from __future__ import annotations import pytest from PIL import Image from .helper import ( assert_image_equal, assert_image_similar, fromstring, hopper, skip_unless_feature, tostring, ) def test_sanity() -> None: im = hopper() im.thumbnail((100, 100)) assert im.size == (100, 100) def test_aspect() -> None: im = Image.new("L", (128, 128)) im.thumbnail((100, 100)) assert im.size == (100, 100) im = Image.new("L", (128, 256)) im.thumbnail((100, 100)) assert im.size == (50, 100) im = Image.new("L", (128, 256)) im.thumbnail((50, 100)) assert im.size == (50, 100) im = Image.new("L", (256, 128)) im.thumbnail((100, 100)) assert im.size == (100, 50) im = Image.new("L", (256, 128)) im.thumbnail((100, 50)) assert im.size == (100, 50) im = Image.new("L", (64, 64)) im.thumbnail((100, 100)) assert im.size == (64, 64) im = Image.new("L", (256, 162)) # ratio is 1.5802469136 im.thumbnail((33, 33)) assert im.size == (33, 21) # ratio is 1.5714285714 im = Image.new("L", (162, 256)) # ratio is 0.6328125 im.thumbnail((33, 33)) assert im.size == (21, 33) # ratio is 0.6363636364 im = Image.new("L", (145, 100)) # ratio is 1.45 im.thumbnail((50, 50)) assert im.size == (50, 34) # ratio is 1.47058823529 im = Image.new("L", (100, 145)) # ratio is 0.689655172414 im.thumbnail((50, 50)) assert im.size == (34, 50) # ratio is 0.68 im = Image.new("L", (100, 30)) # ratio is 3.333333333333 im.thumbnail((75, 75)) assert im.size == (75, 23) # ratio is 3.260869565217 def test_division_by_zero() -> None: im = Image.new("L", (200, 2)) im.thumbnail((75, 75)) assert im.size == (75, 1) def test_float() -> None: im = Image.new("L", (128, 128)) im.thumbnail((99.9, 99.9)) assert im.size == (99, 99) def test_no_resize() -> None: # Check that draft() can resize the image to the destination size with Image.open("Tests/images/hopper.jpg") as im: im.draft(None, (64, 64)) assert im.size == (64, 64) # Test thumbnail(), where only draft() is necessary to resize the image with Image.open("Tests/images/hopper.jpg") as im: im.thumbnail((64, 64)) assert im.size == (64, 64) @skip_unless_feature("libtiff") def test_transposed() -> None: with Image.open("Tests/images/g4_orientation_5.tif") as im: assert im.size == (590, 88) im.thumbnail((64, 64)) assert im.size == (64, 10) with Image.open("Tests/images/g4_orientation_5.tif") as im: im.thumbnail((590, 88), reducing_gap=None) assert im.size == (590, 88) def test_load_first_unless_jpeg(monkeypatch: pytest.MonkeyPatch) -> None: # Test that thumbnail() still uses draft() for JPEG with Image.open("Tests/images/hopper.jpg") as im: original_draft = im.draft def im_draft( mode: str | None, size: tuple[int, int] | None ) -> tuple[str, tuple[int, int, float, float]] | None: result = original_draft(mode, size) assert result is not None return result monkeypatch.setattr(im, "draft", im_draft) im.thumbnail((64, 64)) # valgrind test is failing with memory allocated in libjpeg @pytest.mark.valgrind_known_error(reason="Known Failing") def test_DCT_scaling_edges() -> None: # Make an image with red borders and size (N * 8) + 1 to cross DCT grid im = Image.new("RGB", (257, 257), "red") im.paste(Image.new("RGB", (235, 235)), (11, 11)) thumb = fromstring(tostring(im, "JPEG", quality=99, subsampling=0)) # small reducing_gap to amplify the effect thumb.thumbnail((32, 32), Image.Resampling.BICUBIC, reducing_gap=1.0) ref = im.resize((32, 32), Image.Resampling.BICUBIC) # This is still JPEG, some error is present. Without the fix it is 11.5 assert_image_similar(thumb, ref, 1.5) def test_reducing_gap_values() -> None: im = hopper() im.thumbnail((18, 18), Image.Resampling.BICUBIC) ref = hopper() ref.thumbnail((18, 18), Image.Resampling.BICUBIC, reducing_gap=2.0) # reducing_gap=2.0 should be the default assert_image_equal(ref, im) ref = hopper() ref.thumbnail((18, 18), Image.Resampling.BICUBIC, reducing_gap=None) with pytest.raises(pytest.fail.Exception): assert_image_equal(ref, im) assert_image_similar(ref, im, 3.5) def test_reducing_gap_for_DCT_scaling() -> None: with Image.open("Tests/images/hopper.jpg") as ref: # thumbnail should call draft with reducing_gap scale ref.draft(None, (18 * 3, 18 * 3)) ref = ref.resize((18, 18), Image.Resampling.BICUBIC) with Image.open("Tests/images/hopper.jpg") as im: im.thumbnail((18, 18), Image.Resampling.BICUBIC, reducing_gap=3.0) assert_image_similar(ref, im, 1.4)