/1000 + B * 114/1000 The default method of converting a greyscale ("L") or "RGB" image into a bilevel (mode "1") image uses Floyd-Steinberg dither to approximate the original image luminosity levels. If dither is NONE, all non-zero values are set to 255 (white). To use other thresholds, use the :py:meth:`~PIL.Image.Image.point` method. :param mode: The requested mode. See: :ref:`concept-modes`. :param matrix: An optional conversion matrix. If given, this should be 4- or 12-tuple containing floating point values. :param dither: Dithering method, used when converting from mode "RGB" to "P" or from "RGB" or "L" to "1". Available methods are NONE or FLOYDSTEINBERG (default). :param palette: Palette to use when converting from mode "RGB" to "P". Available palettes are WEB or ADAPTIVE. :param colors: Number of colors to use for the ADAPTIVE palette. Defaults to 256. :rtype: :py:class:`~PIL.Image.Image` :returns: An :py:class:`~PIL.Image.Image` object. """ if not mode: # determine default mode if self.mode == "P": self.load() if self.palette: mode = self.palette.mode else: mode = "RGB" else: return self.copy() self.load() if matrix: # matrix conversion if mode not in ("L", "RGB"): raise ValueError("illegal conversion") im = self.im.convert_matrix(mode, matrix) return self._new(im) if mode == "P" and self.mode == "RGBA": return self.quantize(colors) trns = None delete_trns = False # transparency handling if "transparency" in self.info and \ self.info['transparency'] is not None: if self.mode in ('L', 'RGB') and mode == 'RGBA': # Use transparent conversion to promote from transparent # color to an alpha channel. return self._new(self.im.convert_transparent( mode, self.info['transparency'])) elif self.mode in ('L', 'RGB', 'P') and mode in ('L', 'RGB', 'P'): t = self.info['transparency'] if isinstance(t, bytes): # Dragons. This can't be represented by a single color warnings.warn('Palette images with Transparency ' + ' expressed in bytes should be converted ' + 'to RGBA images') delete_trns = True else: # get the new transparency color. # use existing conversions trns_im = Image()._new(core.new(self.mode, (1, 1))) if self.mode == 'P': trns_im.putpalette(self.palette) if type(t) == tuple: try: t = trns_im.palette.getcolor(t) except: raise ValueError("Couldn't allocate a palette "+ "color for transparency") trns_im.putpixel((0, 0), t) if mode in ('L', 'RGB'): trns_im = trns_im.convert(mode) else: # can't just retrieve the palette number, got to do it # after quantization. trns_im = trns_im.convert('RGB') trns = trns_im.getpixel((0, 0)) elif self.mode == 'P' and mode == 'RGBA': t = self.info['transparency'] delete_trns = True if isinstance(t, bytes): self.im.putpalettealphas(t) elif isinstance(t, int): self.im.putpalettealpha(t, 0) else: raise ValueError("Transparency for P mode should" + " be bytes or int") if mode == "P" and palette == ADAPTIVE: im = self.im.quantize(colors) new = self._new(im) from PIL import ImagePalette new.palette = ImagePalette.raw("RGB", new.im.getpalette("RGB")) if delete_trns: # This could possibly happen if we requantize to fewer colors. # The transparency would be totally off in that case. del(new.info['transparency']) if trns is not None: try: new.info['transparency'] = new.palette.getcolor(trns) except: # if we can't make a transparent color, don't leave the old # transparency hanging around to mess us up. del(new.info['transparency']) warnings.warn("Couldn't allocate palette entry " + "for transparency") return new # colorspace conversion if dither is None: dither = FLOYDSTEINBERG try: im = self.im.convert(mode, dither) except ValueError: try: # normalize source image and try again im = self.im.convert(getmodebase(self.mode)) im = im.convert(mode, dither) except KeyError: raise ValueError("illegal conversion") new_im = self._new(im) if delete_trns: # crash fail if we leave a bytes transparency in an rgb/l mode. del(new_im.info['transparency']) if trns is not None: if new_im.mode == 'P': try: new_im.info['transparency'] = new_im.palette.getcolor(trns) except: del(new_im.info['transparency']) warnings.warn("Couldn't allocate palette entry " + "for transparency") else: new_im.info['transparency'] = trns return new_im def quantize(self, colors=256, method=None, kmeans=0, palette=None): """ Convert the image to 'P' mode with the specified number of colors. :param colors: The desired number of colors, <= 256 :param method: 0 = median cut 1 = maximum coverage 2 = fast octree 3 = libimagequant :param kmeans: Integer :param palette: Quantize to the :py:class:`PIL.ImagingPalette` palette. :returns: A new image """ self.load() if method is None: # defaults: method = 0 if self.mode == 'RGBA': method = 2 if self.mode == 'RGBA' and method not in (2, 3): # Caller specified an invalid mode. raise ValueError( 'Fast Octree (method == 2) and libimagequant (method == 3) ' + 'are the only valid methods for quantizing RGBA images') if palette: # use palette from reference image palette.load() if palette.mode != "P": raise ValueError("bad mode for palette image") if self.mode != "RGB" and self.mode != "L": raise ValueError( "only RGB or L mode images can be quantized to a palette" ) im = self.im.convert("P", 1, palette.im) return self._makeself(im) return self._new(self.im.quantize(colors, method, kmeans)) def copy(self): """ Copies this image. Use this method if you wish to paste things into an image, but still retain the original. :rtype: :py:class:`~PIL.Image.Image` :returns: An :py:class:`~PIL.Image.Image` object. """ self.load() return self._new(self.im.copy()) __copy__ = copy def crop(self, box=None): """ Returns a rectangular region from this image. The box is a 4-tuple defining the left, upper, right, and lower pixel coordinate. This is a lazy operation. Changes to the source image may or may not be reflected in the cropped image. To break the connection, call the :py:meth:`~PIL.Image.Image.load` method on the cropped copy. :param box: The crop rectangle, as a (left, upper, right, lower)-tuple. :rtype: :py:class:`~PIL.Image.Image` :returns: An :py:class:`~PIL.Image.Image` object. """ self.load() if box is None: return self.copy() # lazy operation return _ImageCrop(self, box) def draft(self, mode, size): """ Configures the image file loader so it returns a version of the image that as closely as possible matches the given mode and size. For example, you can use this method to convert a color JPEG to greyscale while loading it, or to extract a 128x192 version from a PCD file. Note that this method modifies the :py:class:`~PIL.Image.Image` object in place. If the image has already been loaded, this method has no effect. :param mode: The requested mode. :param size: The requested size. """ pass def _expand(self, xmargin, ymargin=None): if ymargin is None: ymargin = xmargin self.load() return self._new(self.im.expand(xmargin, ymargin, 0)) def filter(self, filter): """ Filters this image using the given filter. For a list of available filters, see the :py:mod:`~PIL.ImageFilter` module. :param filter: Filter kernel. :returns: An :py:class:`~PIL.Image.Image` object. """ self.load() if isinstance(filter, collections.Callable): filter = filter() if not hasattr(filter, "filter"): raise TypeError("filter argument should be ImageFilter.Filter " + "instance or class") if self.im.bands == 1: return self._new(filter.filter(self.im)) # fix to handle multiband images since _imaging doesn't ims = [] for c in range(self.im.bands): ims.append(self._new(filter.filter(self.im.getband(c)))) return merge(self.mode, ims) def getbands(self): """ Returns a tuple containing the name of each band in this image. For example, **getbands** on an RGB image returns ("R", "G", "B"). :returns: A tuple containing band names. :rtype: tuple """ return ImageMode.getmode(self.mode).bands def getbbox(self): """ Calculates the bounding box of the non-zero regions in the image. :returns: The bounding box is returned as a 4-tuple defining the left, upper, right, and lower pixel coordinate. If the image is completely empty, this method returns None. """ self.load() return self.im.getbbox() def getcolors(self, maxcolors=256): """ Returns a list of colors used in this image. :param maxcolors: Maximum number of colors. If this number is exceeded, this method returns None. The default limit is 256 colors. :returns: An unsorted list of (count, pixel) values. """ self.load() if self.mode in ("1", "L", "P"): h = self.im.histogram() out = [] for i in range(256): if h[i]: out.append((h[i], i)) if len(out) > maxcolors: return None return out return self.im.getcolors(maxcolors) def getdata(self, band=None): """ Returns the contents of this image as a sequence object containing pixel values. The sequence object is flattened, so that values for line one follow directly after the values of line zero, and so on. Note that the sequence object returned by this method is an internal PIL data type, which only supports certain sequence operations. To convert it to an ordinary sequence (e.g. for printing), use **list(im.getdata())**. :param band: What band to return. The default is to return all bands. To return a single band, pass in the index value (e.g. 0 to get the "R" band from an "RGB" image). :returns: A sequence-like object. """ self.load() if band is not None: return self.im.getband(band) return self.im # could be abused def getextrema(self): """ Gets the the minimum and maximum pixel values for each band in the image. :returns: For a single-band image, a 2-tuple containing the minimum and maximum pixel value. For a multi-band image, a tuple containing one 2-tuple for each band. """ self.load() if self.im.bands > 1: extrema = [] for i in range(self.im.bands): extrema.append(self.im.getband(i).getextrema()) return tuple(extrema) return self.im.getextrema() def getim(self): """ Returns a capsule that points to the internal image memory. :returns: A capsule object. """ self.load() return self.im.ptr def getpalette(self): """ Returns the image palette as a list. :returns: A list of color values [r, g, b, ...], or None if the image has no palette. """ self.load() try: if bytes is str: return [i8(c) for c in self.im.getpalette()] else: return list(self.im.getpalette()) except ValueError: return None # no palette def getpixel(self, xy): """ Returns the pixel value at a given position. :param xy: The coordinate, given as (x, y). :returns: The pixel value. If the image is a multi-layer image, this method returns a tuple. """ self.load() if self.pyaccess: return self.pyaccess.getpixel(xy) return self.im.getpixel(xy) def getprojection(self): """ Get projection to x and y axes :returns: Two sequences, indicating where there are non-zero pixels along the X-axis and the Y-axis, respectively. """ self.load() x, y = self.im.getprojection() return [i8(c) for c in x], [i8(c) for c in y] def histogram(self, mask=None, extrema=None): """ Returns a histogram for the image. The histogram is returned as a list of pixel counts, one for each pixel value in the source image. If the image has more than one band, the histograms for all bands are concatenated (for example, the histogram for an "RGB" image contains 768 values). A bilevel image (mode "1") is treated as a greyscale ("L") image by this method. If a mask is provided, the method returns a histogram for those parts of the image where the mask image is non-zero. The mask image must have the same size as the image, and be either a bi-level image (mode "1") or a greyscale image ("L"). :param mask: An optional mask. :returns: A list containing pixel counts. """ self.load() if mask: mask.load() return self.im.histogram((0, 0), mask.im) if self.mode in ("I", "F"): if extrema is None: extrema = self.getextrema() return self.im.histogram(extrema) return self.im.histogram() def offset(self, xoffset, yoffset=None): raise NotImplementedError("offset() has been removed. " + "Please call ImageChops.offset() instead.") def paste(self, im, box=None, mask=None): """ Pastes another image into this image. The box argument is either a 2-tuple giving the upper left corner, a 4-tuple defining the left, upper, right, and lower pixel coordinate, or None (same as (0, 0)). If a 4-tuple is given, the size of the pasted image must match the size of the region. If the modes don't match, the pasted image is converted to the mode of this image (see the :py:meth:`~PIL.Image.Image.convert` method for details). Instead of an image, the source can be a integer or tuple containing pixel values. The method then fills the region with the given color. When creating RGB images, you can also use color strings as supported by the ImageColor module. If a mask is given, this method updates only the regions indicated by the mask. You can use either "1", "L" or "RGBA" images (in the latter case, the alpha band is used as mask). Where the mask is 255, the given image is copied as is. Where the mask is 0, the current value is preserved. Intermediate values will mix the two images together, including their alpha channels if they have them. See :py:meth:`~PIL.Image.Image.alpha_composite` if you want to combine images with respect to their alpha channels. :param im: Source image or pixel value (integer or tuple). :param box: An optional 4-tuple giving the region to paste into. If a 2-tuple is used instead, it's treated as the upper left corner. If omitted or None, the source is pasted into the upper left corner. If an image is given as the second argument and there is no third, the box defaults to (0, 0), and the second argument is interpreted as a mask image. :param mask: An optional mask image. """ if isImageType(box) and mask is None: # abbreviated paste(im, mask) syntax mask = box box = None if box is None: # cover all of self box = (0, 0) + self.size if len(box) == 2: # upper left corner given; get size from image or mask if isImageType(im): size = im.size elif isImageType(mask): size = mask.size else: # FIXME: use self.size here? raise ValueError( "cannot determine region size; use 4-item box" ) box = box + (box[0]+size[0], box[1]+size[1]) if isStringType(im): from PIL import ImageColor im = ImageColor.getcolor(im, self.mode) elif isImageType(im): im.load() if self.mode != im.mode: if self.mode != "RGB" or im.mode not in ("RGBA", "RGBa"): # should use an adapter for this! im = im.convert(self.mode) im = im.im self.load() if self.readonly: self._copy() if mask: mask.load() self.im.paste(im, box, mask.im) else: self.im.paste(im, box) def point(self, lut, mode=None): """ Maps this image through a lookup table or function. :param lut: A lookup table, containing 256 (or 65336 if self.mode=="I" and mode == "L") values per band in the image. A function can be used instead, it should take a single argument. The function is called once for each possible pixel value, and the resulting table is applied to all bands of the image. :param mode: Output mode (default is same as input). In the current version, this can only be used if the source image has mode "L" or "P", and the output has mode "1" or the source image mode is "I" and the output mode is "L". :returns: An :py:class:`~PIL.Image.Image` object. """ self.load() if isinstance(lut, ImagePointHandler): return lut.point(self) if callable(lut): # if it isn't a list, it should be a function if self.mode in ("I", "I;16", "F"): # check if the function can be used with point_transform # UNDONE wiredfool -- I think this prevents us from ever doing # a gamma function point transform on > 8bit images. scale, offset = _getscaleoffset(lut) return self._new(self.im.point_transform(scale, offset)) # for other modes, convert the function to a table lut = [lut(i) for i in range(256)] * self.im.bands if self.mode == "F": # FIXME: _imaging returns a confusing error message for this case raise ValueError("point operation not supported for this mode") return self._new(self.im.point(lut, mode)) def putalpha(self, alpha): """ Adds or replaces the alpha layer in this image. If the image does not have an alpha layer, it's converted to "LA" or "RGBA". The new layer must be either "L" or "1". :param alpha: The new alpha layer. This can either be an "L" or "1" image having the same size as this image, or an integer or other color value. """ self.load() if self.readonly: self._copy() if self.mode not in ("LA", "RGBA"): # attempt to promote self to a matching alpha mode try: mode = getmodebase(self.mode) + "A" try: self.im.setmode(mode) self.pyaccess = None except (AttributeError, ValueError): # do things the hard way im = self.im.convert(mode) if im.mode not in ("LA", "RGBA"): raise ValueError # sanity check self.im = im self.pyaccess = None self.mode = self.im.mode except (KeyError, ValueError): raise ValueError("illegal image mode") if self.mode == "LA": band = 1 else: band = 3 if isImageType(alpha): # alpha layer if alpha.mode not in ("1", "L"): raise ValueError("illegal image mode") alpha.load() if alpha.mode == "1": alpha = alpha.convert("L") else: # constant alpha try: self.im.fillband(band, alpha) except (AttributeError, ValueError): # do things the hard way alpha = new("L", self.size, alpha) else: return self.im.putband(alpha.im, band) def putdata(self, data, scale=1.0, offset=0.0): """ Copies pixel data to this image. This method copies data from a sequence object into the image, starting at the upper left corner (0, 0), and continuing until either the image or the sequence ends. The scale and offset values are used to adjust the sequence values: **pixel = value*scale + offset**. :param data: A sequence object. :param scale: An optional scale value. The default is 1.0. :param offset: An optional offset value. The default is 0.0. """ self.load() if self.readonly: self._copy() self.im.putdata(data, scale, offset) def putpalette(self, data, rawmode="RGB"): """ Attaches a palette to this image. The image must be a "P" or "L" image, and the palette sequence must contain 768 integer values, where each group of three values represent the red, green, and blue values for the corresponding pixel index. Instead of an integer sequence, you can use an 8-bit string. :param data: A palette sequence (either a list or a string). """ from PIL import ImagePalette if self.mode not in ("L", "P"): raise ValueError("illegal image mode") self.load() if isinstance(data, ImagePalette.ImagePalette): palette = ImagePalette.raw(data.rawmode, data.palette) else: if not isinstance(data, bytes): if bytes is str: data = "".join(chr(x) for x in data) else: data = bytes(data) palette = ImagePalette.raw(rawmode, data) self.mode = "P" self.palette = palette self.palette.mode = "RGB" self.load() # install new palette def putpixel(self, xy, value): """ Modifies the pixel at the given position. The color is given as a single numerical value for single-band images, and a tuple for multi-band images. Note that this method is relatively slow. For more extensive changes, use :py:meth:`~PIL.Image.Image.paste` or the :py:mod:`~PIL.ImageDraw` module instead. See: * :py:meth:`~PIL.Image.Image.paste` * :py:meth:`~PIL.Image.Image.putdata` * :py:mod:`~PIL.ImageDraw` :param xy: The pixel coordinate, given as (x, y). :param value: The pixel value. """ self.load() if self.readonly: self._copy() self.pyaccess = None self.load() if self.pyaccess: return self.pyaccess.putpixel(xy, value) return self.im.putpixel(xy, value) def resize(self, size, resample=NEAREST): """ Returns a resized copy of this image. :param size: The requested size in pixels, as a 2-tuple: (width, height). :param resample: An optional resampling filter. This can be one of :py:attr:`PIL.Image.NEAREST`, :py:attr:`PIL.Image.BOX`, :py:attr:`PIL.Image.BILINEAR`, :py:attr:`PIL.Image.HAMMING`, :py:attr:`PIL.Image.BICUBIC` or :py:attr:`PIL.Image.LANCZOS`. If omitted, or if the image has mode "1" or "P", it is set :py:attr:`PIL.Image.NEAREST`. See: :ref:`concept-filters`. :returns: An :py:class:`~PIL.Image.Image` object. """ if resample not in ( NEAREST, BILINEAR, BICUBIC, LANCZOS, BOX, HAMMING, ): raise ValueError("unknown resampling filter") self.load() size = tuple(size) if self.size == size: return self._new(self.im) if self.mode in ("1", "P"): resample = NEAREST if self.mode == 'LA': return self.convert('La').resize(size, resample).convert('LA') if self.mode == 'RGBA': return self.convert('RGBa').resize(size, resample).convert('RGBA') return self._new(self.im.resize(size, resample)) def rotate(self, angle, resample=NEAREST, expand=0): """ Returns a rotated copy of this image. This method returns a copy of this image, rotated the given number of degrees counter clockwise around its centre. :param angle: In degrees counter clockwise. :param resample: An optional resampling filter. This can be one of :py:attr:`PIL.Image.NEAREST` (use nearest neighbour), :py:attr:`PIL.Image.BILINEAR` (linear interpolation in a 2x2 environment), or :py:attr:`PIL.Image.BICUBIC` (cubic spline interpolation in a 4x4 environment). If omitted, or if the image has mode "1" or "P", it is set :py:attr:`PIL.Image.NEAREST`. See :ref:`concept-filters`. :param expand: Optional expansion flag. If true, expands the output image to make it large enough to hold the entire rotated image. If false or omitted, make the output image the same size as the input image. :returns: An :py:class:`~PIL.Image.Image` object. """ angle = angle % 360.0 # Fast paths regardless of filter if angle == 0: return self._new(self.im) if angle == 180: return self.transpose(ROTATE_180) if angle == 90 and expand: return self.transpose(ROTATE_90) if angle == 270 and expand: return self.transpose(ROTATE_270) angle = - math.radians(angle) matrix = [ round(math.cos(angle), 15), round(math.sin(angle), 15), 0.0, round(-math.sin(angle), 15), round(math.cos(angle), 15), 0.0 ] def transform(x, y, matrix=matrix): (a, b, c, d, e, f) = matrix return a*x + b*y + c, d*x + e*y + f w, h = self.size if expand: # calculate output size xx = [] yy = [] for x, y in ((0, 0), (w, 0), (w, h), (0, h)): x, y = transform(x, y) xx.append(x) yy.append(y) w = int(math.ceil(max(xx)) - math.floor(min(xx))) h = int(math.ceil(max(yy)) - math.floor(min(yy))) # adjust center x, y = transform(w / 2.0, h / 2.0) matrix[2] = self.size[0] / 2.0 - x matrix[5] = self.size[1] / 2.0 - y return self.transform((w, h), AFFINE, matrix, resample) def save(self, fp, format=None, **params): """ Saves this image under the given filename. If no format is specified, the format to use is determined from the filename extension, if possible. Keyword options can be used to provide additional instructions to the writer. If a writer doesn't recognise an option, it is silently ignored. The available options are described in the :doc:`image format documentation <../handbook/image-file-formats>` for each writer. You can use a file object instead of a filename. In this case, you must always specify the format. The file object must implement the ``seek``, ``tell``, and ``write`` methods, and be opened in binary mode. :param fp: A filename (string), pathlib.Path object or file object. :param format: Optional format override. If omitted, the format to use is determined from the filename extension. If a file object was used instead of a filename, this parameter should always be used. :param options: Extra parameters to the image writer. :returns: None :exception KeyError: If the output format could not be determined from the file name. Use the format option to solve this. :exception IOError: If the file could not be written. The file may have been created, and may contain partial data. """ filename = "" open_fp = False if isPath(fp): filename = fp open_fp = True elif sys.version_info >= (3, 4): from pathlib import Path if isinstance(fp, Path): filename = str(fp) open_fp = True elif hasattr(fp, "name") and isPath(fp.name): # only set the name for metadata purposes filename = fp.name # may mutate self! self.load() save_all = False if 'save_all' in params: save_all = params.pop('save_all') self.encoderinfo = params self.encoderconfig = () preinit() ext = os.path.splitext(filename)[1].lower() if not format: if ext not in EXTENSION: init() format = EXTENSION[ext] if format.upper() not in SAVE: init() if save_all: save_handler = SAVE_ALL[format.upper()] else: save_handler = SAVE[format.upper()] if open_fp: fp = builtins.open(filename, "wb") try: save_handler(self, fp, filename) finally: # do what we can to clean up if open_fp: fp.close() def seek(self, frame): """ Seeks to the given frame in this sequence file. If you seek beyond the end of the sequence, the method raises an **EOFError** exception. When a sequence file is opened, the library automatically seeks to frame 0. Note that in the current version of the library, most sequence formats only allows you to seek to the next frame. See :py:meth:`~PIL.Image.Image.tell`. :param frame: Frame number, starting at 0. :exception EOFError: If the call attempts to seek beyond the end of the sequence. """ # overridden by file handlers if frame != 0: raise EOFError def show(self, title=None, command=None): """ Displays this image. This method is mainly intended for debugging purposes. On Unix platforms, this method saves the image to a temporary PPM file, and calls either the **xv** utility or the **display** utility, depending on which one can be found. On OS X, this method saves the image to a temporary BMP file, and opens it with the native Preview application. On Windows, it saves the image to a temporary BMP file, and uses the standard BMP display utility to show it (usually Paint). :param title: Optional title to use for the image window, where possible. :param command: command used to show the image """ _show(self, title=title, command=command) def split(self): """ Split this image into individual bands. This method returns a tuple of individual image bands from an image. For example, splitting an "RGB" image creates three new images each containing a copy of one of the original bands (red, green, blue). :returns: A tuple containing bands. """ self.load() if self.im.bands == 1: ims = [self.copy()] else: ims = [] for i in range(self.im.bands): ims.append(self._new(self.im.getband(i))) return tuple(ims) def tell(self): """ Returns the current frame number. See :py:meth:`~PIL.Image.Image.seek`. :returns: Frame number, starting with 0. """ return 0 def thumbnail(self, size, resample=BICUBIC): """ Make this image into a thumbnail. This method modifies the image to contain a thumbnail version of itself, no larger than the given size. This method calculates an appropriate thumbnail size to preserve the aspect of the image, calls the :py:meth:`~PIL.Image.Image.draft` method to configure the file reader (where applicable), and finally resizes the image. Note that this function modifies the :py:class:`~PIL.Image.Image` object in place. If you need to use the full resolution image as well, apply this method to a :py:meth:`~PIL.Image.Image.copy` of the original image. :param size: Requested size. :param resample: Optional resampling filter. This can be one of :py:attr:`PIL.Image.NEAREST`, :py:attr:`PIL.Image.BILINEAR`, :py:attr:`PIL.Image.BICUBIC`, or :py:attr:`PIL.Image.LANCZOS`. If omitted, it defaults to :py:attr:`PIL.Image.BICUBIC`. (was :py:attr:`PIL.Image.NEAREST` prior to version 2.5.0) :returns: None """ # preserve aspect ratio x, y = self.size if x > size[0]: y = int(max(y * size[0] / x, 1)) x = int(size[0]) if y > size[1]: x = int(max(x * size[1] / y, 1)) y = int(size[1]) size = x, y if size == self.size: return self.draft(None, size) im = self.resize(size, resample) self.im = im.im self.mode = im.mode self.size = size self.readonly = 0 self.pyaccess = None # FIXME: the different transform methods need further explanation # instead of bloating the method docs, add a separate chapter. def transform(self, size, method, data=None, resample=NEAREST, fill=1): """ Transforms this image. This method creates a new image with the given size, and the same mode as the original, and copies data to the new image using the given transform. :param size: The output size. :param method: The transformation method. This is one of :py:attr:`PIL.Image.EXTENT` (cut out a rectangular subregion), :py:attr:`PIL.Image.AFFINE` (affine transform), :py:attr:`PIL.Image.PERSPECTIVE` (perspective transform), :py:attr:`PIL.Image.QUAD` (map a quadrilateral to a rectangle), or :py:attr:`PIL.Image.MESH` (map a number of source quadrilaterals in one operation). :param data: Extra data to the transformation method. :param resample: Optional resampling filter. It can be one of :py:attr:`PIL.Image.NEAREST` (use nearest neighbour), :py:attr:`PIL.Image.BILINEAR` (linear interpolation in a 2x2 environment), or :py:attr:`PIL.Image.BICUBIC` (cubic spline interpolation in a 4x4 environment). If omitted, or if the image has mode "1" or "P", it is set to :py:attr:`PIL.Image.NEAREST`. :returns: An :py:class:`~PIL.Image.Image` object. """ if self.mode == 'LA': return self.convert('La').transform( size, method, data, resample, fill).convert('LA') if self.mode == 'RGBA': return self.convert('RGBa').transform( size, method, data, resample, fill).convert('RGBA') if isinstance(method, ImageTransformHandler): return method.transform(size, self, resample=resample, fill=fill) if hasattr(method, "getdata"): # compatibility w. old-style transform objects method, data = method.getdata() if data is None: raise ValueError("missing method data") im = new(self.mode, size, None) if method == MESH: # list of quads for box, quad in data: im.__transformer(box, self, QUAD, quad, resample, fill) else: im.__transformer((0, 0)+size, self, method, data, resample, fill) return im def __transformer(self, box, image, method, data, resample=NEAREST, fill=1): w = box[2] - box[0] h = box[3] - box[1] if method == AFFINE: data = data[0:6] elif method == EXTENT: # convert extent to an affine transform x0, y0, x1, y1 = data xs = float(x1 - x0) / w ys = float(y1 - y0) / h method = AFFINE data = (xs, 0, x0 + xs/2, 0, ys, y0 + ys/2) elif method == PERSPECTIVE: data = data[0:8] elif method == QUAD: # quadrilateral warp. data specifies the four corners # given as NW, SW, SE, and NE. nw = data[0:2] sw = data[2:4] se = data[4:6] ne = data[6:8] x0, y0 = nw As = 1.0 / w At = 1.0 / h data = (x0, (ne[0]-x0)*As, (sw[0]-x0)*At, (se[0]-sw[0]-ne[0]+x0)*As*At, y0, (ne[1]-y0)*As, (sw[1]-y0)*At, (se[1]-sw[1]-ne[1]+y0)*As*At) else: raise ValueError("unknown transformation method") if resample not in (NEAREST, BILINEAR, BICUBIC): raise ValueError("unknown resampling filter") image.load() self.load() if image.mode in ("1", "P"): resample = NEAREST self.im.transform2(box, image.im, method, data, resample, fill) def transpose(self, method): """ Transpose image (flip or rotate in 90 degree steps) :param method: One of :py:attr:`PIL.Image.FLIP_LEFT_RIGHT`, :py:attr:`PIL.Image.FLIP_TOP_BOTTOM`, :py:attr:`PIL.Image.ROTATE_90`, :py:attr:`PIL.Image.ROTATE_180`, :py:attr:`PIL.Image.ROTATE_270` or :py:attr:`PIL.Image.TRANSPOSE`. :returns: Returns a flipped or rotated copy of this image. """ self.load() return self._new(self.im.transpose(method)) def effect_spread(self, distance): """ Randomly spread pixels in an image. :param distance: Distance to spread pixels. """ self.load() return self._new(self.im.effect_spread(distance)) def toqimage(self): """Returns a QImage copy of this image""" from PIL import ImageQt if not ImageQt.qt_is_installed: raise ImportError("Qt bindings are not installed") return ImageQt.toqimage(self) def toqpixmap(self): """Returns a QPixmap copy of this image""" from PIL import ImageQt if not ImageQt.qt_is_installed: raise ImportError("Qt bindings are not installed") return ImageQt.toqpixmap(self) # -------------------------------------------------------------------- # Lazy operations class _ImageCrop(Image): def __init__(self, im, box): Image.__init__(self) # Round to nearest integer, runs int(round(x)) when unpacking x0, y0, x1, y1 = map(int, map(round, box)) if x1 < x0: x1 = x0 if y1 < y0: y1 = y0 self.mode = im.mode self.size = x1-x0, y1-y0 self.__crop = x0, y0, x1, y1 self.im = im.im def load(self): # lazy evaluation! if self.__crop: self.im = self.im.crop(self.__crop) self.__crop = None if self.im: return self.im.pixel_access(self.readonly) # FIXME: future versions should optimize crop/paste # sequences! # -------------------------------------------------------------------- # Abstract handlers. class ImagePointHandler(object): # used as a mixin by point transforms (for use with im.point) pass class ImageTransformHandler(object): # used as a mixin by geometry transforms (for use with im.transform) pass # -------------------------------------------------------------------- # Factories # # Debugging def _wedge(): "Create greyscale wedge (for debugging only)" return Image()._new(core.wedge("L")) def new(mode, size, color=0): """ Creates a new image with the given mode and size. :param mode: The mode to use for the new image. See: :ref:`concept-modes`. :param size: A 2-tuple, containing (width, height) in pixels. :param color: What color to use for the image. Default is black. If given, this should be a single integer or floating point value for single-band modes, and a tuple for multi-band modes (one value per band). When creating RGB images, you can also use color strings as supported by the ImageColor module. If the color is None, the image is not initialised. :returns: An :py:class:`~PIL.Image.Image` object. """ if color is None: # don't initialize return Image()._new(core.new(mode, size)) if isStringType(color): # css3-style specifier from PIL import ImageColor color = ImageColor.getcolor(color, mode) return Image()._new(core.fill(mode, size, color)) def frombytes(mode, size, data, decoder_name="raw", *args): """ Creates a copy of an image memory from pixel data in a buffer. In its simplest form, this function takes three arguments (mode, size, and unpacked pixel data). You can also use any pixel decoder supported by PIL. For more information on available decoders, see the section :ref:`Writing Your Own File Decoder `. Note that this function decodes pixel data only, not entire images. If you have an entire image in a string, wrap it in a :py:class:`~io.BytesIO` object, and use :py:func:`~PIL.Image.open` to load it. :param mode: The image mode. See: :ref:`concept-modes`. :param size: The image size. :param data: A byte buffer containing raw data for the given mode. :param decoder_name: What decoder to use. :param args: Additional parameters for the given decoder. :returns: An :py:class:`~PIL.Image.Image` object. """ # may pass tuple instead of argument list if len(args) == 1 and isinstance(args[0], tuple): args = args[0] if decoder_name == "raw" and args == (): args = mode im = new(mode, size) im.frombytes(data, decoder_name, args) return im def fromstring(*args, **kw): raise NotImplementedError("fromstring() has been removed. " + "Please call frombytes() instead.") def frombuffer(mode, size, data, decoder_name="raw", *args): """ Creates an image memory referencing pixel data in a byte buffer. This function is similar to :py:func:`~PIL.Image.frombytes`, but uses data in the byte buffer, where possible. This means that changes to the original buffer object are reflected in this image). Not all modes can share memory; supported modes include "L", "RGBX", "RGBA", and "CMYK". Note that this function decodes pixel data only, not entire images. If you have an entire image file in a string, wrap it in a **BytesIO** object, and use :py:func:`~PIL.Image.open` to load it. In the current version, the default parameters used for the "raw" decoder differs from that used for :py:func:`~PIL.Image.frombytes`. This is a bug, and will probably be fixed in a future release. The current release issues a warning if you do this; to disable the warning, you should provide the full set of parameters. See below for details. :param mode: The image mode. See: :ref:`concept-modes`. :param size: The image size. :param data: A bytes or other buffer object containing raw data for the given mode. :param decoder_name: What decoder to use. :param args: Additional parameters for the given decoder. For the default encoder ("raw"), it's recommended that you provide the full set of parameters:: frombuffer(mode, size, data, "raw", mode, 0, 1) :returns: An :py:class:`~PIL.Image.Image` object. .. versionadded:: 1.1.4 """ # may pass tuple instead of argument list if len(args) == 1 and isinstance(args[0], tuple): args = args[0] if decoder_name == "raw": if args == (): warnings.warn( "the frombuffer defaults may change in a future release; " "for portability, change the call to read:\n" " frombuffer(mode, size, data, 'raw', mode, 0, 1)", RuntimeWarning, stacklevel=2 ) args = mode, 0, -1 # may change to (mode, 0, 1) post-1.1.6 if args[0] in _MAPMODES: im = new(mode, (1, 1)) im = im._new( core.map_buffer(data, size, decoder_name, None, 0, args) ) im.readonly = 1 return im return frombytes(mode, size, data, decoder_name, args) def fromarray(obj, mode=None): """ Creates an image memory from an object exporting the array interface (using the buffer protocol). If obj is not contiguous, then the tobytes method is called and :py:func:`~PIL.Image.frombuffer` is used. :param obj: Object with array interface :param mode: Mode to use (will be determined from type if None) See: :ref:`concept-modes`. :returns: An image object. .. versionadded:: 1.1.6 """ arr = obj.__array_interface__ shape = arr['shape'] ndim = len(shape) try: strides = arr['strides'] except KeyError: strides = None if mode is None: try: typekey = (1, 1) + shape[2:], arr['typestr'] mode, rawmode = _fromarray_typemap[typekey] except KeyError: # print typekey raise TypeError("Cannot handle this data type") else: rawmode = mode if mode in ["1", "L", "I", "P", "F"]: ndmax = 2 elif mode == "RGB": ndmax = 3 else: ndmax = 4 if ndim > ndmax: raise ValueError("Too many dimensions: %d > %d." % (ndim, ndmax)) size = shape[1], shape[0] if strides is not None: if hasattr(obj, 'tobytes'): obj = obj.tobytes() else: obj = obj.tostring() return frombuffer(mode, size, obj, "raw", rawmode, 0, 1) def fromqimage(im): """Creates an image instance from a QImage image""" from PIL import ImageQt if not ImageQt.qt_is_installed: raise ImportError("Qt bindings are not installed") return ImageQt.fromqimage(im) def fromqpixmap(im): """Creates an image instance from a QPixmap image""" from PIL import ImageQt if not ImageQt.qt_is_installed: raise ImportError("Qt bindings are not installed") return ImageQt.fromqpixmap(im) _fromarray_typemap = { # (shape, typestr) => mode, rawmode # first two members of shape are set to one # ((1, 1), "|b1"): ("1", "1"), # broken ((1, 1), "|u1"): ("L", "L"), ((1, 1), "|i1"): ("I", "I;8"), ((1, 1), "u2"): ("I", "I;16B"), ((1, 1), "i2"): ("I", "I;16BS"), ((1, 1), "u4"): ("I", "I;32B"), ((1, 1), "i4"): ("I", "I;32BS"), ((1, 1), "f4"): ("F", "F;32BF"), ((1, 1), "f8"): ("F", "F;64BF"), ((1, 1, 2), "|u1"): ("LA", "LA"), ((1, 1, 3), "|u1"): ("RGB", "RGB"), ((1, 1, 4), "|u1"): ("RGBA", "RGBA"), } # shortcuts _fromarray_typemap[((1, 1), _ENDIAN + "i4")] = ("I", "I") _fromarray_typemap[((1, 1), _ENDIAN + "f4")] = ("F", "F") def _decompression_bomb_check(size): if MAX_IMAGE_PIXELS is None: return pixels = size[0] * size[1] if pixels > MAX_IMAGE_PIXELS: warnings.warn( "Image size (%d pixels) exceeds limit of %d pixels, " "could be decompression bomb DOS attack." % (pixels, MAX_IMAGE_PIXELS), DecompressionBombWarning) def open(fp, mode="r"): """ Opens and identifies the given image file. This is a lazy operation; this function identifies the file, but the file remains open and the actual image data is not read from the file until you try to process the data (or call the :py:meth:`~PIL.Image.Image.load` method). See :py:func:`~PIL.Image.new`. :param fp: A filename (string), pathlib.Path object or a file object. The file object must implement :py:meth:`~file.read`, :py:meth:`~file.seek`, and :py:meth:`~file.tell` methods, and be opened in binary mode. :param mode: The mode. If given, this argument must be "r". :returns: An :py:class:`~PIL.Image.Image` object. :exception IOError: If the file cannot be found, or the image cannot be opened and identified. """ if mode != "r": raise ValueError("bad mode %r" % mode) filename = "" if isPath(fp): filename = fp elif sys.version_info >= (3, 4): from pathlib import Path if isinstance(fp, Path): filename = str(fp.resolve()) if filename: fp = builtins.open(filename, "rb") try: fp.seek(0) except (AttributeError, io.UnsupportedOperation): fp = io.BytesIO(fp.read()) prefix = fp.read(16) preinit() def _open_core(fp, filename, prefix): for i in ID: try: factory, accept = OPEN[i] if not accept or accept(prefix): fp.seek(0) im = factory(fp, filename) _decompression_bomb_check(im.size) return im except (SyntaxError, IndexError, TypeError, struct.error): # Leave disabled by default, spams the logs with image # opening failures that are entirely expected. # logger.debug("", exc_info=True) continue return None im = _open_core(fp, filename, prefix) if im is None: if init(): im = _open_core(fp, filename, prefix) if im: return im raise IOError("cannot identify image file %r" % (filename if filename else fp)) # # Image processing. def alpha_composite(im1, im2): """ Alpha composite im2 over im1. :param im1: The first image. Must have mode RGBA. :param im2: The second image. Must have mode RGBA, and the same size as the first image. :returns: An :py:class:`~PIL.Image.Image` object. """ im1.load() im2.load() return im1._new(core.alpha_composite(im1.im, im2.im)) def blend(im1, im2, alpha): """ Creates a new image by interpolating between two input images, using a constant alpha.:: out = image1 * (1.0 - alpha) + image2 * alpha :param im1: The first image. :param im2: The second image. Must have the same mode and size as the first image. :param alpha: The interpolation alpha factor. If alpha is 0.0, a copy of the first image is returned. If alpha is 1.0, a copy of the second image is returned. There are no restrictions on the alpha value. If necessary, the result is clipped to fit into the allowed output range. :returns: An :py:class:`~PIL.Image.Image` object. """ im1.load() im2.load() return im1._new(core.blend(im1.im, im2.im, alpha)) def composite(image1, image2, mask): """ Create composite image by blending images using a transparency mask. :param image1: The first image. :param image2: The second image. Must have the same mode and size as the first image. :param mask: A mask image. This image can have mode "1", "L", or "RGBA", and must have the same size as the other two images. """ image = image2.copy() image.paste(image1, None, mask) return image def eval(image, *args): """ Applies the function (which should take one argument) to each pixel in the given image. If the image has more than one band, the same function is applied to each band. Note that the function is evaluated once for each possible pixel value, so you cannot use random components or other generators. :param image: The input image. :param function: A function object, taking one integer argument. :returns: An :py:class:`~PIL.Image.Image` object. """ return image.point(args[0]) def merge(mode, bands): """ Merge a set of single band images into a new multiband image. :param mode: The mode to use for the output image. See: :ref:`concept-modes`. :param bands: A sequence containing one single-band image for each band in the output image. All bands must have the same size. :returns: An :py:class:`~PIL.Image.Image` object. """ if getmodebands(mode) != len(bands) or "*" in mode: raise ValueError("wrong number of bands") for im in bands[1:]: if im.mode != getmodetype(mode): raise ValueError("mode mismatch") if im.size != bands[0].size: raise ValueError("size mismatch") im = core.new(mode, bands[0].size) for i in range(getmodebands(mode)): bands[i].load() im.putband(bands[i].im, i) return bands[0]._new(im) # -------------------------------------------------------------------- # Plugin registry def register_open(id, factory, accept=None): """ Register an image file plugin. This function should not be used in application code. :param id: An image format identifier. :param factory: An image file factory method. :param accept: An optional function that can be used to quickly reject images having another format. """ id = id.upper() ID.append(id) OPEN[id] = factory, accept def register_mime(id, mimetype): """ Registers an image MIME type. This function should not be used in application code. :param id: An image format identifier. :param mimetype: The image MIME type for this format. """ MIME[id.upper()] = mimetype def register_save(id, driver): """ Registers an image save function. This function should not be used in application code. :param id: An image format identifier. :param driver: A function to save images in this format. """ SAVE[id.upper()] = driver def register_save_all(id, driver): """ Registers an image function to save all the frames of a multiframe format. This function should not be used in application code. :param id: An image format identifier. :param driver: A function to save images in this format. """ SAVE_ALL[id.upper()] = driver def register_extension(id, extension): """ Registers an image extension. This function should not be used in application code. :param id: An image format identifier. :param extension: An extension used for this format. """ EXTENSION[extension.lower()] = id.upper() # -------------------------------------------------------------------- # Simple display support. User code may override this. def _show(image, **options): # override me, as necessary _showxv(image, **options) def _showxv(image, title=None, **options): from PIL import ImageShow ImageShow.show(image, title, **options) # -------------------------------------------------------------------- # Effects def effect_mandelbrot(size, extent, quality): """ Generate a Mandelbrot set covering the given extent. :param size: The requested size in pixels, as a 2-tuple: (width, height). :param extent: The extent to cover, as a 4-tuple: (x0, y0, x1, y2). :param quality: Quality. """ return Image()._new(core.effect_mandelbrot(size, extent, quality)) def effect_noise(size, sigma): """ Generate Gaussian noise centered around 128. :param size: The requested size in pixels, as a 2-tuple: (width, height). :param sigma: Standard deviation of noise. """ return Image()._new(core.effect_noise(size, sigma))