/* * The Python Imaging Library. * $Id: //modules/pil/libImaging/TiffDecode.c#1 $ * * LibTiff-based Group3 and Group4 decoder * * * started modding to use non-private tiff functions to port to libtiff 4.x * eds 3/12/12 * */ #include "Imaging.h" #ifdef HAVE_LIBTIFF #ifndef uint #define uint uint32 #endif #include "TiffDecode.h" /* Convert C file descriptor to WinApi HFILE if LibTiff was compiled with tif_win32.c * * This cast is safe, as the top 32-bits of HFILE are guaranteed to be zero, * see * https://docs.microsoft.com/en-us/windows/win32/winprog64/interprocess-communication */ #ifndef USE_WIN32_FILEIO #define fd_to_tiff_fd(fd) (fd) #else #define fd_to_tiff_fd(fd) ((int)_get_osfhandle(fd)) #endif void dump_state(const TIFFSTATE *state) { TRACE( ("State: Location %u size %d eof %d data: %p ifd: %d\n", (uint)state->loc, (int)state->size, (uint)state->eof, state->data, state->ifd)); } /* procs for TIFFOpenClient */ tsize_t _tiffReadProc(thandle_t hdata, tdata_t buf, tsize_t size) { TIFFSTATE *state = (TIFFSTATE *)hdata; tsize_t to_read; TRACE(("_tiffReadProc: %d \n", (int)size)); dump_state(state); if (state->loc > state->eof) { TIFFError("_tiffReadProc", "Invalid Read at loc %llu, eof: %llu", state->loc, state->eof); return 0; } to_read = min(size, min(state->size, (tsize_t)state->eof) - (tsize_t)state->loc); TRACE(("to_read: %d\n", (int)to_read)); _TIFFmemcpy(buf, (UINT8 *)state->data + state->loc, to_read); state->loc += (toff_t)to_read; TRACE(("location: %u\n", (uint)state->loc)); return to_read; } tsize_t _tiffWriteProc(thandle_t hdata, tdata_t buf, tsize_t size) { TIFFSTATE *state = (TIFFSTATE *)hdata; tsize_t to_write; TRACE(("_tiffWriteProc: %d \n", (int)size)); dump_state(state); to_write = min(size, state->size - (tsize_t)state->loc); if (state->flrealloc && size > to_write) { tdata_t new_data; tsize_t newsize = state->size; while (newsize < (size + state->size)) { if (newsize > INT_MAX - 64 * 1024) { return 0; } newsize += 64 * 1024; // newsize*=2; // UNDONE, by 64k chunks? } TRACE(("Reallocing in write to %d bytes\n", (int)newsize)); /* malloc check ok, overflow checked above */ new_data = realloc(state->data, newsize); if (!new_data) { // fail out return 0; } state->data = new_data; state->size = newsize; to_write = size; } TRACE(("to_write: %d\n", (int)to_write)); _TIFFmemcpy((UINT8 *)state->data + state->loc, buf, to_write); state->loc += (toff_t)to_write; state->eof = max(state->loc, state->eof); dump_state(state); return to_write; } toff_t _tiffSeekProc(thandle_t hdata, toff_t off, int whence) { TIFFSTATE *state = (TIFFSTATE *)hdata; TRACE(("_tiffSeekProc: off: %u whence: %d \n", (uint)off, whence)); dump_state(state); switch (whence) { case 0: state->loc = off; break; case 1: state->loc += off; break; case 2: state->loc = state->eof + off; break; } dump_state(state); return state->loc; } int _tiffCloseProc(thandle_t hdata) { TIFFSTATE *state = (TIFFSTATE *)hdata; TRACE(("_tiffCloseProc \n")); dump_state(state); return 0; } toff_t _tiffSizeProc(thandle_t hdata) { TIFFSTATE *state = (TIFFSTATE *)hdata; TRACE(("_tiffSizeProc \n")); dump_state(state); return (toff_t)state->size; } int _tiffMapProc(thandle_t hdata, tdata_t *pbase, toff_t *psize) { TIFFSTATE *state = (TIFFSTATE *)hdata; TRACE(("_tiffMapProc input size: %u, data: %p\n", (uint)*psize, *pbase)); dump_state(state); *pbase = state->data; *psize = state->size; TRACE(("_tiffMapProc returning size: %u, data: %p\n", (uint)*psize, *pbase)); return (1); } int _tiffNullMapProc(thandle_t hdata, tdata_t *pbase, toff_t *psize) { (void)hdata; (void)pbase; (void)psize; return (0); } void _tiffUnmapProc(thandle_t hdata, tdata_t base, toff_t size) { TRACE(("_tiffUnMapProc\n")); (void)hdata; (void)base; (void)size; } int ImagingLibTiffInit(ImagingCodecState state, int fp, uint32 offset) { TIFFSTATE *clientstate = (TIFFSTATE *)state->context; TRACE(("initing libtiff\n")); TRACE(("filepointer: %d \n", fp)); TRACE( ("State: count %d, state %d, x %d, y %d, ystep %d\n", state->count, state->state, state->x, state->y, state->ystep)); TRACE( ("State: xsize %d, ysize %d, xoff %d, yoff %d \n", state->xsize, state->ysize, state->xoff, state->yoff)); TRACE(("State: bits %d, bytes %d \n", state->bits, state->bytes)); TRACE(("State: context %p \n", state->context)); clientstate->loc = 0; clientstate->size = 0; clientstate->data = 0; clientstate->fp = fp; clientstate->ifd = offset; clientstate->eof = 0; return 1; } int _pickUnpackers(Imaging im, ImagingCodecState state, TIFF *tiff, uint16 planarconfig, ImagingShuffler *unpackers) { // if number of bands is 1, there is no difference with contig case if (planarconfig == PLANARCONFIG_SEPARATE && im->bands > 1) { uint16 bits_per_sample = 8; TIFFGetFieldDefaulted(tiff, TIFFTAG_BITSPERSAMPLE, &bits_per_sample); if (bits_per_sample != 8 && bits_per_sample != 16) { TRACE(("Invalid value for bits per sample: %d\n", bits_per_sample)); state->errcode = IMAGING_CODEC_BROKEN; return -1; } // We'll pick appropriate set of unpackers depending on planar_configuration // It does not matter if data is RGB(A), CMYK or LUV really, // we just copy it plane by plane unpackers[0] = ImagingFindUnpacker("RGBA", bits_per_sample == 16 ? "R;16N" : "R", NULL); unpackers[1] = ImagingFindUnpacker("RGBA", bits_per_sample == 16 ? "G;16N" : "G", NULL); unpackers[2] = ImagingFindUnpacker("RGBA", bits_per_sample == 16 ? "B;16N" : "B", NULL); unpackers[3] = ImagingFindUnpacker("RGBA", bits_per_sample == 16 ? "A;16N" : "A", NULL); return im->bands; } else { unpackers[0] = state->shuffle; return 1; } } int _decodeAsRGBA(Imaging im, ImagingCodecState state, TIFF *tiff) { // To avoid dealing with YCbCr subsampling and other complications, let libtiff handle it // Use a TIFFRGBAImage wrapping the tiff image, and let libtiff handle // all of the conversion. Metadata read from the TIFFRGBAImage could // be different from the metadata that the base tiff returns. INT32 current_row; UINT8 *new_data; UINT32 rows_per_block, row_byte_size, rows_to_read; int ret; TIFFRGBAImage img; char emsg[1024] = ""; // Since using TIFFRGBAImage* functions, we can read whole tiff into rastrr in one call // Let's select smaller block size. Multiplying image width by (tile length OR rows per strip) // gives us manageable block size in pixels if (TIFFIsTiled(tiff)) { ret = TIFFGetFieldDefaulted(tiff, TIFFTAG_TILELENGTH, &rows_per_block); } else { ret = TIFFGetFieldDefaulted(tiff, TIFFTAG_ROWSPERSTRIP, &rows_per_block); } if (ret != 1) { rows_per_block = state->ysize; } TRACE(("RowsPerBlock: %u \n", rows_per_block)); if (!(TIFFRGBAImageOK(tiff, emsg) && TIFFRGBAImageBegin(&img, tiff, 0, emsg))) { TRACE(("Decode error, msg: %s", emsg)); state->errcode = IMAGING_CODEC_BROKEN; // nothing to clean up, just return return -1; } img.req_orientation = ORIENTATION_TOPLEFT; img.col_offset = 0; if (state->xsize != img.width || state->ysize != img.height) { TRACE( ("Inconsistent Image Error: %d =? %d, %d =? %d", state->xsize, img.width, state->ysize, img.height)); state->errcode = IMAGING_CODEC_BROKEN; goto decodergba_err; } /* overflow check for row byte size */ if (INT_MAX / 4 < img.width) { state->errcode = IMAGING_CODEC_MEMORY; goto decodergba_err; } // TiffRGBAImages are 32bits/pixel. row_byte_size = img.width * 4; /* overflow check for realloc */ if (INT_MAX / row_byte_size < rows_per_block) { state->errcode = IMAGING_CODEC_MEMORY; goto decodergba_err; } state->bytes = rows_per_block * row_byte_size; TRACE(("BlockSize: %d \n", state->bytes)); /* realloc to fit whole strip */ /* malloc check above */ new_data = realloc(state->buffer, state->bytes); if (!new_data) { state->errcode = IMAGING_CODEC_MEMORY; goto decodergba_err; } state->buffer = new_data; for (; state->y < state->ysize; state->y += rows_per_block) { img.row_offset = state->y; rows_to_read = min(rows_per_block, img.height - state->y); if (!TIFFRGBAImageGet(&img, (UINT32 *)state->buffer, img.width, rows_to_read)) { TRACE(("Decode Error, y: %d\n", state->y)); state->errcode = IMAGING_CODEC_BROKEN; goto decodergba_err; } #if WORDS_BIGENDIAN TIFFSwabArrayOfLong((UINT32 *)state->buffer, img.width * rows_to_read); #endif TRACE(("Decoded strip for row %d \n", state->y)); // iterate over each row in the strip and stuff data into image for (current_row = 0; current_row < min((INT32)rows_per_block, state->ysize - state->y); current_row++) { TRACE(("Writing data into line %d ; \n", state->y + current_row)); // UINT8 * bbb = state->buffer + current_row * (state->bytes / // rows_per_block); TRACE(("chars: %x %x %x %x\n", ((UINT8 *)bbb)[0], // ((UINT8 *)bbb)[1], ((UINT8 *)bbb)[2], ((UINT8 *)bbb)[3])); state->shuffle( (UINT8 *)im->image[state->y + state->yoff + current_row] + state->xoff * im->pixelsize, state->buffer + current_row * row_byte_size, state->xsize); } } decodergba_err: TIFFRGBAImageEnd(&img); if (state->errcode != 0) { return -1; } return 0; } int _decodeTile(Imaging im, ImagingCodecState state, TIFF *tiff, int planes, ImagingShuffler *unpackers) { INT32 x, y, tile_y, current_tile_length, current_tile_width; UINT32 tile_width, tile_length; tsize_t tile_bytes_size, row_byte_size; UINT8 *new_data; tile_bytes_size = TIFFTileSize(tiff); if (tile_bytes_size == 0) { TRACE(("Decode Error, Can not calculate TileSize\n")); state->errcode = IMAGING_CODEC_BROKEN; return -1; } row_byte_size = TIFFTileRowSize(tiff); if (row_byte_size == 0 || row_byte_size > tile_bytes_size) { TRACE(("Decode Error, Can not calculate TileRowSize\n")); state->errcode = IMAGING_CODEC_BROKEN; return -1; } /* overflow check for realloc */ if (tile_bytes_size > INT_MAX - 1) { state->errcode = IMAGING_CODEC_MEMORY; return -1; } TIFFGetField(tiff, TIFFTAG_TILEWIDTH, &tile_width); TIFFGetField(tiff, TIFFTAG_TILELENGTH, &tile_length); if (tile_width > INT_MAX || tile_length > INT_MAX) { // state->x and state->y are ints state->errcode = IMAGING_CODEC_MEMORY; return -1; } if (tile_bytes_size > ((tile_length * state->bits / planes + 7) / 8) * tile_width) { // If the tile size as expected by LibTiff isn't what we're expecting, abort. // man: TIFFTileSize returns the equivalent size for a tile of data as it would be returned in a // call to TIFFReadTile ... state->errcode = IMAGING_CODEC_BROKEN; return -1; } state->bytes = tile_bytes_size; TRACE(("TIFFTileSize: %d\n", state->bytes)); /* realloc to fit whole tile */ /* malloc check above */ new_data = realloc(state->buffer, state->bytes); if (!new_data) { state->errcode = IMAGING_CODEC_MEMORY; return -1; } state->buffer = new_data; for (y = state->yoff; y < state->ysize; y += tile_length) { int plane; for (plane = 0; plane < planes; plane++) { ImagingShuffler shuffler = unpackers[plane]; for (x = state->xoff; x < state->xsize; x += tile_width) { /* Sanity Check. Apparently in some cases, the TiffReadRGBA* functions have a different view of the size of the tiff than we're getting from other functions. So, we need to check here. */ if (!TIFFCheckTile(tiff, x, y, 0, plane)) { TRACE(("Check Tile Error, Tile at %dx%d\n", x, y)); state->errcode = IMAGING_CODEC_BROKEN; return -1; } if (TIFFReadTile(tiff, (tdata_t)state->buffer, x, y, 0, plane) == -1) { TRACE(("Decode Error, Tile at %dx%d\n", x, y)); state->errcode = IMAGING_CODEC_BROKEN; return -1; } TRACE(("Read tile at %dx%d; \n\n", x, y)); current_tile_width = min((INT32) tile_width, state->xsize - x); current_tile_length = min((INT32) tile_length, state->ysize - y); // iterate over each line in the tile and stuff data into image for (tile_y = 0; tile_y < current_tile_length; tile_y++) { TRACE(("Writing tile data at %dx%d using tile_width: %d; \n", tile_y + y, x, current_tile_width)); // UINT8 * bbb = state->buffer + tile_y * row_byte_size; // TRACE(("chars: %x%x%x%x\n", ((UINT8 *)bbb)[0], ((UINT8 *)bbb)[1], ((UINT8 *)bbb)[2], ((UINT8 *)bbb)[3])); shuffler((UINT8*) im->image[tile_y + y] + x * im->pixelsize, state->buffer + tile_y * row_byte_size, current_tile_width ); } } } } return 0; } int _decodeStrip(Imaging im, ImagingCodecState state, TIFF *tiff, int planes, ImagingShuffler *unpackers) { INT32 strip_row = 0; UINT8 *new_data; UINT32 rows_per_strip; int ret; tsize_t strip_size, row_byte_size; ret = TIFFGetField(tiff, TIFFTAG_ROWSPERSTRIP, &rows_per_strip); if (ret != 1 || rows_per_strip==(UINT32)(-1)) { rows_per_strip = state->ysize; } if (rows_per_strip > INT_MAX) { state->errcode = IMAGING_CODEC_MEMORY; return -1; } TRACE(("RowsPerStrip: %u\n", rows_per_strip)); strip_size = TIFFStripSize(tiff); if (strip_size > INT_MAX - 1) { state->errcode = IMAGING_CODEC_MEMORY; return -1; } if (strip_size > ((state->xsize * state->bits / planes + 7) / 8) * rows_per_strip) { // If the strip size as expected by LibTiff isn't what we're expecting, abort. // man: TIFFStripSize returns the equivalent size for a strip of data as it would be returned in a // call to TIFFReadEncodedStrip ... state->errcode = IMAGING_CODEC_BROKEN; return -1; } state->bytes = strip_size; TRACE(("StripSize: %d \n", state->bytes)); row_byte_size = TIFFScanlineSize(tiff); if (row_byte_size == 0 || row_byte_size > strip_size) { state->errcode = IMAGING_CODEC_BROKEN; return -1; } TRACE(("RowsByteSize: %u \n", row_byte_size)); /* realloc to fit whole strip */ /* malloc check above */ new_data = realloc(state->buffer, state->bytes); if (!new_data) { state->errcode = IMAGING_CODEC_MEMORY; return -1; } state->buffer = new_data; for (; state->y < state->ysize; state->y += rows_per_strip) { int plane; for (plane = 0; plane < planes; plane++) { ImagingShuffler shuffler = unpackers[plane]; if (TIFFReadEncodedStrip(tiff, TIFFComputeStrip(tiff, state->y, plane), (tdata_t)state->buffer, -1) == -1) { TRACE(("Decode Error, strip %d\n", TIFFComputeStrip(tiff, state->y, 0))); state->errcode = IMAGING_CODEC_BROKEN; return -1; } TRACE(("Decoded strip for row %d \n", state->y)); // iterate over each row in the strip and stuff data into image for (strip_row = 0; strip_row < min((INT32) rows_per_strip, state->ysize - state->y); strip_row++) { TRACE(("Writing data into line %d ; \n", state->y + strip_row)); // UINT8 * bbb = state->buffer + strip_row * (state->bytes / rows_per_strip); // TRACE(("chars: %x %x %x %x\n", ((UINT8 *)bbb)[0], ((UINT8 *)bbb)[1], ((UINT8 *)bbb)[2], ((UINT8 *)bbb)[3])); shuffler( (UINT8*) im->image[state->y + state->yoff + strip_row] + state->xoff * im->pixelsize, state->buffer + strip_row * row_byte_size, state->xsize); } } } return 0; } int ImagingLibTiffDecode( Imaging im, ImagingCodecState state, UINT8 *buffer, Py_ssize_t bytes) { TIFFSTATE *clientstate = (TIFFSTATE *)state->context; char *filename = "tempfile.tif"; char *mode = "r"; TIFF *tiff; uint16 photometric = 0; // init to not PHOTOMETRIC_YCBCR uint16 compression; int readAsRGBA = 0; uint16 planarconfig = 0; int planes = 1; ImagingShuffler unpackers[4]; memset(unpackers, 0, sizeof(ImagingShuffler) * 4); /* buffer is the encoded file, bytes is the length of the encoded file */ /* it all ends up in state->buffer, which is a uint8* from Imaging.h */ TRACE(("in decoder: bytes %d\n", bytes)); TRACE( ("State: count %d, state %d, x %d, y %d, ystep %d\n", state->count, state->state, state->x, state->y, state->ystep)); TRACE( ("State: xsize %d, ysize %d, xoff %d, yoff %d \n", state->xsize, state->ysize, state->xoff, state->yoff)); TRACE(("State: bits %d, bytes %d \n", state->bits, state->bytes)); TRACE( ("Buffer: %p: %c%c%c%c\n", buffer, (char)buffer[0], (char)buffer[1], (char)buffer[2], (char)buffer[3])); TRACE( ("State->Buffer: %c%c%c%c\n", (char)state->buffer[0], (char)state->buffer[1], (char)state->buffer[2], (char)state->buffer[3])); TRACE( ("Image: mode %s, type %d, bands: %d, xsize %d, ysize %d \n", im->mode, im->type, im->bands, im->xsize, im->ysize)); TRACE( ("Image: image8 %p, image32 %p, image %p, block %p \n", im->image8, im->image32, im->image, im->block)); TRACE(("Image: pixelsize: %d, linesize %d \n", im->pixelsize, im->linesize)); dump_state(clientstate); clientstate->size = bytes; clientstate->eof = clientstate->size; clientstate->loc = 0; clientstate->data = (tdata_t)buffer; clientstate->flrealloc = 0; dump_state(clientstate); TIFFSetWarningHandler(NULL); TIFFSetWarningHandlerExt(NULL); if (clientstate->fp) { TRACE(("Opening using fd: %d\n", clientstate->fp)); lseek(clientstate->fp, 0, SEEK_SET); // Sometimes, I get it set to the end. tiff = TIFFFdOpen(fd_to_tiff_fd(clientstate->fp), filename, mode); } else { TRACE(("Opening from string\n")); tiff = TIFFClientOpen( filename, mode, (thandle_t)clientstate, _tiffReadProc, _tiffWriteProc, _tiffSeekProc, _tiffCloseProc, _tiffSizeProc, _tiffMapProc, _tiffUnmapProc); } if (!tiff) { TRACE(("Error, didn't get the tiff\n")); state->errcode = IMAGING_CODEC_BROKEN; return -1; } if (clientstate->ifd) { int rv; uint32 ifdoffset = clientstate->ifd; TRACE(("reading tiff ifd %u\n", ifdoffset)); rv = TIFFSetSubDirectory(tiff, ifdoffset); if (!rv) { TRACE(("error in TIFFSetSubDirectory")); goto decode_err; } } TIFFGetField(tiff, TIFFTAG_PHOTOMETRIC, &photometric); TIFFGetField(tiff, TIFFTAG_COMPRESSION, &compression); TIFFGetFieldDefaulted(tiff, TIFFTAG_PLANARCONFIG, &planarconfig); // Dealing with YCbCr images is complicated in case if subsampling // Let LibTiff read them as RGBA readAsRGBA = photometric == PHOTOMETRIC_YCBCR; if (readAsRGBA && compression == COMPRESSION_JPEG && planarconfig == PLANARCONFIG_CONTIG) { // If using new JPEG compression, let libjpeg do RGB convertion for performance reasons TIFFSetField(tiff, TIFFTAG_JPEGCOLORMODE, JPEGCOLORMODE_RGB); readAsRGBA = 0; } if (readAsRGBA) { _decodeAsRGBA(im, state, tiff); } else { planes = _pickUnpackers(im, state, tiff, planarconfig, unpackers); if (planes <= 0) { goto decode_err; } if (TIFFIsTiled(tiff)) { _decodeTile(im, state, tiff, planes, unpackers); } else { _decodeStrip(im, state, tiff, planes, unpackers); } if (!state->errcode) { // Check if raw mode was RGBa and it was stored on separate planes // so we have to convert it to RGBA if (planes > 3 && strcmp(im->mode, "RGBA") == 0) { uint16 extrasamples; uint16* sampleinfo; ImagingShuffler shuffle; INT32 y; TIFFGetFieldDefaulted(tiff, TIFFTAG_EXTRASAMPLES, &extrasamples, &sampleinfo); if (extrasamples >= 1 && (sampleinfo[0] == EXTRASAMPLE_UNSPECIFIED || sampleinfo[0] == EXTRASAMPLE_ASSOCALPHA) ) { shuffle = ImagingFindUnpacker("RGBA", "RGBa", NULL); for (y = state->yoff; y < state->ysize; y++) { UINT8* ptr = (UINT8*) im->image[y + state->yoff] + state->xoff * im->pixelsize; shuffle(ptr, ptr, state->xsize); } } } } } decode_err: TIFFClose(tiff); TRACE(("Done Decoding, Returning \n")); // Returning -1 here to force ImageFile.load to break, rather than // even think about looping back around. return -1; } int ImagingLibTiffEncodeInit(ImagingCodecState state, char *filename, int fp) { // Open the FD or the pointer as a tiff file, for writing. // We may have to do some monkeying around to make this really work. // If we have a fp, then we're good. // If we have a memory string, we're probably going to have to malloc, then // shuffle bytes into the writescanline process. // Going to have to deal with the directory as well. TIFFSTATE *clientstate = (TIFFSTATE *)state->context; int bufsize = 64 * 1024; char *mode = "w"; TRACE(("initing libtiff\n")); TRACE(("Filename %s, filepointer: %d \n", filename, fp)); TRACE( ("State: count %d, state %d, x %d, y %d, ystep %d\n", state->count, state->state, state->x, state->y, state->ystep)); TRACE( ("State: xsize %d, ysize %d, xoff %d, yoff %d \n", state->xsize, state->ysize, state->xoff, state->yoff)); TRACE(("State: bits %d, bytes %d \n", state->bits, state->bytes)); TRACE(("State: context %p \n", state->context)); clientstate->loc = 0; clientstate->size = 0; clientstate->eof = 0; clientstate->data = 0; clientstate->flrealloc = 0; clientstate->fp = fp; state->state = 0; if (fp) { TRACE(("Opening using fd: %d for writing \n", clientstate->fp)); clientstate->tiff = TIFFFdOpen(fd_to_tiff_fd(clientstate->fp), filename, mode); } else { // malloc a buffer to write the tif, we're going to need to realloc or something // if we need bigger. TRACE(("Opening a buffer for writing \n")); /* malloc check ok, small constant allocation */ clientstate->data = malloc(bufsize); clientstate->size = bufsize; clientstate->flrealloc = 1; if (!clientstate->data) { TRACE(("Error, couldn't allocate a buffer of size %d\n", bufsize)); return 0; } clientstate->tiff = TIFFClientOpen( filename, mode, (thandle_t)clientstate, _tiffReadProc, _tiffWriteProc, _tiffSeekProc, _tiffCloseProc, _tiffSizeProc, _tiffNullMapProc, _tiffUnmapProc); /*force no mmap*/ } if (!clientstate->tiff) { TRACE(("Error, couldn't open tiff file\n")); return 0; } return 1; } int ImagingLibTiffMergeFieldInfo( ImagingCodecState state, TIFFDataType field_type, int key, int is_var_length) { // Refer to libtiff docs (http://www.simplesystems.org/libtiff/addingtags.html) TIFFSTATE *clientstate = (TIFFSTATE *)state->context; uint32 n; int status = 0; // custom fields added with ImagingLibTiffMergeFieldInfo are only used for // decoding, ignore readcount; int readcount = 1; // we support writing a single value, or a variable number of values int writecount = 1; // whether the first value should encode the number of values. int passcount = 0; TIFFFieldInfo info[] = { {key, readcount, writecount, field_type, FIELD_CUSTOM, 1, passcount, "CustomField"}}; if (is_var_length) { info[0].field_writecount = -1; } if (is_var_length && field_type != TIFF_ASCII) { info[0].field_passcount = 1; } n = sizeof(info) / sizeof(info[0]); // Test for libtiff 4.0 or later, excluding libtiff 3.9.6 and 3.9.7 #if TIFFLIB_VERSION >= 20111221 && TIFFLIB_VERSION != 20120218 && \ TIFFLIB_VERSION != 20120922 status = TIFFMergeFieldInfo(clientstate->tiff, info, n); #else TIFFMergeFieldInfo(clientstate->tiff, info, n); #endif return status; } int ImagingLibTiffSetField(ImagingCodecState state, ttag_t tag, ...) { // after tif_dir.c->TIFFSetField. TIFFSTATE *clientstate = (TIFFSTATE *)state->context; va_list ap; int status; va_start(ap, tag); status = TIFFVSetField(clientstate->tiff, tag, ap); va_end(ap); return status; } int ImagingLibTiffEncode(Imaging im, ImagingCodecState state, UINT8 *buffer, int bytes) { /* One shot encoder. Encode everything to the tiff in the clientstate. If we're running off of a FD, then run once, we're good, everything ends up in the file, we close and we're done. If we're going to memory, then we need to write the whole file into memory, then parcel it back out to the pystring buffer bytes at a time. */ TIFFSTATE *clientstate = (TIFFSTATE *)state->context; TIFF *tiff = clientstate->tiff; TRACE(("in encoder: bytes %d\n", bytes)); TRACE( ("State: count %d, state %d, x %d, y %d, ystep %d\n", state->count, state->state, state->x, state->y, state->ystep)); TRACE( ("State: xsize %d, ysize %d, xoff %d, yoff %d \n", state->xsize, state->ysize, state->xoff, state->yoff)); TRACE(("State: bits %d, bytes %d \n", state->bits, state->bytes)); TRACE( ("Buffer: %p: %c%c%c%c\n", buffer, (char)buffer[0], (char)buffer[1], (char)buffer[2], (char)buffer[3])); TRACE( ("State->Buffer: %c%c%c%c\n", (char)state->buffer[0], (char)state->buffer[1], (char)state->buffer[2], (char)state->buffer[3])); TRACE( ("Image: mode %s, type %d, bands: %d, xsize %d, ysize %d \n", im->mode, im->type, im->bands, im->xsize, im->ysize)); TRACE( ("Image: image8 %p, image32 %p, image %p, block %p \n", im->image8, im->image32, im->image, im->block)); TRACE(("Image: pixelsize: %d, linesize %d \n", im->pixelsize, im->linesize)); dump_state(clientstate); if (state->state == 0) { TRACE(("Encoding line bt line")); while (state->y < state->ysize) { state->shuffle( state->buffer, (UINT8 *)im->image[state->y + state->yoff] + state->xoff * im->pixelsize, state->xsize); if (TIFFWriteScanline( tiff, (tdata_t)(state->buffer), (uint32)state->y, 0) == -1) { TRACE(("Encode Error, row %d\n", state->y)); state->errcode = IMAGING_CODEC_BROKEN; TIFFClose(tiff); if (!clientstate->fp) { free(clientstate->data); } return -1; } state->y++; } if (state->y == state->ysize) { state->state = 1; TRACE(("Flushing \n")); if (!TIFFFlush(tiff)) { TRACE(("Error flushing the tiff")); // likely reason is memory. state->errcode = IMAGING_CODEC_MEMORY; TIFFClose(tiff); if (!clientstate->fp) { free(clientstate->data); } return -1; } TRACE(("Closing \n")); TIFFClose(tiff); // reset the clientstate metadata to use it to read out the buffer. clientstate->loc = 0; clientstate->size = clientstate->eof; // redundant? } } if (state->state == 1 && !clientstate->fp) { int read = (int)_tiffReadProc(clientstate, (tdata_t)buffer, (tsize_t)bytes); TRACE( ("Buffer: %p: %c%c%c%c\n", buffer, (char)buffer[0], (char)buffer[1], (char)buffer[2], (char)buffer[3])); if (clientstate->loc == clientstate->eof) { TRACE(("Hit EOF, calling an end, freeing data")); state->errcode = IMAGING_CODEC_END; free(clientstate->data); } return read; } state->errcode = IMAGING_CODEC_END; return 0; } const char * ImagingTiffVersion(void) { return TIFFGetVersion(); } #endif