import warnings import pytest from PIL import Image from .helper import assert_deep_equal, assert_image, hopper numpy = pytest.importorskip("numpy", reason="NumPy not installed") TEST_IMAGE_SIZE = (10, 10) def test_numpy_to_image(): def to_image(dtype, bands=1, boolean=0): if bands == 1: if boolean: data = [0, 255] * 50 else: data = list(range(100)) a = numpy.array(data, dtype=dtype) a.shape = TEST_IMAGE_SIZE i = Image.fromarray(a) if list(i.getdata()) != data: print("data mismatch for", dtype) else: data = list(range(100)) a = numpy.array([[x] * bands for x in data], dtype=dtype) a.shape = TEST_IMAGE_SIZE[0], TEST_IMAGE_SIZE[1], bands i = Image.fromarray(a) if list(i.getchannel(0).getdata()) != list(range(100)): print("data mismatch for", dtype) return i # Check supported 1-bit integer formats assert_image(to_image(bool, 1, 1), "1", TEST_IMAGE_SIZE) assert_image(to_image(numpy.bool8, 1, 1), "1", TEST_IMAGE_SIZE) # Check supported 8-bit integer formats assert_image(to_image(numpy.uint8), "L", TEST_IMAGE_SIZE) assert_image(to_image(numpy.uint8, 3), "RGB", TEST_IMAGE_SIZE) assert_image(to_image(numpy.uint8, 4), "RGBA", TEST_IMAGE_SIZE) assert_image(to_image(numpy.int8), "I", TEST_IMAGE_SIZE) # Check non-fixed-size integer types # These may fail, depending on the platform, since we have no native # 64-bit int image types. # assert_image(to_image(numpy.uint), "I", TEST_IMAGE_SIZE) # assert_image(to_image(numpy.int), "I", TEST_IMAGE_SIZE) # Check 16-bit integer formats if Image._ENDIAN == "<": assert_image(to_image(numpy.uint16), "I;16", TEST_IMAGE_SIZE) else: assert_image(to_image(numpy.uint16), "I;16B", TEST_IMAGE_SIZE) assert_image(to_image(numpy.int16), "I", TEST_IMAGE_SIZE) # Check 32-bit integer formats assert_image(to_image(numpy.uint32), "I", TEST_IMAGE_SIZE) assert_image(to_image(numpy.int32), "I", TEST_IMAGE_SIZE) # Check 64-bit integer formats with pytest.raises(TypeError): to_image(numpy.uint64) with pytest.raises(TypeError): to_image(numpy.int64) # Check floating-point formats assert_image(to_image(float), "F", TEST_IMAGE_SIZE) with pytest.raises(TypeError): to_image(numpy.float16) assert_image(to_image(numpy.float32), "F", TEST_IMAGE_SIZE) assert_image(to_image(numpy.float64), "F", TEST_IMAGE_SIZE) assert_image(to_image(numpy.uint8, 2), "LA", (10, 10)) assert_image(to_image(numpy.uint8, 3), "RGB", (10, 10)) assert_image(to_image(numpy.uint8, 4), "RGBA", (10, 10)) # Based on an erring example at # https://stackoverflow.com/questions/10854903/what-is-causing-dimension-dependent-attributeerror-in-pil-fromarray-function def test_3d_array(): size = (5, TEST_IMAGE_SIZE[0], TEST_IMAGE_SIZE[1]) a = numpy.ones(size, dtype=numpy.uint8) assert_image(Image.fromarray(a[1, :, :]), "L", TEST_IMAGE_SIZE) size = (TEST_IMAGE_SIZE[0], 5, TEST_IMAGE_SIZE[1]) a = numpy.ones(size, dtype=numpy.uint8) assert_image(Image.fromarray(a[:, 1, :]), "L", TEST_IMAGE_SIZE) size = (TEST_IMAGE_SIZE[0], TEST_IMAGE_SIZE[1], 5) a = numpy.ones(size, dtype=numpy.uint8) assert_image(Image.fromarray(a[:, :, 1]), "L", TEST_IMAGE_SIZE) def test_1d_array(): a = numpy.ones(5, dtype=numpy.uint8) assert_image(Image.fromarray(a), "L", (1, 5)) def _test_img_equals_nparray(img, np): assert len(np.shape) >= 2 np_size = np.shape[1], np.shape[0] assert img.size == np_size px = img.load() for x in range(0, img.size[0], int(img.size[0] / 10)): for y in range(0, img.size[1], int(img.size[1] / 10)): assert_deep_equal(px[x, y], np[y, x]) def test_16bit(): with Image.open("Tests/images/16bit.cropped.tif") as img: np_img = numpy.array(img) _test_img_equals_nparray(img, np_img) assert np_img.dtype == numpy.dtype("<u2") def test_1bit(): # Test that 1-bit arrays convert to numpy and back # See: https://github.com/python-pillow/Pillow/issues/350 arr = numpy.array([[1, 0, 0, 1, 0], [0, 1, 0, 0, 0]], "u1") img = Image.fromarray(arr * 255).convert("1") assert img.mode == "1" arr_back = numpy.array(img) numpy.testing.assert_array_equal(arr, arr_back) def test_save_tiff_uint16(): # Tests that we're getting the pixel value in the right byte order. pixel_value = 0x1234 a = numpy.array( [pixel_value] * TEST_IMAGE_SIZE[0] * TEST_IMAGE_SIZE[1], dtype=numpy.uint16 ) a.shape = TEST_IMAGE_SIZE img = Image.fromarray(a) img_px = img.load() assert img_px[0, 0] == pixel_value def test_to_array(): def _to_array(mode, dtype): img = hopper(mode) # Resize to non-square img = img.crop((3, 0, 124, 127)) assert img.size == (121, 127) np_img = numpy.array(img) _test_img_equals_nparray(img, np_img) assert np_img.dtype == dtype modes = [ ("L", numpy.uint8), ("I", numpy.int32), ("F", numpy.float32), ("LA", numpy.uint8), ("RGB", numpy.uint8), ("RGBA", numpy.uint8), ("RGBX", numpy.uint8), ("CMYK", numpy.uint8), ("YCbCr", numpy.uint8), ("I;16", "<u2"), ("I;16B", ">u2"), ("I;16L", "<u2"), ("HSV", numpy.uint8), ] for mode in modes: _to_array(*mode) def test_point_lut(): # See https://github.com/python-pillow/Pillow/issues/439 data = list(range(256)) * 3 lut = numpy.array(data, dtype=numpy.uint8) im = hopper() im.point(lut) def test_putdata(): # Shouldn't segfault # See https://github.com/python-pillow/Pillow/issues/1008 im = Image.new("F", (150, 100)) arr = numpy.zeros((15000,), numpy.float32) im.putdata(arr) assert len(im.getdata()) == len(arr) @pytest.mark.parametrize( "dtype", ( bool, numpy.bool8, numpy.int8, numpy.int16, numpy.int32, numpy.uint8, numpy.uint16, numpy.uint32, float, numpy.float32, numpy.float64, ), ) def test_roundtrip_eye(dtype): arr = numpy.eye(10, dtype=dtype) numpy.testing.assert_array_equal(arr, numpy.array(Image.fromarray(arr))) def test_zero_size(): # Shouldn't cause floating point exception # See https://github.com/python-pillow/Pillow/issues/2259 im = Image.fromarray(numpy.empty((0, 0), dtype=numpy.uint8)) assert im.size == (0, 0) def test_bool(): # https://github.com/python-pillow/Pillow/issues/2044 a = numpy.zeros((10, 2), dtype=bool) a[0][0] = True im2 = Image.fromarray(a) assert im2.getdata()[0] == 255 def test_no_resource_warning_for_numpy_array(): # https://github.com/python-pillow/Pillow/issues/835 # Arrange from numpy import array test_file = "Tests/images/hopper.png" with Image.open(test_file) as im: # Act/Assert with warnings.catch_warnings(): array(im)