# # The Python Imaging Library. # $Id$ # # global image statistics # # History: # 1996-04-05 fl Created # 1997-05-21 fl Added mask; added rms, var, stddev attributes # 1997-08-05 fl Added median # 1998-07-05 hk Fixed integer overflow error # # Notes: # This class shows how to implement delayed evaluation of attributes. # To get a certain value, simply access the corresponding attribute. # The __getattr__ dispatcher takes care of the rest. # # Copyright (c) Secret Labs AB 1997. # Copyright (c) Fredrik Lundh 1996-97. # # See the README file for information on usage and redistribution. # from __future__ import annotations import math from functools import cached_property from . import Image class Stat: def __init__( self, image_or_list: Image.Image | list[int], mask: Image.Image | None = None ) -> None: """ Calculate statistics for the given image. If a mask is included, only the regions covered by that mask are included in the statistics. You can also pass in a previously calculated histogram. :param image: A PIL image, or a precalculated histogram. .. note:: For a PIL image, calculations rely on the :py:meth:`~PIL.Image.Image.histogram` method. The pixel counts are grouped into 256 bins, even if the image has more than 8 bits per channel. So ``I`` and ``F`` mode images have a maximum ``mean``, ``median`` and ``rms`` of 255, and cannot have an ``extrema`` maximum of more than 255. :param mask: An optional mask. """ if isinstance(image_or_list, Image.Image): self.h = image_or_list.histogram(mask) else: self.h = image_or_list if not isinstance(self.h, list): msg = "first argument must be image or list" # type: ignore[unreachable] raise TypeError(msg) self.bands = list(range(len(self.h) // 256)) @cached_property def extrema(self) -> list[tuple[int, int]]: """ Min/max values for each band in the image. .. note:: This relies on the :py:meth:`~PIL.Image.Image.histogram` method, and simply returns the low and high bins used. This is correct for images with 8 bits per channel, but fails for other modes such as ``I`` or ``F``. Instead, use :py:meth:`~PIL.Image.Image.getextrema` to return per-band extrema for the image. This is more correct and efficient because, for non-8-bit modes, the histogram method uses :py:meth:`~PIL.Image.Image.getextrema` to determine the bins used. """ def minmax(histogram: list[int]) -> tuple[int, int]: res_min, res_max = 255, 0 for i in range(256): if histogram[i]: res_min = i break for i in range(255, -1, -1): if histogram[i]: res_max = i break return res_min, res_max return [minmax(self.h[i:]) for i in range(0, len(self.h), 256)] @cached_property def count(self) -> list[int]: """Total number of pixels for each band in the image.""" return [sum(self.h[i : i + 256]) for i in range(0, len(self.h), 256)] @cached_property def sum(self) -> list[float]: """Sum of all pixels for each band in the image.""" v = [] for i in range(0, len(self.h), 256): layer_sum = 0.0 for j in range(256): layer_sum += j * self.h[i + j] v.append(layer_sum) return v @cached_property def sum2(self) -> list[float]: """Squared sum of all pixels for each band in the image.""" v = [] for i in range(0, len(self.h), 256): sum2 = 0.0 for j in range(256): sum2 += (j**2) * float(self.h[i + j]) v.append(sum2) return v @cached_property def mean(self) -> list[float]: """Average (arithmetic mean) pixel level for each band in the image.""" return [self.sum[i] / self.count[i] for i in self.bands] @cached_property def median(self) -> list[int]: """Median pixel level for each band in the image.""" v = [] for i in self.bands: s = 0 half = self.count[i] // 2 b = i * 256 for j in range(256): s = s + self.h[b + j] if s > half: break v.append(j) return v @cached_property def rms(self) -> list[float]: """RMS (root-mean-square) for each band in the image.""" return [math.sqrt(self.sum2[i] / self.count[i]) for i in self.bands] @cached_property def var(self) -> list[float]: """Variance for each band in the image.""" return [ (self.sum2[i] - (self.sum[i] ** 2.0) / self.count[i]) / self.count[i] for i in self.bands ] @cached_property def stddev(self) -> list[float]: """Standard deviation for each band in the image.""" return [math.sqrt(self.var[i]) for i in self.bands] Global = Stat # compatibility