#include "Imaging.h" #include /* 8 bits for result. Table can overflow [0, 1.0] range, so we need extra bits for overflow and negative values. NOTE: This value should be the same as in _imaging/_prepare_lut_table() */ #define PRECISION_BITS (16 - 8 - 2) #define PRECISION_ROUNDING (1<<(PRECISION_BITS-1)) /* 8 — scales are multiplyed on byte. 6 — max index in the table (size is 65, but index 64 is not reachable) */ #define SCALE_BITS (32 - 8 - 6) #define SCALE_MASK ((1 << SCALE_BITS) - 1) #define SHIFT_BITS (16 - 1) #define SHIFT_ROUNDING (1<<(SHIFT_BITS-1)) UINT8 _lookups2[1024] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, }; UINT8 *lookups2 = &_lookups2[512]; static inline UINT8 clip8(int in) { return lookups2[(in + PRECISION_ROUNDING) >> PRECISION_BITS]; } static inline void interpolate3(INT16 out[3], const INT16 a[3], const INT16 b[3], INT16 shift) { out[0] = (a[0] * ((1<> SHIFT_BITS; out[1] = (a[1] * ((1<> SHIFT_BITS; out[2] = (a[2] * ((1<> SHIFT_BITS; } static inline void interpolate4(INT16 out[4], const INT16 a[4], const INT16 b[4], INT16 shift) { out[0] = (a[0] * ((1<> SHIFT_BITS; out[1] = (a[1] * ((1<> SHIFT_BITS; out[2] = (a[2] * ((1<> SHIFT_BITS; out[3] = (a[3] * ((1<> SHIFT_BITS; } static inline int table3D_index3(int index1D, int index2D, int index3D, int size1D, int size1D_2D) { return (index1D + index2D * size1D + index3D * size1D_2D) * 3; } static inline int table3D_index4(int index1D, int index2D, int index3D, int size1D, int size1D_2D) { return (index1D + index2D * size1D + index3D * size1D_2D) * 4; } /* Transforms colors of imIn using provided 3D look-up table and puts the result in imOut. Returns imOut on sucess or 0 on error. imOut, imIn — images, should be the same size and may be the same image. Should have 3 or 4 channels. table_channels — number of channels in the look-up table, 3 or 4. Should be less or equal than number of channels in imOut image; size1D, size_2D and size3D — dimensions of provided table; table — flatten table, array with table_channels × size1D × size2D × size3D elements, where channels are changed first, then 1D, then​ 2D, then 3D. Each element is signed 16-bit int where 0 is lowest output value and 255 << PRECISION_BITS (16320) is highest value. */ Imaging ImagingColorLUT3D_linear(Imaging imOut, Imaging imIn, int table_channels, int size1D, int size2D, int size3D, INT16* table) { /* This float to int conversion doesn't have rounding error compensation (+ 0.5) for two reasons: 1. As we don't hit the highest value, we can use one extra bit for precision. 2. For every pixel, we interpolate 8 elements from the table: current and +1 for every dimension and they combinations. If we hit the upper cells from the table, +1 cells will be outside of the table. With this compensation we never hit the upper cells but this also doesn't introduce any noticable difference. */ UINT32 scale1D = (size1D - 1) / 255.0 * (1< 4) { PyErr_SetString(PyExc_ValueError, "table_channels could be 3 or 4"); return NULL; } if (imIn->type != IMAGING_TYPE_UINT8 || imOut->type != IMAGING_TYPE_UINT8 || imIn->bands < 3 || imOut->bands < table_channels ) { return (Imaging) ImagingError_ModeError(); } /* In case we have one extra band in imOut and don't have in imIn.*/ if (imOut->bands > table_channels && imOut->bands > imIn->bands) { return (Imaging) ImagingError_ModeError(); } for (y = 0; y < imOut->ysize; y++) { UINT8* rowIn = (UINT8 *)imIn->image[y]; UINT32* rowOut = (UINT32 *)imOut->image[y]; for (x = 0; x < imOut->xsize; x++) { UINT32 index1D = rowIn[x*4 + 0] * scale1D; UINT32 index2D = rowIn[x*4 + 1] * scale2D; UINT32 index3D = rowIn[x*4 + 2] * scale3D; INT16 shift1D = (SCALE_MASK & index1D) >> (SCALE_BITS - SHIFT_BITS); INT16 shift2D = (SCALE_MASK & index2D) >> (SCALE_BITS - SHIFT_BITS); INT16 shift3D = (SCALE_MASK & index3D) >> (SCALE_BITS - SHIFT_BITS); int idx = table3D_index3( index1D >> SCALE_BITS, index2D >> SCALE_BITS, index3D >> SCALE_BITS, size1D, size1D_2D); INT16 result[4], left[4], right[4]; INT16 leftleft[4], leftright[4], rightleft[4], rightright[4]; if (table_channels == 3) { interpolate3(leftleft, &table[idx + 0], &table[idx + 3], shift1D); interpolate3(leftright, &table[idx + size1D*3], &table[idx + size1D*3 + 3], shift1D); interpolate3(left, leftleft, leftright, shift2D); interpolate3(rightleft, &table[idx + size1D_2D*3], &table[idx + size1D_2D*3 + 3], shift1D); interpolate3(rightright, &table[idx + size1D_2D*3 + size1D*3], &table[idx + size1D_2D*3 + size1D*3 + 3], shift1D); interpolate3(right, rightleft, rightright, shift2D); interpolate3(result, left, right, shift3D); rowOut[x] = MAKE_UINT32( clip8(result[0]), clip8(result[1]), clip8(result[2]), rowIn[x*4 + 3]); } if (table_channels == 4) { interpolate4(leftleft, &table[idx + 0], &table[idx + 4], shift1D); interpolate4(leftright, &table[idx + size1D*4], &table[idx + size1D*4 + 4], shift1D); interpolate4(left, leftleft, leftright, shift2D); interpolate4(rightleft, &table[idx + size1D_2D*4], &table[idx + size1D_2D*4 + 4], shift1D); interpolate4(rightright, &table[idx + size1D_2D*4 + size1D*4], &table[idx + size1D_2D*4 + size1D*4 + 4], shift1D); interpolate4(right, rightleft, rightright, shift2D); interpolate4(result, left, right, shift3D); rowOut[x] = MAKE_UINT32( clip8(result[0]), clip8(result[1]), clip8(result[2]), clip8(result[3])); } } } return imOut; }