""" Tests for resize functionality. """ from __future__ import annotations from collections.abc import Generator from itertools import permutations from pathlib import Path import pytest from PIL import Image from .helper import ( assert_image_equal, assert_image_equal_tofile, assert_image_similar, hopper, skip_unless_feature, ) class TestImagingCoreResize: def resize( self, im: Image.Image, size: tuple[int, int], f: Image.Resampling ) -> Image.Image: # Image class independent version of resize. im.load() return im._new(im.im.resize(size, f)) @pytest.mark.parametrize( "mode", ("1", "P", "L", "I", "F", "RGB", "RGBA", "CMYK", "YCbCr", "I;16") ) def test_nearest_mode(self, mode: str) -> None: im = hopper(mode) r = self.resize(im, (15, 12), Image.Resampling.NEAREST) assert r.mode == mode assert r.size == (15, 12) assert r.im.bands == im.im.bands def test_convolution_modes(self) -> None: with pytest.raises(ValueError): self.resize(hopper("1"), (15, 12), Image.Resampling.BILINEAR) with pytest.raises(ValueError): self.resize(hopper("P"), (15, 12), Image.Resampling.BILINEAR) with pytest.raises(ValueError): self.resize(hopper("I;16"), (15, 12), Image.Resampling.BILINEAR) for mode in ["L", "I", "F", "RGB", "RGBA", "CMYK", "YCbCr"]: im = hopper(mode) r = self.resize(im, (15, 12), Image.Resampling.BILINEAR) assert r.mode == mode assert r.size == (15, 12) assert r.im.bands == im.im.bands @pytest.mark.parametrize( "resample", ( Image.Resampling.NEAREST, Image.Resampling.BOX, Image.Resampling.BILINEAR, Image.Resampling.HAMMING, Image.Resampling.BICUBIC, Image.Resampling.LANCZOS, ), ) def test_reduce_filters(self, resample: Image.Resampling) -> None: r = self.resize(hopper("RGB"), (15, 12), resample) assert r.mode == "RGB" assert r.size == (15, 12) @pytest.mark.parametrize( "resample", ( Image.Resampling.NEAREST, Image.Resampling.BOX, Image.Resampling.BILINEAR, Image.Resampling.HAMMING, Image.Resampling.BICUBIC, Image.Resampling.LANCZOS, ), ) def test_enlarge_filters(self, resample: Image.Resampling) -> None: r = self.resize(hopper("RGB"), (212, 195), resample) assert r.mode == "RGB" assert r.size == (212, 195) @pytest.mark.parametrize( "resample", ( Image.Resampling.NEAREST, Image.Resampling.BOX, Image.Resampling.BILINEAR, Image.Resampling.HAMMING, Image.Resampling.BICUBIC, Image.Resampling.LANCZOS, ), ) @pytest.mark.parametrize( "mode, channels_set", ( ("RGB", ("blank", "filled", "dirty")), ("RGBA", ("blank", "blank", "filled", "dirty")), ("LA", ("filled", "dirty")), ), ) def test_endianness( self, resample: Image.Resampling, mode: str, channels_set: tuple[str, ...] ) -> None: # Make an image with one colored pixel, in one channel. # When resized, that channel should be the same as a GS image. # Other channels should be unaffected. # The R and A channels should not swap, which is indicative of # an endianness issues. samples = { "blank": Image.new("L", (2, 2), 0), "filled": Image.new("L", (2, 2), 255), "dirty": Image.new("L", (2, 2), 0), } samples["dirty"].putpixel((1, 1), 128) # samples resized with current filter references = { name: self.resize(ch, (4, 4), resample) for name, ch in samples.items() } for channels in set(permutations(channels_set)): # compile image from different channels permutations im = Image.merge(mode, [samples[ch] for ch in channels]) resized = self.resize(im, (4, 4), resample) for i, ch in enumerate(resized.split()): # check what resized channel in image is the same # as separately resized channel assert_image_equal(ch, references[channels[i]]) @pytest.mark.parametrize( "resample", ( Image.Resampling.NEAREST, Image.Resampling.BOX, Image.Resampling.BILINEAR, Image.Resampling.HAMMING, Image.Resampling.BICUBIC, Image.Resampling.LANCZOS, ), ) def test_enlarge_zero(self, resample: Image.Resampling) -> None: r = self.resize(Image.new("RGB", (0, 0), "white"), (212, 195), resample) assert r.mode == "RGB" assert r.size == (212, 195) assert r.getdata()[0] == (0, 0, 0) def test_unknown_filter(self) -> None: with pytest.raises(ValueError): self.resize(hopper(), (10, 10), 9) # type: ignore[arg-type] def test_cross_platform(self, tmp_path: Path) -> None: # This test is intended for only check for consistent behaviour across # platforms. So if a future Pillow change requires that the test file # be updated, that is okay. im = hopper().resize((64, 64)) temp_file = str(tmp_path / "temp.gif") im.save(temp_file) with Image.open(temp_file) as reloaded: assert_image_equal_tofile(reloaded, "Tests/images/hopper_resized.gif") @pytest.fixture def gradients_image() -> Generator[Image.Image, None, None]: with Image.open("Tests/images/radial_gradients.png") as im: im.load() try: yield im finally: im.close() class TestReducingGapResize: def test_reducing_gap_values(self, gradients_image: Image.Image) -> None: ref = gradients_image.resize( (52, 34), Image.Resampling.BICUBIC, reducing_gap=None ) im = gradients_image.resize((52, 34), Image.Resampling.BICUBIC) assert_image_equal(ref, im) with pytest.raises(ValueError): gradients_image.resize((52, 34), Image.Resampling.BICUBIC, reducing_gap=0) with pytest.raises(ValueError): gradients_image.resize( (52, 34), Image.Resampling.BICUBIC, reducing_gap=0.99 ) @pytest.mark.parametrize( "box, epsilon", ((None, 4), ((1.1, 2.2, 510.8, 510.9), 4), ((3, 10, 410, 256), 10)), ) def test_reducing_gap_1( self, gradients_image: Image.Image, box: tuple[float, float, float, float], epsilon: float, ) -> None: ref = gradients_image.resize((52, 34), Image.Resampling.BICUBIC, box=box) im = gradients_image.resize( (52, 34), Image.Resampling.BICUBIC, box=box, reducing_gap=1.0 ) with pytest.raises(pytest.fail.Exception): assert_image_equal(ref, im) assert_image_similar(ref, im, epsilon) @pytest.mark.parametrize( "box, epsilon", ((None, 1.5), ((1.1, 2.2, 510.8, 510.9), 1.5), ((3, 10, 410, 256), 1)), ) def test_reducing_gap_2( self, gradients_image: Image.Image, box: tuple[float, float, float, float], epsilon: float, ) -> None: ref = gradients_image.resize((52, 34), Image.Resampling.BICUBIC, box=box) im = gradients_image.resize( (52, 34), Image.Resampling.BICUBIC, box=box, reducing_gap=2.0 ) with pytest.raises(pytest.fail.Exception): assert_image_equal(ref, im) assert_image_similar(ref, im, epsilon) @pytest.mark.parametrize( "box, epsilon", ((None, 1), ((1.1, 2.2, 510.8, 510.9), 1), ((3, 10, 410, 256), 0.5)), ) def test_reducing_gap_3( self, gradients_image: Image.Image, box: tuple[float, float, float, float], epsilon: float, ) -> None: ref = gradients_image.resize((52, 34), Image.Resampling.BICUBIC, box=box) im = gradients_image.resize( (52, 34), Image.Resampling.BICUBIC, box=box, reducing_gap=3.0 ) with pytest.raises(pytest.fail.Exception): assert_image_equal(ref, im) assert_image_similar(ref, im, epsilon) @pytest.mark.parametrize("box", (None, (1.1, 2.2, 510.8, 510.9), (3, 10, 410, 256))) def test_reducing_gap_8( self, gradients_image: Image.Image, box: tuple[float, float, float, float] ) -> None: ref = gradients_image.resize((52, 34), Image.Resampling.BICUBIC, box=box) im = gradients_image.resize( (52, 34), Image.Resampling.BICUBIC, box=box, reducing_gap=8.0 ) assert_image_equal(ref, im) @pytest.mark.parametrize( "box, epsilon", (((0, 0, 512, 512), 5.5), ((0.9, 1.7, 128, 128), 9.5)), ) def test_box_filter( self, gradients_image: Image.Image, box: tuple[float, float, float, float], epsilon: float, ) -> None: ref = gradients_image.resize((52, 34), Image.Resampling.BOX, box=box) im = gradients_image.resize( (52, 34), Image.Resampling.BOX, box=box, reducing_gap=1.0 ) assert_image_similar(ref, im, epsilon) class TestImageResize: def test_resize(self) -> None: def resize(mode: str, size: tuple[int, int] | list[int]) -> None: out = hopper(mode).resize(size) assert out.mode == mode assert out.size == tuple(size) for mode in "1", "P", "L", "RGB", "I", "F": resize(mode, (112, 103)) resize(mode, [188, 214]) # Test unknown resampling filter with hopper() as im: with pytest.raises(ValueError): im.resize((10, 10), -1) @skip_unless_feature("libtiff") def test_transposed(self) -> None: with Image.open("Tests/images/g4_orientation_5.tif") as img: im = img.resize((64, 64)) assert im.size == (64, 64) @pytest.mark.parametrize("mode", ("L", "RGB", "I", "F")) def test_default_filter_bicubic(self, mode: str) -> None: im = hopper(mode) assert im.resize((20, 20), Image.Resampling.BICUBIC) == im.resize((20, 20)) @pytest.mark.parametrize( "mode", ("1", "P", "I;16", "I;16L", "I;16B", "BGR;15", "BGR;16") ) def test_default_filter_nearest(self, mode: str) -> None: im = hopper(mode) assert im.resize((20, 20), Image.Resampling.NEAREST) == im.resize((20, 20))