/* Copyright (c) 2010 Oliver Tonnhofer , Omniscale // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. */ /* // This file implements a variation of the octree color quantization algorithm. */ #include #include #include #include "QuantOctree.h" typedef struct _ColorBucket{ /* contains palette index when used for look up cube */ uint32_t count; uint32_t r; uint32_t g; uint32_t b; uint32_t a; } *ColorBucket; typedef struct _ColorCube{ unsigned int rBits, gBits, bBits, aBits; unsigned int rWidth, gWidth, bWidth, aWidth; unsigned int rOffset, gOffset, bOffset, aOffset; long size; ColorBucket buckets; } *ColorCube; #define MAX(a, b) (a)>(b) ? (a) : (b) static ColorCube new_color_cube(int r, int g, int b, int a) { ColorCube cube; cube = malloc(sizeof(struct _ColorCube)); if (!cube) return NULL; cube->rBits = MAX(r, 0); cube->gBits = MAX(g, 0); cube->bBits = MAX(b, 0); cube->aBits = MAX(a, 0); /* the width of the cube for each dimension */ cube->rWidth = 1<rBits; cube->gWidth = 1<gBits; cube->bWidth = 1<bBits; cube->aWidth = 1<aBits; /* the offsets of each color */ cube->rOffset = cube->gBits + cube->bBits + cube->aBits; cube->gOffset = cube->bBits + cube->aBits; cube->bOffset = cube->aBits; cube->aOffset = 0; /* the number of color buckets */ cube->size = cube->rWidth * cube->gWidth * cube->bWidth * cube->aWidth; cube->buckets = calloc(cube->size, sizeof(struct _ColorBucket)); if (!cube->buckets) { free(cube); return NULL; } return cube; } static void free_color_cube(ColorCube cube) { if (cube != NULL) { free(cube->buckets); free(cube); } } static long color_bucket_offset_pos(const ColorCube cube, unsigned int r, unsigned int g, unsigned int b, unsigned int a) { return r<rOffset | g<gOffset | b<bOffset | a<aOffset; } static long color_bucket_offset(const ColorCube cube, const Pixel *p) { unsigned int r = p->c.r>>(8-cube->rBits); unsigned int g = p->c.g>>(8-cube->gBits); unsigned int b = p->c.b>>(8-cube->bBits); unsigned int a = p->c.a>>(8-cube->aBits); return color_bucket_offset_pos(cube, r, g, b, a); } static ColorBucket color_bucket_from_cube(const ColorCube cube, const Pixel *p) { unsigned int offset = color_bucket_offset(cube, p); return &cube->buckets[offset]; } static void add_color_to_color_cube(const ColorCube cube, const Pixel *p) { ColorBucket bucket = color_bucket_from_cube(cube, p); bucket->count += 1; bucket->r += p->c.r; bucket->g += p->c.g; bucket->b += p->c.b; bucket->a += p->c.a; } static long count_used_color_buckets(const ColorCube cube) { long usedBuckets = 0; long i; for (i=0; i < cube->size; i++) { if (cube->buckets[i].count > 0) { usedBuckets += 1; } } return usedBuckets; } static void avg_color_from_color_bucket(const ColorBucket bucket, Pixel *dst) { float count = bucket->count; dst->c.r = (int)(bucket->r / count); dst->c.g = (int)(bucket->g / count); dst->c.b = (int)(bucket->b / count); dst->c.a = (int)(bucket->a / count); } static int compare_bucket_count(const ColorBucket a, const ColorBucket b) { return b->count - a->count; } static ColorBucket create_sorted_color_palette(const ColorCube cube) { ColorBucket buckets; buckets = malloc(sizeof(struct _ColorBucket)*cube->size); if (!buckets) return NULL; memcpy(buckets, cube->buckets, sizeof(struct _ColorBucket)*cube->size); qsort(buckets, cube->size, sizeof(struct _ColorBucket), (int (*)(void const *, void const *))&compare_bucket_count); return buckets; } void add_bucket_values(ColorBucket src, ColorBucket dst) { dst->count += src->count; dst->r += src->r; dst->g += src->g; dst->b += src->b; dst->a += src->a; } /* expand or shrink a given cube to level */ static ColorCube copy_color_cube(const ColorCube cube, int rBits, int gBits, int bBits, int aBits) { unsigned int r, g, b, a; long src_pos, dst_pos; unsigned int src_reduce[4] = {0}, dst_reduce[4] = {0}; unsigned int width[4]; ColorCube result; result = new_color_cube(rBits, gBits, bBits, aBits); if (!result) return NULL; if (cube->rBits > rBits) { dst_reduce[0] = cube->rBits - result->rBits; width[0] = cube->rWidth; } else { src_reduce[0] = result->rBits - cube->rBits; width[0] = result->rWidth; } if (cube->gBits > gBits) { dst_reduce[1] = cube->gBits - result->gBits; width[1] = cube->gWidth; } else { src_reduce[1] = result->gBits - cube->gBits; width[1] = result->gWidth; } if (cube->bBits > bBits) { dst_reduce[2] = cube->bBits - result->bBits; width[2] = cube->bWidth; } else { src_reduce[2] = result->bBits - cube->bBits; width[2] = result->bWidth; } if (cube->aBits > aBits) { dst_reduce[3] = cube->aBits - result->aBits; width[3] = cube->aWidth; } else { src_reduce[3] = result->aBits - cube->aBits; width[3] = result->aWidth; } for (r=0; r>src_reduce[0], g>>src_reduce[1], b>>src_reduce[2], a>>src_reduce[3]); dst_pos = color_bucket_offset_pos(result, r>>dst_reduce[0], g>>dst_reduce[1], b>>dst_reduce[2], a>>dst_reduce[3]); add_bucket_values( &cube->buckets[src_pos], &result->buckets[dst_pos] ); } } } } return result; } void subtract_color_buckets(ColorCube cube, ColorBucket buckets, long nBuckets) { ColorBucket minuend, subtrahend; long i; Pixel p; for (i=0; icount -= subtrahend->count; minuend->r -= subtrahend->r; minuend->g -= subtrahend->g; minuend->b -= subtrahend->b; minuend->a -= subtrahend->a; } } static void set_lookup_value(const ColorCube cube, const Pixel *p, long value) { ColorBucket bucket = color_bucket_from_cube(cube, p); bucket->count = value; } uint32_t lookup_color(const ColorCube cube, const Pixel *p) { ColorBucket bucket = color_bucket_from_cube(cube, p); return bucket->count; } void add_lookup_buckets(ColorCube cube, ColorBucket palette, long nColors, long offset) { long i; Pixel p; for (i=offset; i 64). For a quantization to 256 colors all 64 coarse colors will be used plus the 192 most used color buckets from the fine color cube. The average of all colors within one bucket is used as the actual color for that bucket. For images with alpha the cubes gets a forth dimension, 8x16x8x8 and 4x4x4x4. */ /* create fine cube */ fineCube = new_color_cube(cubeBits[0], cubeBits[1], cubeBits[2], cubeBits[3]); if (!fineCube) goto error; for (i=0; i nQuantPixels) nCoarseColors = nQuantPixels; /* how many space do we have in our palette for fine colors? */ nFineColors = nQuantPixels - nCoarseColors; /* create fine color palette */ paletteBucketsFine = create_sorted_color_palette(fineCube); if (!paletteBucketsFine) goto error; /* remove the used fine colors from the coarse cube */ subtract_color_buckets(coarseCube, paletteBucketsFine, nFineColors); /* did the substraction cleared one or more coarse bucket? */ while (nCoarseColors > count_used_color_buckets(coarseCube)) { /* then we can use the free buckets for fine colors */ nAlreadySubtracted = nFineColors; nCoarseColors = count_used_color_buckets(coarseCube); nFineColors = nQuantPixels - nCoarseColors; subtract_color_buckets(coarseCube, &paletteBucketsFine[nAlreadySubtracted], nFineColors-nAlreadySubtracted); } /* create our palette buckets with fine and coarse combined */ paletteBucketsCoarse = create_sorted_color_palette(coarseCube); if (!paletteBucketsCoarse) goto error; paletteBuckets = combined_palette(paletteBucketsCoarse, nCoarseColors, paletteBucketsFine, nFineColors); free(paletteBucketsFine); paletteBucketsFine = NULL; free(paletteBucketsCoarse); paletteBucketsCoarse = NULL; /* add all coarse colors to our coarse lookup cube. */ coarseLookupCube = new_color_cube(cubeBits[4], cubeBits[5], cubeBits[6], cubeBits[7]); if (!coarseLookupCube) goto error; add_lookup_buckets(coarseLookupCube, paletteBuckets, nCoarseColors, 0); /* expand coarse cube (64) to larger fine cube (4k). the value of each coarse bucket is then present in the according 64 fine buckets. */ lookupCube = copy_color_cube(coarseLookupCube, cubeBits[0], cubeBits[1], cubeBits[2], cubeBits[3]); if (!lookupCube) goto error; /* add fine colors to the lookup cube */ add_lookup_buckets(lookupCube, paletteBuckets, nFineColors, nCoarseColors); /* create result pixles and map palatte indices */ qp = malloc(sizeof(Pixel)*nPixels); if (!qp) goto error; map_image_pixels(pixelData, nPixels, lookupCube, qp); /* convert palette buckets to RGB pixel palette */ *palette = create_palette_array(paletteBuckets, nQuantPixels); if (!(*palette)) goto error; *quantizedPixels = qp; *paletteLength = nQuantPixels; free_color_cube(coarseCube); free_color_cube(fineCube); free_color_cube(lookupCube); free_color_cube(coarseLookupCube); free(paletteBuckets); return 1; error: /* everything is initialized to NULL so we are safe to call free */ free(qp); free_color_cube(lookupCube); free_color_cube(coarseLookupCube); free(paletteBucketsCoarse); free(paletteBucketsFine); free_color_cube(coarseCube); free_color_cube(fineCube); return 0; }