from __future__ import annotations from collections.abc import Generator from contextlib import contextmanager import pytest from PIL import Image, ImageDraw from .helper import ( assert_image_equal, assert_image_similar, hopper, mark_if_feature_version, ) class TestImagingResampleVulnerability: # see https://github.com/python-pillow/Pillow/issues/1710 def test_overflow(self) -> None: im = hopper("L") size_too_large = 0x100000008 // 4 size_normal = 1000 # unimportant for xsize, ysize in ( (size_too_large, size_normal), (size_normal, size_too_large), ): with pytest.raises(MemoryError): # any resampling filter will do here im.im.resize((xsize, ysize), Image.Resampling.BILINEAR) def test_invalid_size(self) -> None: im = hopper() # Should not crash im.resize((100, 100)) with pytest.raises(ValueError): im.resize((-100, 100)) with pytest.raises(ValueError): im.resize((100, -100)) def test_modify_after_resizing(self) -> None: im = hopper("RGB") # get copy with same size copy = im.resize(im.size) # some in-place operation copy.paste("black", (0, 0, im.width // 2, im.height // 2)) # image should be different assert im.tobytes() != copy.tobytes() class TestImagingCoreResampleAccuracy: def make_case(self, mode: str, size: tuple[int, int], color: int) -> Image.Image: """Makes a sample image with two dark and two bright squares. For example: e0 e0 1f 1f e0 e0 1f 1f 1f 1f e0 e0 1f 1f e0 e0 """ case = Image.new("L", size, 255 - color) rectangle = ImageDraw.Draw(case).rectangle rectangle((0, 0, size[0] // 2 - 1, size[1] // 2 - 1), color) rectangle((size[0] // 2, size[1] // 2, size[0], size[1]), color) return Image.merge(mode, [case] * len(mode)) def make_sample(self, data: str, size: tuple[int, int]) -> Image.Image: """Restores a sample image from given data string which contains hex-encoded pixels from the top left fourth of a sample. """ data = data.replace(" ", "") sample = Image.new("L", size) s_px = sample.load() assert s_px is not None w, h = size[0] // 2, size[1] // 2 for y in range(h): for x in range(w): val = int(data[(y * w + x) * 2 : (y * w + x + 1) * 2], 16) s_px[x, y] = val s_px[size[0] - x - 1, size[1] - y - 1] = val s_px[x, size[1] - y - 1] = 255 - val s_px[size[0] - x - 1, y] = 255 - val return sample def check_case(self, case: Image.Image, sample: Image.Image) -> None: s_px = sample.load() c_px = case.load() assert s_px is not None assert c_px is not None for y in range(case.size[1]): for x in range(case.size[0]): if c_px[x, y] != s_px[x, y]: message = ( f"\nHave: \n{self.serialize_image(case)}\n" f"\nExpected: \n{self.serialize_image(sample)}" ) assert s_px[x, y] == c_px[x, y], message def serialize_image(self, image: Image.Image) -> str: s_px = image.load() assert s_px is not None return "\n".join( " ".join(f"{s_px[x, y]:02x}" for x in range(image.size[0])) for y in range(image.size[1]) ) @pytest.mark.parametrize("mode", ("RGBX", "RGB", "La", "L")) def test_reduce_box(self, mode: str) -> None: case = self.make_case(mode, (8, 8), 0xE1) case = case.resize((4, 4), Image.Resampling.BOX) # fmt: off data = ("e1 e1" "e1 e1") # fmt: on for channel in case.split(): self.check_case(channel, self.make_sample(data, (4, 4))) @pytest.mark.parametrize("mode", ("RGBX", "RGB", "La", "L")) def test_reduce_bilinear(self, mode: str) -> None: case = self.make_case(mode, (8, 8), 0xE1) case = case.resize((4, 4), Image.Resampling.BILINEAR) # fmt: off data = ("e1 c9" "c9 b7") # fmt: on for channel in case.split(): self.check_case(channel, self.make_sample(data, (4, 4))) @pytest.mark.parametrize("mode", ("RGBX", "RGB", "La", "L")) def test_reduce_hamming(self, mode: str) -> None: case = self.make_case(mode, (8, 8), 0xE1) case = case.resize((4, 4), Image.Resampling.HAMMING) # fmt: off data = ("e1 da" "da d3") # fmt: on for channel in case.split(): self.check_case(channel, self.make_sample(data, (4, 4))) @pytest.mark.parametrize("mode", ("RGBX", "RGB", "La", "L")) def test_reduce_bicubic(self, mode: str) -> None: case = self.make_case(mode, (12, 12), 0xE1) case = case.resize((6, 6), Image.Resampling.BICUBIC) # fmt: off data = ("e1 e3 d4" "e3 e5 d6" "d4 d6 c9") # fmt: on for channel in case.split(): self.check_case(channel, self.make_sample(data, (6, 6))) @pytest.mark.parametrize("mode", ("RGBX", "RGB", "La", "L")) def test_reduce_lanczos(self, mode: str) -> None: case = self.make_case(mode, (16, 16), 0xE1) case = case.resize((8, 8), Image.Resampling.LANCZOS) # fmt: off data = ("e1 e0 e4 d7" "e0 df e3 d6" "e4 e3 e7 da" "d7 d6 d9 ce") # fmt: on for channel in case.split(): self.check_case(channel, self.make_sample(data, (8, 8))) @pytest.mark.parametrize("mode", ("RGBX", "RGB", "La", "L")) def test_enlarge_box(self, mode: str) -> None: case = self.make_case(mode, (2, 2), 0xE1) case = case.resize((4, 4), Image.Resampling.BOX) # fmt: off data = ("e1 e1" "e1 e1") # fmt: on for channel in case.split(): self.check_case(channel, self.make_sample(data, (4, 4))) @pytest.mark.parametrize("mode", ("RGBX", "RGB", "La", "L")) def test_enlarge_bilinear(self, mode: str) -> None: case = self.make_case(mode, (2, 2), 0xE1) case = case.resize((4, 4), Image.Resampling.BILINEAR) # fmt: off data = ("e1 b0" "b0 98") # fmt: on for channel in case.split(): self.check_case(channel, self.make_sample(data, (4, 4))) @pytest.mark.parametrize("mode", ("RGBX", "RGB", "La", "L")) def test_enlarge_hamming(self, mode: str) -> None: case = self.make_case(mode, (2, 2), 0xE1) case = case.resize((4, 4), Image.Resampling.HAMMING) # fmt: off data = ("e1 d2" "d2 c5") # fmt: on for channel in case.split(): self.check_case(channel, self.make_sample(data, (4, 4))) @pytest.mark.parametrize("mode", ("RGBX", "RGB", "La", "L")) def test_enlarge_bicubic(self, mode: str) -> None: case = self.make_case(mode, (4, 4), 0xE1) case = case.resize((8, 8), Image.Resampling.BICUBIC) # fmt: off data = ("e1 e5 ee b9" "e5 e9 f3 bc" "ee f3 fd c1" "b9 bc c1 a2") # fmt: on for channel in case.split(): self.check_case(channel, self.make_sample(data, (8, 8))) @pytest.mark.parametrize("mode", ("RGBX", "RGB", "La", "L")) def test_enlarge_lanczos(self, mode: str) -> None: case = self.make_case(mode, (6, 6), 0xE1) case = case.resize((12, 12), Image.Resampling.LANCZOS) data = ( "e1 e0 db ed f5 b8" "e0 df da ec f3 b7" "db db d6 e7 ee b5" "ed ec e6 fb ff bf" "f5 f4 ee ff ff c4" "b8 b7 b4 bf c4 a0" ) for channel in case.split(): self.check_case(channel, self.make_sample(data, (12, 12))) def test_box_filter_correct_range(self) -> None: im = Image.new("RGB", (8, 8), "#1688ff").resize( (100, 100), Image.Resampling.BOX ) ref = Image.new("RGB", (100, 100), "#1688ff") assert_image_equal(im, ref) class TestCoreResampleConsistency: def make_case( self, mode: str, fill: tuple[int, int, int] | float ) -> tuple[Image.Image, tuple[int, ...]]: im = Image.new(mode, (512, 9), fill) px = im.load() assert px is not None return im.resize((9, 512), Image.Resampling.LANCZOS), px[0, 0] def run_case(self, case: tuple[Image.Image, int | tuple[int, ...]]) -> None: channel, color = case px = channel.load() assert px is not None for x in range(channel.size[0]): for y in range(channel.size[1]): if px[x, y] != color: message = f"{px[x, y]} != {color} for pixel {(x, y)}" assert px[x, y] == color, message def test_8u(self) -> None: im, color = self.make_case("RGB", (0, 64, 255)) r, g, b = im.split() self.run_case((r, color[0])) self.run_case((g, color[1])) self.run_case((b, color[2])) self.run_case(self.make_case("L", 12)) def test_32i(self) -> None: self.run_case(self.make_case("I", 12)) self.run_case(self.make_case("I", 0x7FFFFFFF)) self.run_case(self.make_case("I", -12)) self.run_case(self.make_case("I", -1 << 31)) def test_32f(self) -> None: self.run_case(self.make_case("F", 1)) self.run_case(self.make_case("F", 3.40282306074e38)) self.run_case(self.make_case("F", 1.175494e-38)) self.run_case(self.make_case("F", 1.192093e-07)) class TestCoreResampleAlphaCorrect: def make_levels_case(self, mode: str) -> Image.Image: i = Image.new(mode, (256, 16)) px = i.load() assert px is not None for y in range(i.size[1]): for x in range(i.size[0]): pix = [x] * len(mode) pix[-1] = 255 - y * 16 px[x, y] = tuple(pix) return i def run_levels_case(self, i: Image.Image) -> None: px = i.load() assert px is not None for y in range(i.size[1]): used_colors = {px[x, y][0] for x in range(i.size[0])} assert 256 == len(used_colors), ( "All colors should be present in resized image. " f"Only {len(used_colors)} on line {y}." ) @pytest.mark.xfail(reason="Current implementation isn't precise enough") def test_levels_rgba(self) -> None: case = self.make_levels_case("RGBA") self.run_levels_case(case.resize((512, 32), Image.Resampling.BOX)) self.run_levels_case(case.resize((512, 32), Image.Resampling.BILINEAR)) self.run_levels_case(case.resize((512, 32), Image.Resampling.HAMMING)) self.run_levels_case(case.resize((512, 32), Image.Resampling.BICUBIC)) self.run_levels_case(case.resize((512, 32), Image.Resampling.LANCZOS)) @pytest.mark.xfail(reason="Current implementation isn't precise enough") def test_levels_la(self) -> None: case = self.make_levels_case("LA") self.run_levels_case(case.resize((512, 32), Image.Resampling.BOX)) self.run_levels_case(case.resize((512, 32), Image.Resampling.BILINEAR)) self.run_levels_case(case.resize((512, 32), Image.Resampling.HAMMING)) self.run_levels_case(case.resize((512, 32), Image.Resampling.BICUBIC)) self.run_levels_case(case.resize((512, 32), Image.Resampling.LANCZOS)) def make_dirty_case( self, mode: str, clean_pixel: tuple[int, ...], dirty_pixel: tuple[int, ...] ) -> Image.Image: i = Image.new(mode, (64, 64), dirty_pixel) px = i.load() assert px is not None xdiv4 = i.size[0] // 4 ydiv4 = i.size[1] // 4 for y in range(ydiv4 * 2): for x in range(xdiv4 * 2): px[x + xdiv4, y + ydiv4] = clean_pixel return i def run_dirty_case(self, i: Image.Image, clean_pixel: tuple[int, ...]) -> None: px = i.load() assert px is not None for y in range(i.size[1]): for x in range(i.size[0]): if px[x, y][-1] != 0 and px[x, y][:-1] != clean_pixel: message = ( f"pixel at ({x}, {y}) is different:\n" f"{px[x, y]}\n{clean_pixel}" ) assert px[x, y][:3] == clean_pixel, message def test_dirty_pixels_rgba(self) -> None: case = self.make_dirty_case("RGBA", (255, 255, 0, 128), (0, 0, 255, 0)) self.run_dirty_case(case.resize((20, 20), Image.Resampling.BOX), (255, 255, 0)) self.run_dirty_case( case.resize((20, 20), Image.Resampling.BILINEAR), (255, 255, 0) ) self.run_dirty_case( case.resize((20, 20), Image.Resampling.HAMMING), (255, 255, 0) ) self.run_dirty_case( case.resize((20, 20), Image.Resampling.BICUBIC), (255, 255, 0) ) self.run_dirty_case( case.resize((20, 20), Image.Resampling.LANCZOS), (255, 255, 0) ) def test_dirty_pixels_la(self) -> None: case = self.make_dirty_case("LA", (255, 128), (0, 0)) self.run_dirty_case(case.resize((20, 20), Image.Resampling.BOX), (255,)) self.run_dirty_case(case.resize((20, 20), Image.Resampling.BILINEAR), (255,)) self.run_dirty_case(case.resize((20, 20), Image.Resampling.HAMMING), (255,)) self.run_dirty_case(case.resize((20, 20), Image.Resampling.BICUBIC), (255,)) self.run_dirty_case(case.resize((20, 20), Image.Resampling.LANCZOS), (255,)) class TestCoreResamplePasses: @contextmanager def count(self, diff: int) -> Generator[None, None, None]: count = Image.core.get_stats()["new_count"] yield assert Image.core.get_stats()["new_count"] - count == diff def test_horizontal(self) -> None: im = hopper("L") with self.count(1): im.resize((im.size[0] - 10, im.size[1]), Image.Resampling.BILINEAR) def test_vertical(self) -> None: im = hopper("L") with self.count(1): im.resize((im.size[0], im.size[1] - 10), Image.Resampling.BILINEAR) def test_both(self) -> None: im = hopper("L") with self.count(2): im.resize((im.size[0] - 10, im.size[1] - 10), Image.Resampling.BILINEAR) def test_box_horizontal(self) -> None: im = hopper("L") box = (20, 0, im.size[0] - 20, im.size[1]) with self.count(1): # the same size, but different box with_box = im.resize(im.size, Image.Resampling.BILINEAR, box) with self.count(2): cropped = im.crop(box).resize(im.size, Image.Resampling.BILINEAR) assert_image_similar(with_box, cropped, 0.1) def test_box_vertical(self) -> None: im = hopper("L") box = (0, 20, im.size[0], im.size[1] - 20) with self.count(1): # the same size, but different box with_box = im.resize(im.size, Image.Resampling.BILINEAR, box) with self.count(2): cropped = im.crop(box).resize(im.size, Image.Resampling.BILINEAR) assert_image_similar(with_box, cropped, 0.1) class TestCoreResampleCoefficients: def test_reduce(self) -> None: test_color = 254 for size in range(400000, 400010, 2): i = Image.new("L", (size, 1), 0) draw = ImageDraw.Draw(i) draw.rectangle((0, 0, i.size[0] // 2 - 1, 0), test_color) px = i.resize((5, i.size[1]), Image.Resampling.BICUBIC).load() assert px is not None if px[2, 0] != test_color // 2: assert test_color // 2 == px[2, 0] def test_non_zero_coefficients(self) -> None: # regression test for the wrong coefficients calculation # due to bug https://github.com/python-pillow/Pillow/issues/2161 im = Image.new("RGBA", (1280, 1280), (0x20, 0x40, 0x60, 0xFF)) histogram = im.resize((256, 256), Image.Resampling.BICUBIC).histogram() # first channel assert histogram[0x100 * 0 + 0x20] == 0x10000 # second channel assert histogram[0x100 * 1 + 0x40] == 0x10000 # third channel assert histogram[0x100 * 2 + 0x60] == 0x10000 # fourth channel assert histogram[0x100 * 3 + 0xFF] == 0x10000 class TestCoreResampleBox: @pytest.mark.parametrize( "resample", ( Image.Resampling.NEAREST, Image.Resampling.BOX, Image.Resampling.BILINEAR, Image.Resampling.HAMMING, Image.Resampling.BICUBIC, Image.Resampling.LANCZOS, ), ) def test_wrong_arguments(self, resample: Image.Resampling) -> None: im = hopper() im.resize((32, 32), resample, (0, 0, im.width, im.height)) im.resize((32, 32), resample, (20, 20, im.width, im.height)) im.resize((32, 32), resample, (20, 20, 20, 100)) im.resize((32, 32), resample, (20, 20, 100, 20)) with pytest.raises(TypeError, match="must be sequence of length 4"): im.resize((32, 32), resample, (im.width, im.height)) # type: ignore[arg-type] with pytest.raises(ValueError, match="can't be negative"): im.resize((32, 32), resample, (-20, 20, 100, 100)) with pytest.raises(ValueError, match="can't be negative"): im.resize((32, 32), resample, (20, -20, 100, 100)) with pytest.raises(ValueError, match="can't be empty"): im.resize((32, 32), resample, (20.1, 20, 20, 100)) with pytest.raises(ValueError, match="can't be empty"): im.resize((32, 32), resample, (20, 20.1, 100, 20)) with pytest.raises(ValueError, match="can't be empty"): im.resize((32, 32), resample, (20.1, 20.1, 20, 20)) with pytest.raises(ValueError, match="can't exceed"): im.resize((32, 32), resample, (0, 0, im.width + 1, im.height)) with pytest.raises(ValueError, match="can't exceed"): im.resize((32, 32), resample, (0, 0, im.width, im.height + 1)) def resize_tiled( self, im: Image.Image, dst_size: tuple[int, int], xtiles: int, ytiles: int ) -> Image.Image: def split_range( size: int, tiles: int ) -> Generator[tuple[int, int], None, None]: scale = size / tiles for i in range(tiles): yield int(round(scale * i)), int(round(scale * (i + 1))) tiled = Image.new(im.mode, dst_size) scale = (im.size[0] / tiled.size[0], im.size[1] / tiled.size[1]) for y0, y1 in split_range(dst_size[1], ytiles): for x0, x1 in split_range(dst_size[0], xtiles): box = (x0 * scale[0], y0 * scale[1], x1 * scale[0], y1 * scale[1]) tile = im.resize((x1 - x0, y1 - y0), Image.Resampling.BICUBIC, box) tiled.paste(tile, (x0, y0)) return tiled @mark_if_feature_version( pytest.mark.valgrind_known_error, "libjpeg_turbo", "2.0", reason="Known Failing" ) def test_tiles(self) -> None: with Image.open("Tests/images/flower.jpg") as im: assert im.size == (480, 360) dst_size = (251, 188) reference = im.resize(dst_size, Image.Resampling.BICUBIC) for tiles in [(1, 1), (3, 3), (9, 7), (100, 100)]: tiled = self.resize_tiled(im, dst_size, *tiles) assert_image_similar(reference, tiled, 0.01) @mark_if_feature_version( pytest.mark.valgrind_known_error, "libjpeg_turbo", "2.0", reason="Known Failing" ) def test_subsample(self) -> None: # This test shows advantages of the subpixel resizing # after supersampling (e.g. during JPEG decoding). with Image.open("Tests/images/flower.jpg") as im: assert im.size == (480, 360) dst_size = (48, 36) # Reference is cropped image resized to destination reference = im.crop((0, 0, 473, 353)).resize( dst_size, Image.Resampling.BICUBIC ) # Image.Resampling.BOX emulates supersampling (480 / 8 = 60, 360 / 8 = 45) supersampled = im.resize((60, 45), Image.Resampling.BOX) with_box = supersampled.resize( dst_size, Image.Resampling.BICUBIC, (0, 0, 59.125, 44.125) ) without_box = supersampled.resize(dst_size, Image.Resampling.BICUBIC) # error with box should be much smaller than without assert_image_similar(reference, with_box, 6) with pytest.raises(AssertionError, match=r"difference 29\."): assert_image_similar(reference, without_box, 5) @pytest.mark.parametrize("mode", ("RGB", "L", "RGBA", "LA", "I", "")) @pytest.mark.parametrize( "resample", (Image.Resampling.NEAREST, Image.Resampling.BILINEAR) ) def test_formats(self, mode: str, resample: Image.Resampling) -> None: im = hopper(mode) box = (20, 20, im.size[0] - 20, im.size[1] - 20) with_box = im.resize((32, 32), resample, box) cropped = im.crop(box).resize((32, 32), resample) assert_image_similar(cropped, with_box, 0.4) def test_passthrough(self) -> None: # When no resize is required im = hopper() for size, box in [ ((40, 50), (0, 0, 40, 50)), ((40, 50), (0, 10, 40, 60)), ((40, 50), (10, 0, 50, 50)), ((40, 50), (10, 20, 50, 70)), ]: res = im.resize(size, Image.Resampling.LANCZOS, box) assert res.size == size assert_image_equal(res, im.crop(box), f">>> {size} {box}") def test_no_passthrough(self) -> None: # When resize is required im = hopper() for size, box in [ ((40, 50), (0.4, 0.4, 40.4, 50.4)), ((40, 50), (0.4, 10.4, 40.4, 60.4)), ((40, 50), (10.4, 0.4, 50.4, 50.4)), ((40, 50), (10.4, 20.4, 50.4, 70.4)), ]: res = im.resize(size, Image.Resampling.LANCZOS, box) assert res.size == size with pytest.raises(AssertionError, match=r"difference \d"): # check that the difference at least that much assert_image_similar(res, im.crop(box), 20, f">>> {size} {box}") @pytest.mark.parametrize( "flt", (Image.Resampling.NEAREST, Image.Resampling.BICUBIC) ) def test_skip_horizontal(self, flt: Image.Resampling) -> None: # Can skip resize for one dimension im = hopper() for size, box in [ ((40, 50), (0, 0, 40, 90)), ((40, 50), (0, 20, 40, 90)), ((40, 50), (10, 0, 50, 90)), ((40, 50), (10, 20, 50, 90)), ]: res = im.resize(size, flt, box) assert res.size == size # Borders should be slightly different assert_image_similar( res, im.crop(box).resize(size, flt), 0.4, f">>> {size} {box} {flt}", ) @pytest.mark.parametrize( "flt", (Image.Resampling.NEAREST, Image.Resampling.BICUBIC) ) def test_skip_vertical(self, flt: Image.Resampling) -> None: # Can skip resize for one dimension im = hopper() for size, box in [ ((40, 50), (0, 0, 90, 50)), ((40, 50), (20, 0, 90, 50)), ((40, 50), (0, 10, 90, 60)), ((40, 50), (20, 10, 90, 60)), ]: res = im.resize(size, flt, box) assert res.size == size # Borders should be slightly different assert_image_similar( res, im.crop(box).resize(size, flt), 0.4, f">>> {size} {box} {flt}", )