from helper import unittest, PillowTestCase, hopper
from helper import djpeg_available, cjpeg_available

from io import BytesIO
import os
import sys

from PIL import Image
from PIL import ImageFile
from PIL import JpegImagePlugin

codecs = dir(Image.core)

TEST_FILE = "Tests/images/hopper.jpg"


class TestFileJpeg(PillowTestCase):

    def setUp(self):
        if "jpeg_encoder" not in codecs or "jpeg_decoder" not in codecs:
            self.skipTest("jpeg support not available")

    def roundtrip(self, im, **options):
        out = BytesIO()
        im.save(out, "JPEG", **options)
        test_bytes = out.tell()
        out.seek(0)
        im = Image.open(out)
        im.bytes = test_bytes  # for testing only
        return im

    def gen_random_image(self, size, mode='RGB'):
        """ Generates a very hard to compress file
        :param size: tuple
        :param mode: optional image mode

        """
        return Image.frombytes(mode, size,
                               os.urandom(size[0]*size[1]*len(mode)))

    def test_sanity(self):

        # internal version number
        self.assertRegexpMatches(Image.core.jpeglib_version, r"\d+\.\d+$")

        im = Image.open(TEST_FILE)
        im.load()
        self.assertEqual(im.mode, "RGB")
        self.assertEqual(im.size, (128, 128))
        self.assertEqual(im.format, "JPEG")

    def test_app(self):
        # Test APP/COM reader (@PIL135)
        im = Image.open(TEST_FILE)
        self.assertEqual(
            im.applist[0],
            ("APP0", b"JFIF\x00\x01\x01\x01\x00`\x00`\x00\x00"))
        self.assertEqual(im.applist[1], (
            "COM", b"File written by Adobe Photoshop\xa8 4.0\x00"))
        self.assertEqual(len(im.applist), 2)

    def test_cmyk(self):
        # Test CMYK handling.  Thanks to Tim and Charlie for test data,
        # Michael for getting me to look one more time.
        f = "Tests/images/pil_sample_cmyk.jpg"
        im = Image.open(f)
        # the source image has red pixels in the upper left corner.
        c, m, y, k = [x / 255.0 for x in im.getpixel((0, 0))]
        self.assertEqual(c, 0.0)
        self.assertGreater(m, 0.8)
        self.assertGreater(y, 0.8)
        self.assertEqual(k, 0.0)
        # the opposite corner is black
        c, m, y, k = [x / 255.0 for x in im.getpixel((
            im.size[0]-1, im.size[1]-1))]
        self.assertGreater(k, 0.9)
        # roundtrip, and check again
        im = self.roundtrip(im)
        c, m, y, k = [x / 255.0 for x in im.getpixel((0, 0))]
        self.assertEqual(c, 0.0)
        self.assertGreater(m, 0.8)
        self.assertGreater(y, 0.8)
        self.assertEqual(k, 0.0)
        c, m, y, k = [x / 255.0 for x in im.getpixel((
            im.size[0]-1, im.size[1]-1))]
        self.assertGreater(k, 0.9)

    def test_dpi(self):
        def test(xdpi, ydpi=None):
            im = Image.open(TEST_FILE)
            im = self.roundtrip(im, dpi=(xdpi, ydpi or xdpi))
            return im.info.get("dpi")
        self.assertEqual(test(72), (72, 72))
        self.assertEqual(test(300), (300, 300))
        self.assertEqual(test(100, 200), (100, 200))
        self.assertIsNone(test(0))  # square pixels

    def test_icc(self):
        # Test ICC support
        im1 = Image.open("Tests/images/rgb.jpg")
        icc_profile = im1.info["icc_profile"]
        self.assertEqual(len(icc_profile), 3144)
        # Roundtrip via physical file.
        f = self.tempfile("temp.jpg")
        im1.save(f, icc_profile=icc_profile)
        im2 = Image.open(f)
        self.assertEqual(im2.info.get("icc_profile"), icc_profile)
        # Roundtrip via memory buffer.
        im1 = self.roundtrip(hopper())
        im2 = self.roundtrip(hopper(), icc_profile=icc_profile)
        self.assert_image_equal(im1, im2)
        self.assertFalse(im1.info.get("icc_profile"))
        self.assertTrue(im2.info.get("icc_profile"))

    def test_icc_big(self):
        # Make sure that the "extra" support handles large blocks
        def test(n):
            # The ICC APP marker can store 65519 bytes per marker, so
            # using a 4-byte test code should allow us to detect out of
            # order issues.
            icc_profile = (b"Test"*int(n/4+1))[:n]
            assert len(icc_profile) == n  # sanity
            im1 = self.roundtrip(hopper(), icc_profile=icc_profile)
            self.assertEqual(im1.info.get("icc_profile"), icc_profile or None)
        test(0)
        test(1)
        test(3)
        test(4)
        test(5)
        test(65533-14)  # full JPEG marker block
        test(65533-14+1)  # full block plus one byte
        test(ImageFile.MAXBLOCK)  # full buffer block
        test(ImageFile.MAXBLOCK+1)  # full buffer block plus one byte
        test(ImageFile.MAXBLOCK*4+3)  # large block

    def test_large_icc_meta(self):
        # https://github.com/python-pillow/Pillow/issues/148
        # Sometimes the meta data on the icc_profile block is bigger than
        # Image.MAXBLOCK or the image size.
        im = Image.open('Tests/images/icc_profile_big.jpg')
        f = self.tempfile("temp.jpg")
        icc_profile = im.info["icc_profile"]
        try:
            im.save(f, format='JPEG', progressive=True,quality=95,
                    icc_profile=icc_profile, optimize=True)
        except IOError:
            self.fail("Failed saving image with icc larger than image size")

    def test_optimize(self):
        im1 = self.roundtrip(hopper())
        im2 = self.roundtrip(hopper(), optimize=0)
        im3 = self.roundtrip(hopper(), optimize=1)
        self.assert_image_equal(im1, im2)
        self.assert_image_equal(im1, im3)
        self.assertGreaterEqual(im1.bytes, im2.bytes)
        self.assertGreaterEqual(im1.bytes, im3.bytes)

    def test_optimize_large_buffer(self):
        # https://github.com/python-pillow/Pillow/issues/148
        f = self.tempfile('temp.jpg')
        # this requires ~ 1.5x Image.MAXBLOCK
        im = Image.new("RGB", (4096, 4096), 0xff3333)
        im.save(f, format="JPEG", optimize=True)

    def test_progressive(self):
        im1 = self.roundtrip(hopper())
        im2 = self.roundtrip(hopper(), progressive=False)
        im3 = self.roundtrip(hopper(), progressive=True)
        self.assertFalse(im1.info.get("progressive"))
        self.assertFalse(im2.info.get("progressive"))
        self.assertTrue(im3.info.get("progressive"))

        self.assert_image_equal(im1, im3)
        self.assertGreaterEqual(im1.bytes, im3.bytes)

    def test_progressive_large_buffer(self):
        f = self.tempfile('temp.jpg')
        # this requires ~ 1.5x Image.MAXBLOCK
        im = Image.new("RGB", (4096, 4096), 0xff3333)
        im.save(f, format="JPEG", progressive=True)

    def test_progressive_large_buffer_highest_quality(self):
        f = self.tempfile('temp.jpg')
        im = self.gen_random_image((255, 255))
        # this requires more bytes than pixels in the image
        im.save(f, format="JPEG", progressive=True, quality=100)

    def test_progressive_cmyk_buffer(self):
        # Issue 2272, quality 90 cmyk image is tripping the large buffer bug.
        f = BytesIO()
        im = self.gen_random_image((256, 256), 'CMYK')
        im.save(f, format='JPEG', progressive=True, quality=94)

    def test_large_exif(self):
        # https://github.com/python-pillow/Pillow/issues/148
        f = self.tempfile('temp.jpg')
        im = hopper()
        im.save(f, 'JPEG', quality=90, exif=b"1"*65532)

    def test_exif_typeerror(self):
        im = Image.open('Tests/images/exif_typeerror.jpg')
        # Should not raise a TypeError
        im._getexif()

    def test_exif_gps(self):
        # Arrange
        im = Image.open('Tests/images/exif_gps.jpg')
        gps_index = 34853
        expected_exif_gps = {
            0: b'\x00\x00\x00\x01',
            2: (4294967295, 1),
            5: b'\x01',
            30: 65535,
            29: '1999:99:99 99:99:99'}

        # Act
        exif = im._getexif()

        # Assert
        self.assertEqual(exif[gps_index], expected_exif_gps)

    def test_exif_rollback(self):
        # rolling back exif support in 3.1 to pre-3.0 formatting.
        # expected from 2.9, with b/u qualifiers switched for 3.2 compatibility
        # this test passes on 2.9 and 3.1, but not 3.0
        expected_exif = {34867: 4294967295,
                         258: (24, 24, 24),
                         36867: '2099:09:29 10:10:10',
                         34853: {0: b'\x00\x00\x00\x01',
                                 2: (4294967295, 1),
                                 5: b'\x01',
                                 30: 65535,
                                 29: '1999:99:99 99:99:99'},
                         296: 65535,
                         34665: 185,
                         41994: 65535,
                         514: 4294967295,
                         271: 'Make',
                         272: 'XXX-XXX',
                         305: 'PIL',
                         42034: ((1, 1), (1, 1), (1, 1), (1, 1)),
                         42035: 'LensMake',
                         34856: b'\xaa\xaa\xaa\xaa\xaa\xaa',
                         282: (4294967295, 1),
                         33434: (4294967295, 1)}

        im = Image.open('Tests/images/exif_gps.jpg')
        exif = im._getexif()

        for tag, value in expected_exif.items():
            self.assertEqual(value, exif[tag])

    def test_exif_gps_typeerror(self):
        im = Image.open('Tests/images/exif_gps_typeerror.jpg')

        # Should not raise a TypeError
        im._getexif()

    def test_progressive_compat(self):
        im1 = self.roundtrip(hopper())
        self.assertFalse(im1.info.get("progressive"))
        self.assertFalse(im1.info.get("progression"))

        im2 = self.roundtrip(hopper(), progressive=0)
        im3 = self.roundtrip(hopper(), progression=0)  # compatibility
        self.assertFalse(im2.info.get("progressive"))
        self.assertFalse(im2.info.get("progression"))
        self.assertFalse(im3.info.get("progressive"))
        self.assertFalse(im3.info.get("progression"))

        im2 = self.roundtrip(hopper(), progressive=1)
        im3 = self.roundtrip(hopper(), progression=1)  # compatibility
        self.assert_image_equal(im1, im2)
        self.assert_image_equal(im1, im3)
        self.assertTrue(im2.info.get("progressive"))
        self.assertTrue(im2.info.get("progression"))
        self.assertTrue(im3.info.get("progressive"))
        self.assertTrue(im3.info.get("progression"))

    def test_quality(self):
        im1 = self.roundtrip(hopper())
        im2 = self.roundtrip(hopper(), quality=50)
        self.assert_image(im1, im2.mode, im2.size)
        self.assertGreaterEqual(im1.bytes, im2.bytes)

    def test_smooth(self):
        im1 = self.roundtrip(hopper())
        im2 = self.roundtrip(hopper(), smooth=100)
        self.assert_image(im1, im2.mode, im2.size)

    def test_subsampling(self):
        def getsampling(im):
            layer = im.layer
            return layer[0][1:3] + layer[1][1:3] + layer[2][1:3]
        # experimental API
        im = self.roundtrip(hopper(), subsampling=-1)  # default
        self.assertEqual(getsampling(im), (2, 2, 1, 1, 1, 1))
        im = self.roundtrip(hopper(), subsampling=0)  # 4:4:4
        self.assertEqual(getsampling(im), (1, 1, 1, 1, 1, 1))
        im = self.roundtrip(hopper(), subsampling=1)  # 4:2:2
        self.assertEqual(getsampling(im), (2, 1, 1, 1, 1, 1))
        im = self.roundtrip(hopper(), subsampling=2)  # 4:1:1
        self.assertEqual(getsampling(im), (2, 2, 1, 1, 1, 1))
        im = self.roundtrip(hopper(), subsampling=3)  # default (undefined)
        self.assertEqual(getsampling(im), (2, 2, 1, 1, 1, 1))

        im = self.roundtrip(hopper(), subsampling="4:4:4")
        self.assertEqual(getsampling(im), (1, 1, 1, 1, 1, 1))
        im = self.roundtrip(hopper(), subsampling="4:2:2")
        self.assertEqual(getsampling(im), (2, 1, 1, 1, 1, 1))
        im = self.roundtrip(hopper(), subsampling="4:1:1")
        self.assertEqual(getsampling(im), (2, 2, 1, 1, 1, 1))

        self.assertRaises(
            TypeError, lambda: self.roundtrip(hopper(), subsampling="1:1:1"))

    def test_exif(self):
        im = Image.open("Tests/images/pil_sample_rgb.jpg")
        info = im._getexif()
        self.assertEqual(info[305], 'Adobe Photoshop CS Macintosh')

    def test_mp(self):
        im = Image.open("Tests/images/pil_sample_rgb.jpg")
        self.assertIsNone(im._getmp())

    def test_quality_keep(self):
        # RGB
        im = Image.open("Tests/images/hopper.jpg")
        f = self.tempfile('temp.jpg')
        im.save(f, quality='keep')
        # Grayscale
        im = Image.open("Tests/images/hopper_gray.jpg")
        f = self.tempfile('temp.jpg')
        im.save(f, quality='keep')
        # CMYK
        im = Image.open("Tests/images/pil_sample_cmyk.jpg")
        f = self.tempfile('temp.jpg')
        im.save(f, quality='keep')

    def test_junk_jpeg_header(self):
        # https://github.com/python-pillow/Pillow/issues/630
        filename = "Tests/images/junk_jpeg_header.jpg"
        Image.open(filename)

    def test_ff00_jpeg_header(self):
        filename = "Tests/images/jpeg_ff00_header.jpg"
        Image.open(filename)

    def _n_qtables_helper(self, n, test_file):
        im = Image.open(test_file)
        f = self.tempfile('temp.jpg')
        im.save(f, qtables=[[n]*64]*n)
        im = Image.open(f)
        self.assertEqual(len(im.quantization), n)
        reloaded = self.roundtrip(im, qtables="keep")
        self.assertEqual(im.quantization, reloaded.quantization)

    def test_qtables(self):
        im = Image.open("Tests/images/hopper.jpg")
        qtables = im.quantization
        reloaded = self.roundtrip(im, qtables=qtables, subsampling=0)
        self.assertEqual(im.quantization, reloaded.quantization)
        self.assert_image_similar(im, self.roundtrip(im, qtables='web_low'),
                                  30)
        self.assert_image_similar(im, self.roundtrip(im, qtables='web_high'),
                                  30)
        self.assert_image_similar(im, self.roundtrip(im, qtables='keep'), 30)

        # valid bounds for baseline qtable
        bounds_qtable = [int(s) for s in ("255 1 " * 32).split(None)]
        self.roundtrip(im, qtables=[bounds_qtable])

        # values from wizard.txt in jpeg9-a src package.
        standard_l_qtable = [int(s) for s in """
            16  11  10  16  24  40  51  61
            12  12  14  19  26  58  60  55
            14  13  16  24  40  57  69  56
            14  17  22  29  51  87  80  62
            18  22  37  56  68 109 103  77
            24  35  55  64  81 104 113  92
            49  64  78  87 103 121 120 101
            72  92  95  98 112 100 103  99
            """.split(None)]

        standard_chrominance_qtable = [int(s) for s in """
            17  18  24  47  99  99  99  99
            18  21  26  66  99  99  99  99
            24  26  56  99  99  99  99  99
            47  66  99  99  99  99  99  99
            99  99  99  99  99  99  99  99
            99  99  99  99  99  99  99  99
            99  99  99  99  99  99  99  99
            99  99  99  99  99  99  99  99
            """.split(None)]
        # list of qtable lists
        self.assert_image_similar(
            im, self.roundtrip(
                im, qtables=[standard_l_qtable, standard_chrominance_qtable]),
            30)

        # tuple of qtable lists
        self.assert_image_similar(
            im, self.roundtrip(
                im, qtables=(standard_l_qtable, standard_chrominance_qtable)),
            30)

        # dict of qtable lists
        self.assert_image_similar(im,
                                  self.roundtrip(im, qtables={
                                      0: standard_l_qtable,
                                      1: standard_chrominance_qtable
                                  }), 30)

        self._n_qtables_helper(1, "Tests/images/hopper_gray.jpg")
        self._n_qtables_helper(1, "Tests/images/pil_sample_rgb.jpg")
        self._n_qtables_helper(2, "Tests/images/pil_sample_rgb.jpg")
        self._n_qtables_helper(3, "Tests/images/pil_sample_rgb.jpg")
        self._n_qtables_helper(1, "Tests/images/pil_sample_cmyk.jpg")
        self._n_qtables_helper(2, "Tests/images/pil_sample_cmyk.jpg")
        self._n_qtables_helper(3, "Tests/images/pil_sample_cmyk.jpg")
        self._n_qtables_helper(4, "Tests/images/pil_sample_cmyk.jpg")

        # not a sequence
        self.assertRaises(Exception, lambda: self.roundtrip(im, qtables='a'))
        # sequence wrong length
        self.assertRaises(Exception, lambda: self.roundtrip(im, qtables=[]))
        # sequence wrong length
        self.assertRaises(Exception,
                          lambda: self.roundtrip(im, qtables=[1, 2, 3, 4, 5]))

        # qtable entry not a sequence
        self.assertRaises(Exception, lambda: self.roundtrip(im, qtables=[1]))
        # qtable entry has wrong number of items
        self.assertRaises(Exception,
                          lambda: self.roundtrip(im, qtables=[[1, 2, 3, 4]]))

    @unittest.skipUnless(djpeg_available(), "djpeg not available")
    def test_load_djpeg(self):
        img = Image.open(TEST_FILE)
        img.load_djpeg()
        self.assert_image_similar(img, Image.open(TEST_FILE), 0)

    @unittest.skipUnless(cjpeg_available(), "cjpeg not available")
    def test_save_cjpeg(self):
        img = Image.open(TEST_FILE)

        tempfile = self.tempfile("temp.jpg")
        JpegImagePlugin._save_cjpeg(img, 0, tempfile)
        # Default save quality is 75%, so a tiny bit of difference is alright
        self.assert_image_similar(img, Image.open(tempfile), 17)

    def test_no_duplicate_0x1001_tag(self):
        # Arrange
        from PIL import ExifTags
        tag_ids = {v: k for k, v in ExifTags.TAGS.items()}

        # Assert
        self.assertEqual(tag_ids['RelatedImageWidth'], 0x1001)
        self.assertEqual(tag_ids['RelatedImageLength'], 0x1002)

    def test_MAXBLOCK_scaling(self):
        im = self.gen_random_image((512, 512))
        f = self.tempfile("temp.jpeg")
        im.save(f, quality=100, optimize=True)

        reloaded = Image.open(f)

        # none of these should crash
        reloaded.save(f, quality='keep')
        reloaded.save(f, quality='keep', progressive=True)
        reloaded.save(f, quality='keep', optimize=True)

    def test_bad_mpo_header(self):
        """ Treat unknown MPO as JPEG """
        # Arrange

        # Act
        # Shouldn't raise error
        fn = "Tests/images/sugarshack_bad_mpo_header.jpg"
        im = self.assert_warning(UserWarning, lambda: Image.open(fn))

        # Assert
        self.assertEqual(im.format, "JPEG")

    def test_save_correct_modes(self):
        out = BytesIO()
        for mode in ['1', 'L', 'RGB', 'RGBX', 'CMYK', 'YCbCr']:
            img = Image.new(mode, (20, 20))
            img.save(out, "JPEG")

    def test_save_wrong_modes(self):
        # ref https://github.com/python-pillow/Pillow/issues/2005
        out = BytesIO()
        for mode in ['LA', 'La', 'RGBA', 'RGBa', 'P']:
            img = Image.new(mode, (20, 20))
            self.assertRaises(IOError, img.save, out, "JPEG")

    def test_save_tiff_with_dpi(self):
        # Arrange
        outfile = self.tempfile("temp.tif")
        im = Image.open("Tests/images/hopper.tif")

        # Act
        im.save(outfile, 'JPEG', dpi=im.info['dpi'])

        # Assert
        reloaded = Image.open(outfile)
        reloaded.load()
        self.assertEqual(im.info['dpi'], reloaded.info['dpi'])

    def test_dpi_tuple_from_exif(self):
        # Arrange
        # This Photoshop CC 2017 image has DPI in EXIF not metadata
        # EXIF XResolution is (2000000, 10000)
        im = Image.open("Tests/images/photoshop-200dpi.jpg")

        # Act / Assert
        self.assertEqual(im.info.get("dpi"), (200, 200))

    def test_dpi_int_from_exif(self):
        # Arrange
        # This image has DPI in EXIF not metadata
        # EXIF XResolution is 72
        im = Image.open("Tests/images/exif-72dpi-int.jpg")

        # Act / Assert
        self.assertEqual(im.info.get("dpi"), (72, 72))

    def test_dpi_from_dpcm_exif(self):
        # Arrange
        # This is photoshop-200dpi.jpg with EXIF resolution unit set to cm:
        # exiftool -exif:ResolutionUnit=cm photoshop-200dpi.jpg
        im = Image.open("Tests/images/exif-200dpcm.jpg")

        # Act / Assert
        self.assertEqual(im.info.get("dpi"), (508, 508))

    def test_dpi_exif_zero_division(self):
        # Arrange
        # This is photoshop-200dpi.jpg with EXIF resolution set to 0/0:
        # exiftool -XResolution=0/0 -YResolution=0/0 photoshop-200dpi.jpg
        im = Image.open("Tests/images/exif-dpi-zerodivision.jpg")

        # Act / Assert
        # This should return the default, and not raise a ZeroDivisionError
        self.assertEqual(im.info.get("dpi"), (72, 72))

    def test_no_dpi_in_exif(self):
        # Arrange
        # This is photoshop-200dpi.jpg with resolution removed from EXIF:
        # exiftool "-*resolution*"= photoshop-200dpi.jpg
        im = Image.open("Tests/images/no-dpi-in-exif.jpg")

        # Act / Assert
        # "When the image resolution is unknown, 72 [dpi] is designated."
        # http://www.exiv2.org/tags.html
        self.assertEqual(im.info.get("dpi"), (72, 72))

    def test_invalid_exif(self):
        # This is no-dpi-in-exif with the tiff header of the exif block
        # hexedited from MM * to FF FF FF FF
        im = Image.open("Tests/images/invalid-exif.jpg")

        # This should return the default, and not a SyntaxError or
        # OSError for unidentified image.
        self.assertEqual(im.info.get("dpi"), (72, 72))


@unittest.skipUnless(sys.platform.startswith('win32'), "Windows only")
class TestFileCloseW32(PillowTestCase):
    def setUp(self):
        if "jpeg_encoder" not in codecs or "jpeg_decoder" not in codecs:
            self.skipTest("jpeg support not available")

    def test_fd_leak(self):
        tmpfile = self.tempfile("temp.jpg")
        import os

        with Image.open("Tests/images/hopper.jpg") as im:
            im.save(tmpfile)

        im = Image.open(tmpfile)
        fp = im.fp
        self.assertFalse(fp.closed)
        self.assertRaises(Exception, lambda: os.remove(tmpfile))
        im.load()
        self.assertTrue(fp.closed)
        # this should not fail, as load should have closed the file.
        os.remove(tmpfile)


if __name__ == '__main__':
    unittest.main()