/* * The Python Imaging Library * $Id$ * * hash tables used by the image quantizer * * history: * 98-09-10 tjs Contributed * 98-12-29 fl Added to PIL 1.0b1 * * Written by Toby J Sargeant . * * Copyright (c) 1998 by Toby J Sargeant * Copyright (c) 1998 by Secret Labs AB * * See the README file for information on usage and redistribution. */ #include #include #include #include #include "QuantHash.h" typedef struct _HashNode { struct _HashNode *next; HashKey_t key; HashVal_t value; } HashNode; struct _HashTable { HashNode **table; uint32_t length; uint32_t count; HashFunc hashFunc; HashCmpFunc cmpFunc; void *userData; }; #define MIN_LENGTH 11 #define RESIZE_FACTOR 3 static int _hashtable_insert_node(HashTable *,HashNode *,int,int,CollisionFunc); HashTable *hashtable_new(HashFunc hf,HashCmpFunc cf) { HashTable *h; h=malloc(sizeof(HashTable)); if (!h) { return NULL; } h->hashFunc=hf; h->cmpFunc=cf; h->length=MIN_LENGTH; h->count=0; h->userData=NULL; h->table=malloc(sizeof(HashNode *)*h->length); if (!h->table) { free(h); return NULL; } memset (h->table,0,sizeof(HashNode *)*h->length); return h; } static uint32_t _findPrime(uint32_t start,int dir) { static int unit[]={0,1,0,1,0,0,0,1,0,1,0,1,0,1,0,0}; uint32_t t; while (start>1) { if (!unit[start&0x0f]) { start+=dir; continue; } for (t=2;t=sqrt((double)start)) { break; } start+=dir; } return start; } static void _hashtable_rehash(HashTable *h,CollisionFunc cf,uint32_t newSize) { HashNode **oldTable=h->table; uint32_t i; HashNode *n,*nn; uint32_t oldSize; oldSize=h->length; h->table=malloc(sizeof(HashNode *)*newSize); if (!h->table) { h->table=oldTable; return; } h->length=newSize; h->count=0; memset (h->table,0,sizeof(HashNode *)*h->length); for (i=0;inext; _hashtable_insert_node(h,n,0,0,cf); } } free(oldTable); } static void _hashtable_resize(HashTable *h) { uint32_t newSize; uint32_t oldSize; oldSize=h->length; newSize=oldSize; if (h->count*RESIZE_FACTORlength) { newSize=_findPrime(h->length/2-1,-1); } else if (h->length*RESIZE_FACTORcount) { newSize=_findPrime(h->length*2+1,+1); } if (newSizehashFunc(h,node->key)%h->length; HashNode **n,*nv; int i; for (n=&(h->table[hash]);*n;n=&((*n)->next)) { nv=*n; i=h->cmpFunc(h,nv->key,node->key); if (!i) { if (cf) { nv->key=node->key; cf(h,&(nv->key),&(nv->value),node->key,node->value); free(node); return 1; } else { nv->key=node->key; nv->value=node->value; free(node); return 1; } } else if (i>0) { break; } } if (!update) { node->next=*n; *n=node; h->count++; if (resize) { _hashtable_resize(h); } return 1; } else { return 0; } } static int _hashtable_insert(HashTable *h,HashKey_t key,HashVal_t val,int resize,int update) { HashNode **n,*nv; HashNode *t; int i; uint32_t hash=h->hashFunc(h,key)%h->length; for (n=&(h->table[hash]);*n;n=&((*n)->next)) { nv=*n; i=h->cmpFunc(h,nv->key,key); if (!i) { nv->value=val; return 1; } else if (i>0) { break; } } if (!update) { t=malloc(sizeof(HashNode)); if (!t) { return 0; } t->next=*n; *n=t; t->key=key; t->value=val; h->count++; if (resize) { _hashtable_resize(h); } return 1; } else { return 0; } } int hashtable_insert_or_update_computed(HashTable *h, HashKey_t key, ComputeFunc newFunc, ComputeFunc existsFunc) { HashNode **n,*nv; HashNode *t; int i; uint32_t hash=h->hashFunc(h,key)%h->length; for (n=&(h->table[hash]);*n;n=&((*n)->next)) { nv=*n; i=h->cmpFunc(h,nv->key,key); if (!i) { if (existsFunc) { existsFunc(h,nv->key,&(nv->value)); } else { return 0; } return 1; } else if (i>0) { break; } } t=malloc(sizeof(HashNode)); if (!t) { return 0; } t->key=key; t->next=*n; *n=t; if (newFunc) { newFunc(h,t->key,&(t->value)); } else { free(t); return 0; } h->count++; _hashtable_resize(h); return 1; } int hashtable_insert(HashTable *h,HashKey_t key,HashVal_t val) { return _hashtable_insert(h,key,val,1,0); } void hashtable_foreach_update(HashTable *h,IteratorUpdateFunc i,void *u) { HashNode *n; uint32_t x; if (h->table) { for (x=0;xlength;x++) { for (n=h->table[x];n;n=n->next) { i(h,n->key,&(n->value),u); } } } } void hashtable_foreach(HashTable *h,IteratorFunc i,void *u) { HashNode *n; uint32_t x; if (h->table) { for (x=0;xlength;x++) { for (n=h->table[x];n;n=n->next) { i(h,n->key,n->value,u); } } } } void hashtable_free(HashTable *h) { HashNode *n,*nn; uint32_t i; if (h->table) { for (i=0;ilength;i++) { for (n=h->table[i];n;n=nn) { nn=n->next; free(n); } } free(h->table); } free(h); } void hashtable_rehash_compute(HashTable *h,CollisionFunc cf) { _hashtable_rehash(h,cf,h->length); } int hashtable_lookup(const HashTable *h,const HashKey_t key,HashVal_t *valp) { uint32_t hash=h->hashFunc(h,key)%h->length; HashNode *n; int i; for (n=h->table[hash];n;n=n->next) { i=h->cmpFunc(h,n->key,key); if (!i) { *valp=n->value; return 1; } else if (i>0) { break; } } return 0; } uint32_t hashtable_get_count(const HashTable *h) { return h->count; } void *hashtable_get_user_data(const HashTable *h) { return h->userData; } void *hashtable_set_user_data(HashTable *h,void *data) { void *r=h->userData; h->userData=data; return r; }