/* * The Python Imaging Library. * * the imaging library bindings * * history: * 1995-09-24 fl Created * 1996-03-24 fl Ready for first public release (release 0.0) * 1996-03-25 fl Added fromstring (for Jack's "img" library) * 1996-03-28 fl Added channel operations * 1996-03-31 fl Added point operation * 1996-04-08 fl Added new/new_block/new_array factories * 1996-04-13 fl Added decoders * 1996-05-04 fl Added palette hack * 1996-05-12 fl Compile cleanly as C++ * 1996-05-19 fl Added matrix conversions, gradient fills * 1996-05-27 fl Added display_mode * 1996-07-22 fl Added getbbox, offset * 1996-07-23 fl Added sequence semantics * 1996-08-13 fl Added logical operators, point mode * 1996-08-16 fl Modified paste interface * 1996-09-06 fl Added putdata methods, use abstract interface * 1996-11-01 fl Added xbm encoder * 1996-11-04 fl Added experimental path stuff, draw_lines, etc * 1996-12-10 fl Added zip decoder, crc32 interface * 1996-12-14 fl Added modulo arithmetics * 1996-12-29 fl Added zip encoder * 1997-01-03 fl Added fli and msp decoders * 1997-01-04 fl Added experimental sun_rle and tga_rle decoders * 1997-01-05 fl Added gif encoder, getpalette hack * 1997-02-23 fl Added histogram mask * 1997-05-12 fl Minor tweaks to match the IFUNC95 interface * 1997-05-21 fl Added noise generator, spread effect * 1997-06-05 fl Added mandelbrot generator * 1997-08-02 fl Modified putpalette to coerce image mode if necessary * 1998-01-11 fl Added INT32 support * 1998-01-22 fl Fixed draw_points to draw the last point too * 1998-06-28 fl Added getpixel, getink, draw_ink * 1998-07-12 fl Added getextrema * 1998-07-17 fl Added point conversion to arbitrary formats * 1998-09-21 fl Added support for resampling filters * 1998-09-22 fl Added support for quad transform * 1998-12-29 fl Added support for arcs, chords, and pieslices * 1999-01-10 fl Added some experimental arrow graphics stuff * 1999-02-06 fl Added draw_bitmap, font acceleration stuff * 2001-04-17 fl Fixed some egcs compiler nits * 2001-09-17 fl Added screen grab primitives (win32) * 2002-03-09 fl Added stretch primitive * 2002-03-10 fl Fixed filter handling in rotate * 2002-06-06 fl Added I, F, and RGB support to putdata * 2002-06-08 fl Added rankfilter * 2002-06-09 fl Added support for user-defined filter kernels * 2002-11-19 fl Added clipboard grab primitives (win32) * 2002-12-11 fl Added draw context * 2003-04-26 fl Tweaks for Python 2.3 beta 1 * 2003-05-21 fl Added createwindow primitive (win32) * 2003-09-13 fl Added thread section hooks * 2003-09-15 fl Added expand helper * 2003-09-26 fl Added experimental LA support * 2004-02-21 fl Handle zero-size images in quantize * 2004-06-05 fl Added ptr attribute (used to access Imaging objects) * 2004-06-05 fl Don't crash when fetching pixels from zero-wide images * 2004-09-17 fl Added getcolors * 2004-10-04 fl Added modefilter * 2005-10-02 fl Added access proxy * 2006-06-18 fl Always draw last point in polyline * * Copyright (c) 1997-2006 by Secret Labs AB * Copyright (c) 1995-2006 by Fredrik Lundh * * See the README file for information on usage and redistribution. */ #define PILLOW_VERSION "2.3.0" #include "Python.h" #ifdef HAVE_LIBZ #include "zlib.h" #endif #include "Imaging.h" #include "py3.h" /* Configuration stuff. Feel free to undef things you don't need. */ #define WITH_IMAGECHOPS /* ImageChops support */ #define WITH_IMAGEDRAW /* ImageDraw support */ #define WITH_MAPPING /* use memory mapping to read some file formats */ #define WITH_IMAGEPATH /* ImagePath stuff */ #define WITH_ARROW /* arrow graphics stuff (experimental) */ #define WITH_EFFECTS /* special effects */ #define WITH_QUANTIZE /* quantization support */ #define WITH_RANKFILTER /* rank filter */ #define WITH_MODEFILTER /* mode filter */ #define WITH_THREADING /* "friendly" threading support */ #define WITH_UNSHARPMASK /* Kevin Cazabon's unsharpmask module */ #define WITH_DEBUG /* extra debugging interfaces */ /* PIL Plus extensions */ #undef WITH_CRACKCODE /* pil plus */ #undef VERBOSE #define CLIP(x) ((x) <= 0 ? 0 : (x) < 256 ? (x) : 255) #define B16(p, i) ((((int)p[(i)]) << 8) + p[(i)+1]) #define L16(p, i) ((((int)p[(i)+1]) << 8) + p[(i)]) #define S16(v) ((v) < 32768 ? (v) : ((v) - 65536)) /* -------------------------------------------------------------------- */ /* OBJECT ADMINISTRATION */ /* -------------------------------------------------------------------- */ typedef struct { PyObject_HEAD Imaging image; ImagingAccess access; } ImagingObject; static PyTypeObject Imaging_Type; #ifdef WITH_IMAGEDRAW typedef struct { /* to write a character, cut out sxy from glyph data, place at current position plus dxy, and advance by (dx, dy) */ int dx, dy; int dx0, dy0, dx1, dy1; int sx0, sy0, sx1, sy1; } Glyph; typedef struct { PyObject_HEAD ImagingObject* ref; Imaging bitmap; int ysize; int baseline; Glyph glyphs[256]; } ImagingFontObject; static PyTypeObject ImagingFont_Type; typedef struct { PyObject_HEAD ImagingObject* image; UINT8 ink[4]; int blend; } ImagingDrawObject; static PyTypeObject ImagingDraw_Type; #endif typedef struct { PyObject_HEAD ImagingObject* image; int readonly; } PixelAccessObject; static PyTypeObject PixelAccess_Type; PyObject* PyImagingNew(Imaging imOut) { ImagingObject* imagep; if (!imOut) return NULL; imagep = PyObject_New(ImagingObject, &Imaging_Type); if (imagep == NULL) { ImagingDelete(imOut); return NULL; } #ifdef VERBOSE printf("imaging %p allocated\n", imagep); #endif imagep->image = imOut; imagep->access = ImagingAccessNew(imOut); return (PyObject*) imagep; } static void _dealloc(ImagingObject* imagep) { #ifdef VERBOSE printf("imaging %p deleted\n", imagep); #endif if (imagep->access) ImagingAccessDelete(imagep->image, imagep->access); ImagingDelete(imagep->image); PyObject_Del(imagep); } #define PyImaging_Check(op) (Py_TYPE(op) == &Imaging_Type) Imaging PyImaging_AsImaging(PyObject *op) { if (!PyImaging_Check(op)) { PyErr_BadInternalCall(); return NULL; } return ((ImagingObject *)op)->image; } /* -------------------------------------------------------------------- */ /* THREAD HANDLING */ /* -------------------------------------------------------------------- */ void ImagingSectionEnter(ImagingSectionCookie* cookie) { #ifdef WITH_THREADING *cookie = (PyThreadState *) PyEval_SaveThread(); #endif } void ImagingSectionLeave(ImagingSectionCookie* cookie) { #ifdef WITH_THREADING PyEval_RestoreThread((PyThreadState*) *cookie); #endif } /* -------------------------------------------------------------------- */ /* BUFFER HANDLING */ /* -------------------------------------------------------------------- */ /* Python compatibility API */ int PyImaging_CheckBuffer(PyObject* buffer) { #if PY_VERSION_HEX >= 0x03000000 return PyObject_CheckBuffer(buffer); #else return PyObject_CheckBuffer(buffer) || PyObject_CheckReadBuffer(buffer); #endif } int PyImaging_GetBuffer(PyObject* buffer, Py_buffer *view) { /* must call check_buffer first! */ #if PY_VERSION_HEX >= 0x03000000 return PyObject_GetBuffer(buffer, view, PyBUF_SIMPLE); #else /* Use new buffer protocol if available (mmap doesn't support this in 2.7, go figure) */ if (PyObject_CheckBuffer(buffer)) { return PyObject_GetBuffer(buffer, view, PyBUF_SIMPLE); } /* Pretend we support the new protocol; PyBuffer_Release happily ignores calling bf_releasebuffer on objects that don't support it */ view->buf = NULL; view->len = 0; view->readonly = 1; view->format = NULL; view->ndim = 0; view->shape = NULL; view->strides = NULL; view->suboffsets = NULL; view->itemsize = 0; view->internal = NULL; Py_INCREF(buffer); view->obj = buffer; return PyObject_AsReadBuffer(buffer, (void *) &view->buf, &view->len); #endif } /* -------------------------------------------------------------------- */ /* EXCEPTION REROUTING */ /* -------------------------------------------------------------------- */ /* error messages */ static const char* must_be_sequence = "argument must be a sequence"; static const char* wrong_mode = "unrecognized image mode"; static const char* wrong_raw_mode = "unrecognized raw mode"; static const char* outside_image = "image index out of range"; static const char* outside_palette = "palette index out of range"; static const char* wrong_palette_size = "invalid palette size"; static const char* no_palette = "image has no palette"; static const char* readonly = "image is readonly"; /* static const char* no_content = "image has no content"; */ void * ImagingError_IOError(void) { PyErr_SetString(PyExc_IOError, "error when accessing file"); return NULL; } void * ImagingError_MemoryError(void) { return PyErr_NoMemory(); } void * ImagingError_Mismatch(void) { PyErr_SetString(PyExc_ValueError, "images do not match"); return NULL; } void * ImagingError_ModeError(void) { PyErr_SetString(PyExc_ValueError, "image has wrong mode"); return NULL; } void * ImagingError_ValueError(const char *message) { PyErr_SetString( PyExc_ValueError, (message) ? (char*) message : "unrecognized argument value" ); return NULL; } void ImagingError_Clear(void) { PyErr_Clear(); } /* -------------------------------------------------------------------- */ /* HELPERS */ /* -------------------------------------------------------------------- */ static int getbands(const char* mode) { Imaging im; int bands; /* FIXME: add primitive to libImaging to avoid extra allocation */ im = ImagingNew(mode, 0, 0); if (!im) return -1; bands = im->bands; ImagingDelete(im); return bands; } #define TYPE_UINT8 (0x100|sizeof(UINT8)) #define TYPE_INT32 (0x200|sizeof(INT32)) #define TYPE_FLOAT32 (0x300|sizeof(FLOAT32)) #define TYPE_DOUBLE (0x400|sizeof(double)) static void* getlist(PyObject* arg, int* length, const char* wrong_length, int type) { int i, n; void* list; if (!PySequence_Check(arg)) { PyErr_SetString(PyExc_TypeError, must_be_sequence); return NULL; } n = PyObject_Length(arg); if (length && wrong_length && n != *length) { PyErr_SetString(PyExc_ValueError, wrong_length); return NULL; } list = malloc(n * (type & 0xff)); if (!list) return PyErr_NoMemory(); switch (type) { case TYPE_UINT8: if (PyList_Check(arg)) { for (i = 0; i < n; i++) { PyObject *op = PyList_GET_ITEM(arg, i); int temp = PyInt_AsLong(op); ((UINT8*)list)[i] = CLIP(temp); } } else { for (i = 0; i < n; i++) { PyObject *op = PySequence_GetItem(arg, i); int temp = PyInt_AsLong(op); Py_XDECREF(op); ((UINT8*)list)[i] = CLIP(temp); } } break; case TYPE_INT32: if (PyList_Check(arg)) { for (i = 0; i < n; i++) { PyObject *op = PyList_GET_ITEM(arg, i); int temp = PyInt_AsLong(op); ((INT32*)list)[i] = temp; } } else { for (i = 0; i < n; i++) { PyObject *op = PySequence_GetItem(arg, i); int temp = PyInt_AsLong(op); Py_XDECREF(op); ((INT32*)list)[i] = temp; } } break; case TYPE_FLOAT32: if (PyList_Check(arg)) { for (i = 0; i < n; i++) { PyObject *op = PyList_GET_ITEM(arg, i); double temp = PyFloat_AsDouble(op); ((FLOAT32*)list)[i] = (FLOAT32) temp; } } else { for (i = 0; i < n; i++) { PyObject *op = PySequence_GetItem(arg, i); double temp = PyFloat_AsDouble(op); Py_XDECREF(op); ((FLOAT32*)list)[i] = (FLOAT32) temp; } } break; case TYPE_DOUBLE: if (PyList_Check(arg)) { for (i = 0; i < n; i++) { PyObject *op = PyList_GET_ITEM(arg, i); double temp = PyFloat_AsDouble(op); ((double*)list)[i] = temp; } } else { for (i = 0; i < n; i++) { PyObject *op = PySequence_GetItem(arg, i); double temp = PyFloat_AsDouble(op); Py_XDECREF(op); ((double*)list)[i] = temp; } } break; } if (length) *length = n; PyErr_Clear(); return list; } static inline PyObject* getpixel(Imaging im, ImagingAccess access, int x, int y) { union { UINT8 b[4]; UINT16 h; INT32 i; FLOAT32 f; } pixel; if (x < 0 || x >= im->xsize || y < 0 || y >= im->ysize) { PyErr_SetString(PyExc_IndexError, outside_image); return NULL; } access->get_pixel(im, x, y, &pixel); switch (im->type) { case IMAGING_TYPE_UINT8: switch (im->bands) { case 1: return PyInt_FromLong(pixel.b[0]); case 2: return Py_BuildValue("BB", pixel.b[0], pixel.b[1]); case 3: return Py_BuildValue("BBB", pixel.b[0], pixel.b[1], pixel.b[2]); case 4: return Py_BuildValue("BBBB", pixel.b[0], pixel.b[1], pixel.b[2], pixel.b[3]); } break; case IMAGING_TYPE_INT32: return PyInt_FromLong(pixel.i); case IMAGING_TYPE_FLOAT32: return PyFloat_FromDouble(pixel.f); case IMAGING_TYPE_SPECIAL: if (strncmp(im->mode, "I;16", 4) == 0) return PyInt_FromLong(pixel.h); break; } /* unknown type */ Py_INCREF(Py_None); return Py_None; } static char* getink(PyObject* color, Imaging im, char* ink) { int r, g, b, a; double f; /* fill ink buffer (four bytes) with something that can be cast to either UINT8 or INT32 */ switch (im->type) { case IMAGING_TYPE_UINT8: /* unsigned integer */ if (im->bands == 1) { /* unsigned integer, single layer */ r = PyInt_AsLong(color); if (r == -1 && PyErr_Occurred()) return NULL; ink[0] = CLIP(r); ink[1] = ink[2] = ink[3] = 0; } else { a = 255; #if PY_VERSION_HEX >= 0x03000000 if (PyLong_Check(color)) { r = (int) PyLong_AsLong(color); #else if (PyInt_Check(color) || PyLong_Check(color)) { if (PyInt_Check(color)) r = PyInt_AS_LONG(color); else r = (int) PyLong_AsLong(color); #endif /* compatibility: ABGR */ a = (UINT8) (r >> 24); b = (UINT8) (r >> 16); g = (UINT8) (r >> 8); r = (UINT8) r; } else { if (im->bands == 2) { if (!PyArg_ParseTuple(color, "i|i", &r, &a)) return NULL; g = b = r; } else { if (!PyArg_ParseTuple(color, "iii|i", &r, &g, &b, &a)) return NULL; } } ink[0] = CLIP(r); ink[1] = CLIP(g); ink[2] = CLIP(b); ink[3] = CLIP(a); } return ink; case IMAGING_TYPE_INT32: /* signed integer */ r = PyInt_AsLong(color); if (r == -1 && PyErr_Occurred()) return NULL; *(INT32*) ink = r; return ink; case IMAGING_TYPE_FLOAT32: /* floating point */ f = PyFloat_AsDouble(color); if (f == -1.0 && PyErr_Occurred()) return NULL; *(FLOAT32*) ink = (FLOAT32) f; return ink; case IMAGING_TYPE_SPECIAL: if (strncmp(im->mode, "I;16", 4) == 0) { r = PyInt_AsLong(color); if (r == -1 && PyErr_Occurred()) return NULL; ink[0] = (UINT8) r; ink[1] = (UINT8) (r >> 8); ink[2] = ink[3] = 0; return ink; } } PyErr_SetString(PyExc_ValueError, wrong_mode); return NULL; } /* -------------------------------------------------------------------- */ /* FACTORIES */ /* -------------------------------------------------------------------- */ static PyObject* _fill(PyObject* self, PyObject* args) { char* mode; int xsize, ysize; PyObject* color; char buffer[4]; Imaging im; xsize = ysize = 256; color = NULL; if (!PyArg_ParseTuple(args, "s|(ii)O", &mode, &xsize, &ysize, &color)) return NULL; im = ImagingNew(mode, xsize, ysize); if (!im) return NULL; if (color) { if (!getink(color, im, buffer)) { ImagingDelete(im); return NULL; } } else buffer[0] = buffer[1] = buffer[2] = buffer[3] = 0; (void) ImagingFill(im, buffer); return PyImagingNew(im); } static PyObject* _new(PyObject* self, PyObject* args) { char* mode; int xsize, ysize; if (!PyArg_ParseTuple(args, "s(ii)", &mode, &xsize, &ysize)) return NULL; return PyImagingNew(ImagingNew(mode, xsize, ysize)); } static PyObject* _new_array(PyObject* self, PyObject* args) { char* mode; int xsize, ysize; if (!PyArg_ParseTuple(args, "s(ii)", &mode, &xsize, &ysize)) return NULL; return PyImagingNew(ImagingNewArray(mode, xsize, ysize)); } static PyObject* _new_block(PyObject* self, PyObject* args) { char* mode; int xsize, ysize; if (!PyArg_ParseTuple(args, "s(ii)", &mode, &xsize, &ysize)) return NULL; return PyImagingNew(ImagingNewBlock(mode, xsize, ysize)); } static PyObject* _getcount(PyObject* self, PyObject* args) { if (!PyArg_ParseTuple(args, ":getcount")) return NULL; return PyInt_FromLong(ImagingNewCount); } static PyObject* _linear_gradient(PyObject* self, PyObject* args) { char* mode; if (!PyArg_ParseTuple(args, "s", &mode)) return NULL; return PyImagingNew(ImagingFillLinearGradient(mode)); } static PyObject* _radial_gradient(PyObject* self, PyObject* args) { char* mode; if (!PyArg_ParseTuple(args, "s", &mode)) return NULL; return PyImagingNew(ImagingFillRadialGradient(mode)); } static PyObject* _open_ppm(PyObject* self, PyObject* args) { char* filename; if (!PyArg_ParseTuple(args, "s", &filename)) return NULL; return PyImagingNew(ImagingOpenPPM(filename)); } static PyObject* _alpha_composite(ImagingObject* self, PyObject* args) { ImagingObject* imagep1; ImagingObject* imagep2; if (!PyArg_ParseTuple(args, "O!O!", &Imaging_Type, &imagep1, &Imaging_Type, &imagep2)) return NULL; return PyImagingNew(ImagingAlphaComposite(imagep1->image, imagep2->image)); } static PyObject* _blend(ImagingObject* self, PyObject* args) { ImagingObject* imagep1; ImagingObject* imagep2; double alpha; alpha = 0.5; if (!PyArg_ParseTuple(args, "O!O!|d", &Imaging_Type, &imagep1, &Imaging_Type, &imagep2, &alpha)) return NULL; return PyImagingNew(ImagingBlend(imagep1->image, imagep2->image, (float) alpha)); } /* -------------------------------------------------------------------- */ /* METHODS */ /* -------------------------------------------------------------------- */ static PyObject* _convert(ImagingObject* self, PyObject* args) { char* mode; int dither = 0; ImagingObject *paletteimage = NULL; if (!PyArg_ParseTuple(args, "s|iO", &mode, &dither, &paletteimage)) return NULL; if (paletteimage != NULL) { if (!PyImaging_Check(paletteimage)) { PyObject_Print((PyObject *)paletteimage, stderr, 0); PyErr_SetString(PyExc_ValueError, "palette argument must be image with mode 'P'"); return NULL; } if (paletteimage->image->palette == NULL) { PyErr_SetString(PyExc_ValueError, "null palette"); return NULL; } } return PyImagingNew(ImagingConvert(self->image, mode, paletteimage ? paletteimage->image->palette : NULL, dither)); } static PyObject* _convert2(ImagingObject* self, PyObject* args) { ImagingObject* imagep1; ImagingObject* imagep2; if (!PyArg_ParseTuple(args, "O!O!", &Imaging_Type, &imagep1, &Imaging_Type, &imagep2)) return NULL; if (!ImagingConvert2(imagep1->image, imagep2->image)) return NULL; Py_INCREF(Py_None); return Py_None; } static PyObject* _convert_matrix(ImagingObject* self, PyObject* args) { char* mode; float m[12]; if (!PyArg_ParseTuple(args, "s(ffff)", &mode, m+0, m+1, m+2, m+3)) { PyErr_Clear(); if (!PyArg_ParseTuple(args, "s(ffffffffffff)", &mode, m+0, m+1, m+2, m+3, m+4, m+5, m+6, m+7, m+8, m+9, m+10, m+11)) return NULL; } return PyImagingNew(ImagingConvertMatrix(self->image, mode, m)); } static PyObject* _convert_transparent(ImagingObject* self, PyObject* args) { char* mode; int r,g,b; if (PyArg_ParseTuple(args, "s(iii)", &mode, &r, &g, &b)) { return PyImagingNew(ImagingConvertTransparent(self->image, mode, r, g, b)); } PyErr_Clear(); if (PyArg_ParseTuple(args, "si", &mode, &r)) { return PyImagingNew(ImagingConvertTransparent(self->image, mode, r, 0, 0)); } return NULL; } static PyObject* _copy(ImagingObject* self, PyObject* args) { if (!PyArg_ParseTuple(args, "")) return NULL; return PyImagingNew(ImagingCopy(self->image)); } static PyObject* _copy2(ImagingObject* self, PyObject* args) { ImagingObject* imagep1; ImagingObject* imagep2; if (!PyArg_ParseTuple(args, "O!O!", &Imaging_Type, &imagep1, &Imaging_Type, &imagep2)) return NULL; if (!ImagingCopy2(imagep1->image, imagep2->image)) return NULL; Py_INCREF(Py_None); return Py_None; } static PyObject* _crop(ImagingObject* self, PyObject* args) { int x0, y0, x1, y1; if (!PyArg_ParseTuple(args, "(iiii)", &x0, &y0, &x1, &y1)) return NULL; return PyImagingNew(ImagingCrop(self->image, x0, y0, x1, y1)); } static PyObject* _expand(ImagingObject* self, PyObject* args) { int x, y; int mode = 0; if (!PyArg_ParseTuple(args, "ii|i", &x, &y, &mode)) return NULL; return PyImagingNew(ImagingExpand(self->image, x, y, mode)); } static PyObject* _filter(ImagingObject* self, PyObject* args) { PyObject* imOut; int kernelsize; FLOAT32* kerneldata; int xsize, ysize; float divisor, offset; PyObject* kernel = NULL; if (!PyArg_ParseTuple(args, "(ii)ffO", &xsize, &ysize, &divisor, &offset, &kernel)) return NULL; /* get user-defined kernel */ kerneldata = getlist(kernel, &kernelsize, NULL, TYPE_FLOAT32); if (!kerneldata) return NULL; if (kernelsize != xsize * ysize) { free(kerneldata); return ImagingError_ValueError("bad kernel size"); } imOut = PyImagingNew( ImagingFilter(self->image, xsize, ysize, kerneldata, offset, divisor) ); free(kerneldata); return imOut; } #ifdef WITH_UNSHARPMASK static PyObject* _gaussian_blur(ImagingObject* self, PyObject* args) { Imaging imIn; Imaging imOut; float radius = 0; if (!PyArg_ParseTuple(args, "f", &radius)) return NULL; imIn = self->image; imOut = ImagingNew(imIn->mode, imIn->xsize, imIn->ysize); if (!imOut) return NULL; if (!ImagingGaussianBlur(imIn, imOut, radius)) return NULL; return PyImagingNew(imOut); } #endif static PyObject* _getpalette(ImagingObject* self, PyObject* args) { PyObject* palette; int palettesize = 256; int bits; ImagingShuffler pack; char* mode = "RGB"; char* rawmode = "RGB"; if (!PyArg_ParseTuple(args, "|ss", &mode, &rawmode)) return NULL; if (!self->image->palette) { PyErr_SetString(PyExc_ValueError, no_palette); return NULL; } pack = ImagingFindPacker(mode, rawmode, &bits); if (!pack) { PyErr_SetString(PyExc_ValueError, wrong_raw_mode); return NULL; } palette = PyBytes_FromStringAndSize(NULL, palettesize * bits / 8); if (!palette) return NULL; pack((UINT8*) PyBytes_AsString(palette), self->image->palette->palette, palettesize); return palette; } static PyObject* _getpalettemode(ImagingObject* self, PyObject* args) { if (!self->image->palette) { PyErr_SetString(PyExc_ValueError, no_palette); return NULL; } return PyUnicode_FromString(self->image->palette->mode); } static inline int _getxy(PyObject* xy, int* x, int *y) { PyObject* value; if (!PyTuple_Check(xy) || PyTuple_GET_SIZE(xy) != 2) goto badarg; value = PyTuple_GET_ITEM(xy, 0); if (PyInt_Check(value)) *x = PyInt_AS_LONG(value); else if (PyFloat_Check(value)) *x = (int) PyFloat_AS_DOUBLE(value); else goto badval; value = PyTuple_GET_ITEM(xy, 1); if (PyInt_Check(value)) *y = PyInt_AS_LONG(value); else if (PyFloat_Check(value)) *y = (int) PyFloat_AS_DOUBLE(value); else goto badval; return 0; badarg: PyErr_SetString( PyExc_TypeError, "argument must be sequence of length 2" ); return -1; badval: PyErr_SetString( PyExc_TypeError, "an integer is required" ); return -1; } static PyObject* _getpixel(ImagingObject* self, PyObject* args) { PyObject* xy; int x, y; if (PyTuple_GET_SIZE(args) != 1) { PyErr_SetString( PyExc_TypeError, "argument 1 must be sequence of length 2" ); return NULL; } xy = PyTuple_GET_ITEM(args, 0); if (_getxy(xy, &x, &y)) return NULL; if (self->access == NULL) { Py_INCREF(Py_None); return Py_None; } return getpixel(self->image, self->access, x, y); } static PyObject* _histogram(ImagingObject* self, PyObject* args) { ImagingHistogram h; PyObject* list; int i; union { UINT8 u[2]; INT32 i[2]; FLOAT32 f[2]; } extrema; void* ep; int i0, i1; double f0, f1; PyObject* extremap = NULL; ImagingObject* maskp = NULL; if (!PyArg_ParseTuple(args, "|OO!", &extremap, &Imaging_Type, &maskp)) return NULL; if (extremap) { ep = &extrema; switch (self->image->type) { case IMAGING_TYPE_UINT8: if (!PyArg_ParseTuple(extremap, "ii", &i0, &i1)) return NULL; /* FIXME: clip */ extrema.u[0] = i0; extrema.u[1] = i1; break; case IMAGING_TYPE_INT32: if (!PyArg_ParseTuple(extremap, "ii", &i0, &i1)) return NULL; extrema.i[0] = i0; extrema.i[1] = i1; break; case IMAGING_TYPE_FLOAT32: if (!PyArg_ParseTuple(extremap, "dd", &f0, &f1)) return NULL; extrema.f[0] = (FLOAT32) f0; extrema.f[1] = (FLOAT32) f1; break; default: ep = NULL; break; } } else ep = NULL; h = ImagingGetHistogram(self->image, (maskp) ? maskp->image : NULL, ep); if (!h) return NULL; /* Build an integer list containing the histogram */ list = PyList_New(h->bands * 256); for (i = 0; i < h->bands * 256; i++) { PyObject* item; item = PyInt_FromLong(h->histogram[i]); if (item == NULL) { Py_DECREF(list); list = NULL; break; } PyList_SetItem(list, i, item); } ImagingHistogramDelete(h); return list; } #ifdef WITH_MODEFILTER static PyObject* _modefilter(ImagingObject* self, PyObject* args) { int size; if (!PyArg_ParseTuple(args, "i", &size)) return NULL; return PyImagingNew(ImagingModeFilter(self->image, size)); } #endif static PyObject* _offset(ImagingObject* self, PyObject* args) { int xoffset, yoffset; if (!PyArg_ParseTuple(args, "ii", &xoffset, &yoffset)) return NULL; return PyImagingNew(ImagingOffset(self->image, xoffset, yoffset)); } static PyObject* _paste(ImagingObject* self, PyObject* args) { int status; char ink[4]; PyObject* source; int x0, y0, x1, y1; ImagingObject* maskp = NULL; if (!PyArg_ParseTuple(args, "O(iiii)|O!", &source, &x0, &y0, &x1, &y1, &Imaging_Type, &maskp)) return NULL; if (PyImaging_Check(source)) status = ImagingPaste( self->image, PyImaging_AsImaging(source), (maskp) ? maskp->image : NULL, x0, y0, x1, y1 ); else { if (!getink(source, self->image, ink)) return NULL; status = ImagingFill2( self->image, ink, (maskp) ? maskp->image : NULL, x0, y0, x1, y1 ); } if (status < 0) return NULL; Py_INCREF(Py_None); return Py_None; } static PyObject* _point(ImagingObject* self, PyObject* args) { static const char* wrong_number = "wrong number of lut entries"; int n, i; int bands; Imaging im; PyObject* list; char* mode; if (!PyArg_ParseTuple(args, "Oz", &list, &mode)) return NULL; if (mode && !strcmp(mode, "F")) { FLOAT32* data; /* map from 8-bit data to floating point */ n = 256; data = getlist(list, &n, wrong_number, TYPE_FLOAT32); if (!data) return NULL; im = ImagingPoint(self->image, mode, (void*) data); free(data); } else if (!strcmp(self->image->mode, "I") && mode && !strcmp(mode, "L")) { UINT8* data; /* map from 16-bit subset of 32-bit data to 8-bit */ /* FIXME: support arbitrary number of entries (requires API change) */ n = 65536; data = getlist(list, &n, wrong_number, TYPE_UINT8); if (!data) return NULL; im = ImagingPoint(self->image, mode, (void*) data); free(data); } else { INT32* data; UINT8 lut[1024]; if (mode) { bands = getbands(mode); if (bands < 0) return NULL; } else bands = self->image->bands; /* map to integer data */ n = 256 * bands; data = getlist(list, &n, wrong_number, TYPE_INT32); if (!data) return NULL; if (mode && !strcmp(mode, "I")) im = ImagingPoint(self->image, mode, (void*) data); else if (mode && bands > 1) { for (i = 0; i < 256; i++) { lut[i*4] = CLIP(data[i]); lut[i*4+1] = CLIP(data[i+256]); lut[i*4+2] = CLIP(data[i+512]); if (n > 768) lut[i*4+3] = CLIP(data[i+768]); } im = ImagingPoint(self->image, mode, (void*) lut); } else { /* map individual bands */ for (i = 0; i < n; i++) lut[i] = CLIP(data[i]); im = ImagingPoint(self->image, mode, (void*) lut); } free(data); } return PyImagingNew(im); } static PyObject* _point_transform(ImagingObject* self, PyObject* args) { double scale = 1.0; double offset = 0.0; if (!PyArg_ParseTuple(args, "|dd", &scale, &offset)) return NULL; return PyImagingNew(ImagingPointTransform(self->image, scale, offset)); } static PyObject* _putdata(ImagingObject* self, PyObject* args) { Imaging image; // i & n are # pixels, require py_ssize_t. x can be as large as n. y, just because. Py_ssize_t n, i, x, y; PyObject* data; double scale = 1.0; double offset = 0.0; if (!PyArg_ParseTuple(args, "O|dd", &data, &scale, &offset)) return NULL; if (!PySequence_Check(data)) { PyErr_SetString(PyExc_TypeError, must_be_sequence); return NULL; } image = self->image; n = PyObject_Length(data); if (n > (Py_ssize_t) (image->xsize * image->ysize)) { PyErr_SetString(PyExc_TypeError, "too many data entries"); return NULL; } if (image->image8) { if (PyBytes_Check(data)) { unsigned char* p; p = (unsigned char*) PyBytes_AS_STRING(data); if (scale == 1.0 && offset == 0.0) /* Plain string data */ for (i = y = 0; i < n; i += image->xsize, y++) { x = n - i; if (x > (int) image->xsize) x = image->xsize; memcpy(image->image8[y], p+i, x); } else /* Scaled and clipped string data */ for (i = x = y = 0; i < n; i++) { image->image8[y][x] = CLIP((int) (p[i] * scale + offset)); if (++x >= (int) image->xsize) x = 0, y++; } } else { if (scale == 1.0 && offset == 0.0) { /* Clipped data */ if (PyList_Check(data)) { for (i = x = y = 0; i < n; i++) { PyObject *op = PyList_GET_ITEM(data, i); image->image8[y][x] = (UINT8) CLIP(PyInt_AsLong(op)); if (++x >= (int) image->xsize) x = 0, y++; } } else { for (i = x = y = 0; i < n; i++) { PyObject *op = PySequence_GetItem(data, i); image->image8[y][x] = (UINT8) CLIP(PyInt_AsLong(op)); Py_XDECREF(op); if (++x >= (int) image->xsize) x = 0, y++; } } } else { if (PyList_Check(data)) { /* Scaled and clipped data */ for (i = x = y = 0; i < n; i++) { PyObject *op = PyList_GET_ITEM(data, i); image->image8[y][x] = CLIP( (int) (PyFloat_AsDouble(op) * scale + offset)); if (++x >= (int) image->xsize) x = 0, y++; } } else { for (i = x = y = 0; i < n; i++) { PyObject *op = PySequence_GetItem(data, i); image->image8[y][x] = CLIP( (int) (PyFloat_AsDouble(op) * scale + offset)); Py_XDECREF(op); if (++x >= (int) image->xsize) x = 0, y++; } } } PyErr_Clear(); /* Avoid weird exceptions */ } } else { /* 32-bit images */ switch (image->type) { case IMAGING_TYPE_INT32: for (i = x = y = 0; i < n; i++) { PyObject *op = PySequence_GetItem(data, i); IMAGING_PIXEL_INT32(image, x, y) = (INT32) (PyFloat_AsDouble(op) * scale + offset); Py_XDECREF(op); if (++x >= (int) image->xsize) x = 0, y++; } PyErr_Clear(); /* Avoid weird exceptions */ break; case IMAGING_TYPE_FLOAT32: for (i = x = y = 0; i < n; i++) { PyObject *op = PySequence_GetItem(data, i); IMAGING_PIXEL_FLOAT32(image, x, y) = (FLOAT32) (PyFloat_AsDouble(op) * scale + offset); Py_XDECREF(op); if (++x >= (int) image->xsize) x = 0, y++; } PyErr_Clear(); /* Avoid weird exceptions */ break; default: for (i = x = y = 0; i < n; i++) { union { char ink[4]; INT32 inkint; } u; PyObject *op = PySequence_GetItem(data, i); if (!op || !getink(op, image, u.ink)) { Py_DECREF(op); return NULL; } /* FIXME: what about scale and offset? */ image->image32[y][x] = u.inkint; Py_XDECREF(op); if (++x >= (int) image->xsize) x = 0, y++; } PyErr_Clear(); /* Avoid weird exceptions */ break; } } Py_INCREF(Py_None); return Py_None; } #ifdef WITH_QUANTIZE static PyObject* _quantize(ImagingObject* self, PyObject* args) { int colours = 256; int method = 0; int kmeans = 0; if (!PyArg_ParseTuple(args, "|iii", &colours, &method, &kmeans)) return NULL; if (!self->image->xsize || !self->image->ysize) { /* no content; return an empty image */ return PyImagingNew( ImagingNew("P", self->image->xsize, self->image->ysize) ); } return PyImagingNew(ImagingQuantize(self->image, colours, method, kmeans)); } #endif static PyObject* _putpalette(ImagingObject* self, PyObject* args) { ImagingShuffler unpack; int bits; char* rawmode; UINT8* palette; int palettesize; if (!PyArg_ParseTuple(args, "s"PY_ARG_BYTES_LENGTH, &rawmode, &palette, &palettesize)) return NULL; if (strcmp(self->image->mode, "L") != 0 && strcmp(self->image->mode, "P")) { PyErr_SetString(PyExc_ValueError, wrong_mode); return NULL; } unpack = ImagingFindUnpacker("RGB", rawmode, &bits); if (!unpack) { PyErr_SetString(PyExc_ValueError, wrong_raw_mode); return NULL; } if ( palettesize * 8 / bits > 256) { PyErr_SetString(PyExc_ValueError, wrong_palette_size); return NULL; } ImagingPaletteDelete(self->image->palette); strcpy(self->image->mode, "P"); self->image->palette = ImagingPaletteNew("RGB"); unpack(self->image->palette->palette, palette, palettesize * 8 / bits); Py_INCREF(Py_None); return Py_None; } static PyObject* _putpalettealpha(ImagingObject* self, PyObject* args) { int index; int alpha = 0; if (!PyArg_ParseTuple(args, "i|i", &index, &alpha)) return NULL; if (!self->image->palette) { PyErr_SetString(PyExc_ValueError, no_palette); return NULL; } if (index < 0 || index >= 256) { PyErr_SetString(PyExc_ValueError, outside_palette); return NULL; } strcpy(self->image->palette->mode, "RGBA"); self->image->palette->palette[index*4+3] = (UINT8) alpha; Py_INCREF(Py_None); return Py_None; } static PyObject* _putpalettealphas(ImagingObject* self, PyObject* args) { int i; UINT8 *values; int length; if (!PyArg_ParseTuple(args, "s#", &values, &length)) return NULL; if (!self->image->palette) { PyErr_SetString(PyExc_ValueError, no_palette); return NULL; } if (length > 256) { PyErr_SetString(PyExc_ValueError, outside_palette); return NULL; } strcpy(self->image->palette->mode, "RGBA"); for (i=0; iimage->palette->palette[i*4+3] = (UINT8) values[i]; } Py_INCREF(Py_None); return Py_None; } static PyObject* _putpixel(ImagingObject* self, PyObject* args) { Imaging im; char ink[4]; int x, y; PyObject* color; if (!PyArg_ParseTuple(args, "(ii)O", &x, &y, &color)) return NULL; im = self->image; if (x < 0 || x >= im->xsize || y < 0 || y >= im->ysize) { PyErr_SetString(PyExc_IndexError, outside_image); return NULL; } if (!getink(color, im, ink)) return NULL; if (self->access) self->access->put_pixel(im, x, y, ink); Py_INCREF(Py_None); return Py_None; } #ifdef WITH_RANKFILTER static PyObject* _rankfilter(ImagingObject* self, PyObject* args) { int size, rank; if (!PyArg_ParseTuple(args, "ii", &size, &rank)) return NULL; return PyImagingNew(ImagingRankFilter(self->image, size, rank)); } #endif static PyObject* _resize(ImagingObject* self, PyObject* args) { Imaging imIn; Imaging imOut; int xsize, ysize; int filter = IMAGING_TRANSFORM_NEAREST; if (!PyArg_ParseTuple(args, "(ii)|i", &xsize, &ysize, &filter)) return NULL; imIn = self->image; imOut = ImagingNew(imIn->mode, xsize, ysize); if (imOut) (void) ImagingResize(imOut, imIn, filter); return PyImagingNew(imOut); } static PyObject* _rotate(ImagingObject* self, PyObject* args) { Imaging imOut; Imaging imIn; double theta; int filter = IMAGING_TRANSFORM_NEAREST; if (!PyArg_ParseTuple(args, "d|i", &theta, &filter)) return NULL; imIn = self->image; theta = fmod(theta, 360.0); if (theta < 0.0) theta += 360; if (filter && imIn->type != IMAGING_TYPE_SPECIAL) { /* Rotate with resampling filter */ imOut = ImagingNew(imIn->mode, imIn->xsize, imIn->ysize); (void) ImagingRotate(imOut, imIn, theta, filter); } else if (theta == 90.0 || theta == 270.0) { /* Use fast version */ imOut = ImagingNew(imIn->mode, imIn->ysize, imIn->xsize); if (imOut) { if (theta == 90.0) (void) ImagingRotate90(imOut, imIn); else (void) ImagingRotate270(imOut, imIn); } } else { imOut = ImagingNew(imIn->mode, imIn->xsize, imIn->ysize); if (imOut) { if (theta == 0.0) /* No rotation: simply copy the input image */ (void) ImagingCopy2(imOut, imIn); else if (theta == 180.0) /* Use fast version */ (void) ImagingRotate180(imOut, imIn); else /* Use ordinary version */ (void) ImagingRotate(imOut, imIn, theta, 0); } } return PyImagingNew(imOut); } #define IS_RGB(mode)\ (!strcmp(mode, "RGB") || !strcmp(mode, "RGBA") || !strcmp(mode, "RGBX")) static PyObject* im_setmode(ImagingObject* self, PyObject* args) { /* attempt to modify the mode of an image in place */ Imaging im; char* mode; int modelen; if (!PyArg_ParseTuple(args, "s#:setmode", &mode, &modelen)) return NULL; im = self->image; /* move all logic in here to the libImaging primitive */ if (!strcmp(im->mode, mode)) { ; /* same mode; always succeeds */ } else if (IS_RGB(im->mode) && IS_RGB(mode)) { /* color to color */ strcpy(im->mode, mode); im->bands = modelen; if (!strcmp(mode, "RGBA")) (void) ImagingFillBand(im, 3, 255); } else { /* trying doing an in-place conversion */ if (!ImagingConvertInPlace(im, mode)) return NULL; } if (self->access) ImagingAccessDelete(im, self->access); self->access = ImagingAccessNew(im); Py_INCREF(Py_None); return Py_None; } static PyObject* _stretch(ImagingObject* self, PyObject* args) { Imaging imIn; Imaging imTemp; Imaging imOut; int xsize, ysize; int filter = IMAGING_TRANSFORM_NEAREST; if (!PyArg_ParseTuple(args, "(ii)|i", &xsize, &ysize, &filter)) return NULL; imIn = self->image; /* two-pass resize: minimize size of intermediate image */ if ((Py_ssize_t) imIn->xsize * ysize < (Py_ssize_t) xsize * imIn->ysize) imTemp = ImagingNew(imIn->mode, imIn->xsize, ysize); else imTemp = ImagingNew(imIn->mode, xsize, imIn->ysize); if (!imTemp) return NULL; /* first pass */ if (!ImagingStretch(imTemp, imIn, filter)) { ImagingDelete(imTemp); return NULL; } imOut = ImagingNew(imIn->mode, xsize, ysize); if (!imOut) { ImagingDelete(imTemp); return NULL; } /* second pass */ if (!ImagingStretch(imOut, imTemp, filter)) { ImagingDelete(imOut); ImagingDelete(imTemp); return NULL; } ImagingDelete(imTemp); return PyImagingNew(imOut); } static PyObject* _transform2(ImagingObject* self, PyObject* args) { static const char* wrong_number = "wrong number of matrix entries"; Imaging imIn; Imaging imOut; int n; double *a; ImagingObject* imagep; int x0, y0, x1, y1; int method; PyObject* data; int filter = IMAGING_TRANSFORM_NEAREST; int fill = 1; if (!PyArg_ParseTuple(args, "(iiii)O!iO|ii", &x0, &y0, &x1, &y1, &Imaging_Type, &imagep, &method, &data, &filter, &fill)) return NULL; switch (method) { case IMAGING_TRANSFORM_AFFINE: n = 6; break; case IMAGING_TRANSFORM_PERSPECTIVE: n = 8; break; case IMAGING_TRANSFORM_QUAD: n = 8; break; default: n = -1; /* force error */ } a = getlist(data, &n, wrong_number, TYPE_DOUBLE); if (!a) return NULL; imOut = self->image; imIn = imagep->image; /* FIXME: move transform dispatcher into libImaging */ switch (method) { case IMAGING_TRANSFORM_AFFINE: imOut = ImagingTransformAffine( imOut, imIn, x0, y0, x1, y1, a, filter, 1 ); break; case IMAGING_TRANSFORM_PERSPECTIVE: imOut = ImagingTransformPerspective( imOut, imIn, x0, y0, x1, y1, a, filter, 1 ); break; case IMAGING_TRANSFORM_QUAD: imOut = ImagingTransformQuad( imOut, imIn, x0, y0, x1, y1, a, filter, 1 ); break; default: (void) ImagingError_ValueError("bad transform method"); } free(a); if (!imOut) return NULL; Py_INCREF(Py_None); return Py_None; } static PyObject* _transpose(ImagingObject* self, PyObject* args) { Imaging imIn; Imaging imOut; int op; if (!PyArg_ParseTuple(args, "i", &op)) return NULL; imIn = self->image; switch (op) { case 0: /* flip left right */ case 1: /* flip top bottom */ case 3: /* rotate 180 */ imOut = ImagingNew(imIn->mode, imIn->xsize, imIn->ysize); break; case 2: /* rotate 90 */ case 4: /* rotate 270 */ imOut = ImagingNew(imIn->mode, imIn->ysize, imIn->xsize); break; default: PyErr_SetString(PyExc_ValueError, "No such transpose operation"); return NULL; } if (imOut) switch (op) { case 0: (void) ImagingFlipLeftRight(imOut, imIn); break; case 1: (void) ImagingFlipTopBottom(imOut, imIn); break; case 2: (void) ImagingRotate90(imOut, imIn); break; case 3: (void) ImagingRotate180(imOut, imIn); break; case 4: (void) ImagingRotate270(imOut, imIn); break; } return PyImagingNew(imOut); } #ifdef WITH_UNSHARPMASK static PyObject* _unsharp_mask(ImagingObject* self, PyObject* args) { Imaging imIn; Imaging imOut; float radius; int percent, threshold; if (!PyArg_ParseTuple(args, "fii", &radius, &percent, &threshold)) return NULL; imIn = self->image; imOut = ImagingNew(imIn->mode, imIn->xsize, imIn->ysize); if (!imOut) return NULL; if (!ImagingUnsharpMask(imIn, imOut, radius, percent, threshold)) return NULL; return PyImagingNew(imOut); } #endif /* -------------------------------------------------------------------- */ static PyObject* _isblock(ImagingObject* self, PyObject* args) { return PyInt_FromLong((long) self->image->block); } static PyObject* _getbbox(ImagingObject* self, PyObject* args) { int bbox[4]; if (!ImagingGetBBox(self->image, bbox)) { Py_INCREF(Py_None); return Py_None; } return Py_BuildValue("iiii", bbox[0], bbox[1], bbox[2], bbox[3]); } static PyObject* _getcolors(ImagingObject* self, PyObject* args) { ImagingColorItem* items; int i, colors; PyObject* out; int maxcolors = 256; if (!PyArg_ParseTuple(args, "i:getcolors", &maxcolors)) return NULL; items = ImagingGetColors(self->image, maxcolors, &colors); if (!items) return NULL; if (colors > maxcolors) { out = Py_None; Py_INCREF(out); } else { out = PyList_New(colors); for (i = 0; i < colors; i++) { ImagingColorItem* v = &items[i]; PyObject* item = Py_BuildValue( "iN", v->count, getpixel(self->image, self->access, v->x, v->y) ); PyList_SetItem(out, i, item); } } free(items); return out; } static PyObject* _getextrema(ImagingObject* self, PyObject* args) { union { UINT8 u[2]; INT32 i[2]; FLOAT32 f[2]; } extrema; int status; status = ImagingGetExtrema(self->image, &extrema); if (status < 0) return NULL; if (status) switch (self->image->type) { case IMAGING_TYPE_UINT8: return Py_BuildValue("BB", extrema.u[0], extrema.u[1]); case IMAGING_TYPE_INT32: return Py_BuildValue("ii", extrema.i[0], extrema.i[1]); case IMAGING_TYPE_FLOAT32: return Py_BuildValue("dd", extrema.f[0], extrema.f[1]); } Py_INCREF(Py_None); return Py_None; } static PyObject* _getprojection(ImagingObject* self, PyObject* args) { unsigned char* xprofile; unsigned char* yprofile; PyObject* result; xprofile = malloc(self->image->xsize); yprofile = malloc(self->image->ysize); if (xprofile == NULL || yprofile == NULL) { free(xprofile); free(yprofile); return PyErr_NoMemory(); } ImagingGetProjection(self->image, (unsigned char *)xprofile, (unsigned char *)yprofile); result = Py_BuildValue(PY_ARG_BYTES_LENGTH PY_ARG_BYTES_LENGTH, xprofile, self->image->xsize, yprofile, self->image->ysize); free(xprofile); free(yprofile); return result; } /* -------------------------------------------------------------------- */ static PyObject* _getband(ImagingObject* self, PyObject* args) { int band; if (!PyArg_ParseTuple(args, "i", &band)) return NULL; return PyImagingNew(ImagingGetBand(self->image, band)); } static PyObject* _fillband(ImagingObject* self, PyObject* args) { int band; int color; if (!PyArg_ParseTuple(args, "ii", &band, &color)) return NULL; if (!ImagingFillBand(self->image, band, color)) return NULL; Py_INCREF(Py_None); return Py_None; } static PyObject* _putband(ImagingObject* self, PyObject* args) { ImagingObject* imagep; int band; if (!PyArg_ParseTuple(args, "O!i", &Imaging_Type, &imagep, &band)) return NULL; if (!ImagingPutBand(self->image, imagep->image, band)) return NULL; Py_INCREF(Py_None); return Py_None; } /* -------------------------------------------------------------------- */ #ifdef WITH_IMAGECHOPS static PyObject* _chop_invert(ImagingObject* self, PyObject* args) { return PyImagingNew(ImagingNegative(self->image)); } static PyObject* _chop_lighter(ImagingObject* self, PyObject* args) { ImagingObject* imagep; if (!PyArg_ParseTuple(args, "O!", &Imaging_Type, &imagep)) return NULL; return PyImagingNew(ImagingChopLighter(self->image, imagep->image)); } static PyObject* _chop_darker(ImagingObject* self, PyObject* args) { ImagingObject* imagep; if (!PyArg_ParseTuple(args, "O!", &Imaging_Type, &imagep)) return NULL; return PyImagingNew(ImagingChopDarker(self->image, imagep->image)); } static PyObject* _chop_difference(ImagingObject* self, PyObject* args) { ImagingObject* imagep; if (!PyArg_ParseTuple(args, "O!", &Imaging_Type, &imagep)) return NULL; return PyImagingNew(ImagingChopDifference(self->image, imagep->image)); } static PyObject* _chop_multiply(ImagingObject* self, PyObject* args) { ImagingObject* imagep; if (!PyArg_ParseTuple(args, "O!", &Imaging_Type, &imagep)) return NULL; return PyImagingNew(ImagingChopMultiply(self->image, imagep->image)); } static PyObject* _chop_screen(ImagingObject* self, PyObject* args) { ImagingObject* imagep; if (!PyArg_ParseTuple(args, "O!", &Imaging_Type, &imagep)) return NULL; return PyImagingNew(ImagingChopScreen(self->image, imagep->image)); } static PyObject* _chop_add(ImagingObject* self, PyObject* args) { ImagingObject* imagep; float scale; int offset; scale = 1.0; offset = 0; if (!PyArg_ParseTuple(args, "O!|fi", &Imaging_Type, &imagep, &scale, &offset)) return NULL; return PyImagingNew(ImagingChopAdd(self->image, imagep->image, scale, offset)); } static PyObject* _chop_subtract(ImagingObject* self, PyObject* args) { ImagingObject* imagep; float scale; int offset; scale = 1.0; offset = 0; if (!PyArg_ParseTuple(args, "O!|fi", &Imaging_Type, &imagep, &scale, &offset)) return NULL; return PyImagingNew(ImagingChopSubtract(self->image, imagep->image, scale, offset)); } static PyObject* _chop_and(ImagingObject* self, PyObject* args) { ImagingObject* imagep; if (!PyArg_ParseTuple(args, "O!", &Imaging_Type, &imagep)) return NULL; return PyImagingNew(ImagingChopAnd(self->image, imagep->image)); } static PyObject* _chop_or(ImagingObject* self, PyObject* args) { ImagingObject* imagep; if (!PyArg_ParseTuple(args, "O!", &Imaging_Type, &imagep)) return NULL; return PyImagingNew(ImagingChopOr(self->image, imagep->image)); } static PyObject* _chop_xor(ImagingObject* self, PyObject* args) { ImagingObject* imagep; if (!PyArg_ParseTuple(args, "O!", &Imaging_Type, &imagep)) return NULL; return PyImagingNew(ImagingChopXor(self->image, imagep->image)); } static PyObject* _chop_add_modulo(ImagingObject* self, PyObject* args) { ImagingObject* imagep; if (!PyArg_ParseTuple(args, "O!", &Imaging_Type, &imagep)) return NULL; return PyImagingNew(ImagingChopAddModulo(self->image, imagep->image)); } static PyObject* _chop_subtract_modulo(ImagingObject* self, PyObject* args) { ImagingObject* imagep; if (!PyArg_ParseTuple(args, "O!", &Imaging_Type, &imagep)) return NULL; return PyImagingNew(ImagingChopSubtractModulo(self->image, imagep->image)); } #endif /* -------------------------------------------------------------------- */ #ifdef WITH_IMAGEDRAW static PyObject* _font_new(PyObject* self_, PyObject* args) { ImagingFontObject *self; int i, y0, y1; static const char* wrong_length = "descriptor table has wrong size"; ImagingObject* imagep; unsigned char* glyphdata; int glyphdata_length; if (!PyArg_ParseTuple(args, "O!"PY_ARG_BYTES_LENGTH, &Imaging_Type, &imagep, &glyphdata, &glyphdata_length)) return NULL; if (glyphdata_length != 256 * 20) { PyErr_SetString(PyExc_ValueError, wrong_length); return NULL; } self = PyObject_New(ImagingFontObject, &ImagingFont_Type); if (self == NULL) return NULL; /* glyph bitmap */ self->bitmap = imagep->image; y0 = y1 = 0; /* glyph glyphs */ for (i = 0; i < 256; i++) { self->glyphs[i].dx = S16(B16(glyphdata, 0)); self->glyphs[i].dy = S16(B16(glyphdata, 2)); self->glyphs[i].dx0 = S16(B16(glyphdata, 4)); self->glyphs[i].dy0 = S16(B16(glyphdata, 6)); self->glyphs[i].dx1 = S16(B16(glyphdata, 8)); self->glyphs[i].dy1 = S16(B16(glyphdata, 10)); self->glyphs[i].sx0 = S16(B16(glyphdata, 12)); self->glyphs[i].sy0 = S16(B16(glyphdata, 14)); self->glyphs[i].sx1 = S16(B16(glyphdata, 16)); self->glyphs[i].sy1 = S16(B16(glyphdata, 18)); if (self->glyphs[i].dy0 < y0) y0 = self->glyphs[i].dy0; if (self->glyphs[i].dy1 > y1) y1 = self->glyphs[i].dy1; glyphdata += 20; } self->baseline = -y0; self->ysize = y1 - y0; /* keep a reference to the bitmap object */ Py_INCREF(imagep); self->ref = imagep; return (PyObject*) self; } static void _font_dealloc(ImagingFontObject* self) { Py_XDECREF(self->ref); PyObject_Del(self); } static inline int textwidth(ImagingFontObject* self, const unsigned char* text) { int xsize; for (xsize = 0; *text; text++) xsize += self->glyphs[*text].dx; return xsize; } void _font_text_asBytes(PyObject* encoded_string, unsigned char** text){ PyObject* bytes = NULL; *text = NULL; if (PyUnicode_CheckExact(encoded_string)){ bytes = PyUnicode_AsLatin1String(encoded_string); } else if (PyBytes_Check(encoded_string)) { bytes = encoded_string; } if (bytes) { *text = (unsigned char*)PyBytes_AsString(bytes); return; } #if PY_VERSION_HEX < 0x03000000 /* likely case here is py2.x with an ordinary string. but this isn't defined in Py3.x */ if (PyString_Check(encoded_string)) { *text = (unsigned char *)PyString_AsString(encoded_string); } #endif } static PyObject* _font_getmask(ImagingFontObject* self, PyObject* args) { Imaging im; Imaging bitmap; int x, b; int i=0; int status; Glyph* glyph; PyObject* encoded_string; unsigned char* text; char* mode = ""; if (!PyArg_ParseTuple(args, "O|s:getmask", &encoded_string, &mode)){ return NULL; } _font_text_asBytes(encoded_string, &text); if (!text) { return NULL; } im = ImagingNew(self->bitmap->mode, textwidth(self, text), self->ysize); if (!im) { return NULL; } b = 0; (void) ImagingFill(im, &b); b = self->baseline; for (x = 0; text[i]; i++) { glyph = &self->glyphs[text[i]]; bitmap = ImagingCrop( self->bitmap, glyph->sx0, glyph->sy0, glyph->sx1, glyph->sy1 ); if (!bitmap) goto failed; status = ImagingPaste( im, bitmap, NULL, glyph->dx0+x, glyph->dy0+b, glyph->dx1+x, glyph->dy1+b ); ImagingDelete(bitmap); if (status < 0) goto failed; x = x + glyph->dx; b = b + glyph->dy; } return PyImagingNew(im); failed: ImagingDelete(im); return NULL; } static PyObject* _font_getsize(ImagingFontObject* self, PyObject* args) { unsigned char* text; PyObject* encoded_string; if (!PyArg_ParseTuple(args, "O:getsize", &encoded_string)) return NULL; _font_text_asBytes(encoded_string, &text); if (!text) { return NULL; } return Py_BuildValue("ii", textwidth(self, text), self->ysize); } static struct PyMethodDef _font_methods[] = { {"getmask", (PyCFunction)_font_getmask, 1}, {"getsize", (PyCFunction)_font_getsize, 1}, {NULL, NULL} /* sentinel */ }; /* -------------------------------------------------------------------- */ static PyObject* _draw_new(PyObject* self_, PyObject* args) { ImagingDrawObject *self; ImagingObject* imagep; int blend = 0; if (!PyArg_ParseTuple(args, "O!|i", &Imaging_Type, &imagep, &blend)) return NULL; self = PyObject_New(ImagingDrawObject, &ImagingDraw_Type); if (self == NULL) return NULL; /* keep a reference to the image object */ Py_INCREF(imagep); self->image = imagep; self->ink[0] = self->ink[1] = self->ink[2] = self->ink[3] = 0; self->blend = blend; return (PyObject*) self; } static void _draw_dealloc(ImagingDrawObject* self) { Py_XDECREF(self->image); PyObject_Del(self); } extern int PyPath_Flatten(PyObject* data, double **xy); static PyObject* _draw_ink(ImagingDrawObject* self, PyObject* args) { INT32 ink = 0; PyObject* color; char* mode = NULL; /* not used in this release */ if (!PyArg_ParseTuple(args, "O|s", &color, &mode)) return NULL; if (!getink(color, self->image->image, (char*) &ink)) return NULL; return PyInt_FromLong((int) ink); } static PyObject* _draw_arc(ImagingDrawObject* self, PyObject* args) { int x0, y0, x1, y1; int ink; int start, end; int op = 0; if (!PyArg_ParseTuple(args, "(iiii)iii|i", &x0, &y0, &x1, &y1, &start, &end, &ink)) return NULL; if (ImagingDrawArc(self->image->image, x0, y0, x1, y1, start, end, &ink, op) < 0) return NULL; Py_INCREF(Py_None); return Py_None; } static PyObject* _draw_bitmap(ImagingDrawObject* self, PyObject* args) { double *xy; int n; PyObject *data; ImagingObject* bitmap; int ink; if (!PyArg_ParseTuple(args, "OO!i", &data, &Imaging_Type, &bitmap, &ink)) return NULL; n = PyPath_Flatten(data, &xy); if (n < 0) return NULL; if (n != 1) { PyErr_SetString(PyExc_TypeError, "coordinate list must contain exactly 1 coordinate" ); return NULL; } n = ImagingDrawBitmap( self->image->image, (int) xy[0], (int) xy[1], bitmap->image, &ink, self->blend ); free(xy); if (n < 0) return NULL; Py_INCREF(Py_None); return Py_None; } static PyObject* _draw_chord(ImagingDrawObject* self, PyObject* args) { int x0, y0, x1, y1; int ink, fill; int start, end; if (!PyArg_ParseTuple(args, "(iiii)iiii", &x0, &y0, &x1, &y1, &start, &end, &ink, &fill)) return NULL; if (ImagingDrawChord(self->image->image, x0, y0, x1, y1, start, end, &ink, fill, self->blend) < 0) return NULL; Py_INCREF(Py_None); return Py_None; } static PyObject* _draw_ellipse(ImagingDrawObject* self, PyObject* args) { double* xy; int n; PyObject* data; int ink; int fill = 0; if (!PyArg_ParseTuple(args, "Oi|i", &data, &ink, &fill)) return NULL; n = PyPath_Flatten(data, &xy); if (n < 0) return NULL; if (n != 2) { PyErr_SetString(PyExc_TypeError, "coordinate list must contain exactly 2 coordinates" ); return NULL; } n = ImagingDrawEllipse(self->image->image, (int) xy[0], (int) xy[1], (int) xy[2], (int) xy[3], &ink, fill, self->blend ); free(xy); if (n < 0) return NULL; Py_INCREF(Py_None); return Py_None; } static PyObject* _draw_line(ImagingDrawObject* self, PyObject* args) { int x0, y0, x1, y1; int ink; if (!PyArg_ParseTuple(args, "(ii)(ii)i", &x0, &y0, &x1, &y1, &ink)) return NULL; if (ImagingDrawLine(self->image->image, x0, y0, x1, y1, &ink, self->blend) < 0) return NULL; Py_INCREF(Py_None); return Py_None; } static PyObject* _draw_lines(ImagingDrawObject* self, PyObject* args) { double *xy; int i, n; PyObject *data; int ink; int width = 0; if (!PyArg_ParseTuple(args, "Oi|i", &data, &ink, &width)) return NULL; n = PyPath_Flatten(data, &xy); if (n < 0) return NULL; if (width <= 1) { double *p = NULL; for (i = 0; i < n-1; i++) { p = &xy[i+i]; if (ImagingDrawLine( self->image->image, (int) p[0], (int) p[1], (int) p[2], (int) p[3], &ink, self->blend) < 0) { free(xy); return NULL; } } if (p) /* draw last point */ ImagingDrawPoint( self->image->image, (int) p[2], (int) p[3], &ink, self->blend ); } else { for (i = 0; i < n-1; i++) { double *p = &xy[i+i]; if (ImagingDrawWideLine( self->image->image, (int) p[0], (int) p[1], (int) p[2], (int) p[3], &ink, width, self->blend) < 0) { free(xy); return NULL; } } } free(xy); Py_INCREF(Py_None); return Py_None; } static PyObject* _draw_point(ImagingDrawObject* self, PyObject* args) { int x, y; int ink; if (!PyArg_ParseTuple(args, "(ii)i", &x, &y, &ink)) return NULL; if (ImagingDrawPoint(self->image->image, x, y, &ink, self->blend) < 0) return NULL; Py_INCREF(Py_None); return Py_None; } static PyObject* _draw_points(ImagingDrawObject* self, PyObject* args) { double *xy; int i, n; PyObject *data; int ink; if (!PyArg_ParseTuple(args, "Oi", &data, &ink)) return NULL; n = PyPath_Flatten(data, &xy); if (n < 0) return NULL; for (i = 0; i < n; i++) { double *p = &xy[i+i]; if (ImagingDrawPoint(self->image->image, (int) p[0], (int) p[1], &ink, self->blend) < 0) { free(xy); return NULL; } } free(xy); Py_INCREF(Py_None); return Py_None; } #ifdef WITH_ARROW /* from outline.c */ extern ImagingOutline PyOutline_AsOutline(PyObject* outline); static PyObject* _draw_outline(ImagingDrawObject* self, PyObject* args) { ImagingOutline outline; PyObject* outline_; int ink; int fill = 0; if (!PyArg_ParseTuple(args, "Oi|i", &outline_, &ink, &fill)) return NULL; outline = PyOutline_AsOutline(outline_); if (!outline) { PyErr_SetString(PyExc_TypeError, "expected outline object"); return NULL; } if (ImagingDrawOutline(self->image->image, outline, &ink, fill, self->blend) < 0) return NULL; Py_INCREF(Py_None); return Py_None; } #endif static PyObject* _draw_pieslice(ImagingDrawObject* self, PyObject* args) { int x0, y0, x1, y1; int ink, fill; int start, end; if (!PyArg_ParseTuple(args, "(iiii)iiii", &x0, &y0, &x1, &y1, &start, &end, &ink, &fill)) return NULL; if (ImagingDrawPieslice(self->image->image, x0, y0, x1, y1, start, end, &ink, fill, self->blend) < 0) return NULL; Py_INCREF(Py_None); return Py_None; } static PyObject* _draw_polygon(ImagingDrawObject* self, PyObject* args) { double *xy; int *ixy; int n, i; PyObject* data; int ink; int fill = 0; if (!PyArg_ParseTuple(args, "Oi|i", &data, &ink, &fill)) return NULL; n = PyPath_Flatten(data, &xy); if (n < 0) return NULL; if (n < 2) { PyErr_SetString(PyExc_TypeError, "coordinate list must contain at least 2 coordinates" ); return NULL; } /* Copy list of vertices to array */ ixy = (int*) malloc(n * 2 * sizeof(int)); for (i = 0; i < n; i++) { ixy[i+i] = (int) xy[i+i]; ixy[i+i+1] = (int) xy[i+i+1]; } free(xy); if (ImagingDrawPolygon(self->image->image, n, ixy, &ink, fill, self->blend) < 0) { free(ixy); return NULL; } free(ixy); Py_INCREF(Py_None); return Py_None; } static PyObject* _draw_rectangle(ImagingDrawObject* self, PyObject* args) { double* xy; int n; PyObject* data; int ink; int fill = 0; if (!PyArg_ParseTuple(args, "Oi|i", &data, &ink, &fill)) return NULL; n = PyPath_Flatten(data, &xy); if (n < 0) return NULL; if (n != 2) { PyErr_SetString(PyExc_TypeError, "coordinate list must contain exactly 2 coordinates" ); return NULL; } n = ImagingDrawRectangle(self->image->image, (int) xy[0], (int) xy[1], (int) xy[2], (int) xy[3], &ink, fill, self->blend ); free(xy); if (n < 0) return NULL; Py_INCREF(Py_None); return Py_None; } static struct PyMethodDef _draw_methods[] = { #ifdef WITH_IMAGEDRAW /* Graphics (ImageDraw) */ {"draw_line", (PyCFunction)_draw_line, 1}, {"draw_lines", (PyCFunction)_draw_lines, 1}, #ifdef WITH_ARROW {"draw_outline", (PyCFunction)_draw_outline, 1}, #endif {"draw_polygon", (PyCFunction)_draw_polygon, 1}, {"draw_rectangle", (PyCFunction)_draw_rectangle, 1}, {"draw_point", (PyCFunction)_draw_point, 1}, {"draw_points", (PyCFunction)_draw_points, 1}, {"draw_arc", (PyCFunction)_draw_arc, 1}, {"draw_bitmap", (PyCFunction)_draw_bitmap, 1}, {"draw_chord", (PyCFunction)_draw_chord, 1}, {"draw_ellipse", (PyCFunction)_draw_ellipse, 1}, {"draw_pieslice", (PyCFunction)_draw_pieslice, 1}, {"draw_ink", (PyCFunction)_draw_ink, 1}, #endif {NULL, NULL} /* sentinel */ }; #endif static PyObject* pixel_access_new(ImagingObject* imagep, PyObject* args) { PixelAccessObject *self; int readonly = 0; if (!PyArg_ParseTuple(args, "|i", &readonly)) return NULL; self = PyObject_New(PixelAccessObject, &PixelAccess_Type); if (self == NULL) return NULL; /* keep a reference to the image object */ Py_INCREF(imagep); self->image = imagep; self->readonly = readonly; return (PyObject*) self; } static void pixel_access_dealloc(PixelAccessObject* self) { Py_XDECREF(self->image); PyObject_Del(self); } static PyObject * pixel_access_getitem(PixelAccessObject *self, PyObject *xy) { int x, y; if (_getxy(xy, &x, &y)) return NULL; return getpixel(self->image->image, self->image->access, x, y); } static int pixel_access_setitem(PixelAccessObject *self, PyObject *xy, PyObject *color) { Imaging im = self->image->image; char ink[4]; int x, y; if (self->readonly) { (void) ImagingError_ValueError(readonly); return -1; } if (_getxy(xy, &x, &y)) return -1; if (x < 0 || x >= im->xsize || y < 0 || y >= im->ysize) { PyErr_SetString(PyExc_IndexError, outside_image); return -1; } if (!color) /* FIXME: raise exception? */ return 0; if (!getink(color, im, ink)) return -1; self->image->access->put_pixel(im, x, y, ink); return 0; } /* -------------------------------------------------------------------- */ /* EFFECTS (experimental) */ /* -------------------------------------------------------------------- */ #ifdef WITH_EFFECTS static PyObject* _effect_mandelbrot(ImagingObject* self, PyObject* args) { int xsize = 512; int ysize = 512; double extent[4]; int quality = 100; extent[0] = -3; extent[1] = -2.5; extent[2] = 2; extent[3] = 2.5; if (!PyArg_ParseTuple(args, "|(ii)(dddd)i", &xsize, &ysize, &extent[0], &extent[1], &extent[2], &extent[3], &quality)) return NULL; return PyImagingNew(ImagingEffectMandelbrot(xsize, ysize, extent, quality)); } static PyObject* _effect_noise(ImagingObject* self, PyObject* args) { int xsize, ysize; float sigma = 128; if (!PyArg_ParseTuple(args, "(ii)|f", &xsize, &ysize, &sigma)) return NULL; return PyImagingNew(ImagingEffectNoise(xsize, ysize, sigma)); } static PyObject* _effect_spread(ImagingObject* self, PyObject* args) { int dist; if (!PyArg_ParseTuple(args, "i", &dist)) return NULL; return PyImagingNew(ImagingEffectSpread(self->image, dist)); } #endif /* -------------------------------------------------------------------- */ /* UTILITIES */ /* -------------------------------------------------------------------- */ static PyObject* _crc32(PyObject* self, PyObject* args) { unsigned char* buffer; int bytes; int hi, lo; UINT32 crc; hi = lo = 0; if (!PyArg_ParseTuple(args, PY_ARG_BYTES_LENGTH"|(ii)", &buffer, &bytes, &hi, &lo)) return NULL; crc = ((UINT32) (hi & 0xFFFF) << 16) + (lo & 0xFFFF); crc = ImagingCRC32(crc, (unsigned char *)buffer, bytes); return Py_BuildValue("ii", (crc >> 16) & 0xFFFF, crc & 0xFFFF); } static PyObject* _getcodecstatus(PyObject* self, PyObject* args) { int status; char* msg; if (!PyArg_ParseTuple(args, "i", &status)) return NULL; switch (status) { case IMAGING_CODEC_OVERRUN: msg = "buffer overrun"; break; case IMAGING_CODEC_BROKEN: msg = "broken data stream"; break; case IMAGING_CODEC_UNKNOWN: msg = "unrecognized data stream contents"; break; case IMAGING_CODEC_CONFIG: msg = "codec configuration error"; break; case IMAGING_CODEC_MEMORY: msg = "out of memory"; break; default: Py_RETURN_NONE; } return PyUnicode_FromString(msg); } /* -------------------------------------------------------------------- */ /* DEBUGGING HELPERS */ /* -------------------------------------------------------------------- */ #ifdef WITH_DEBUG static PyObject* _save_ppm(ImagingObject* self, PyObject* args) { char* filename; if (!PyArg_ParseTuple(args, "s", &filename)) return NULL; if (!ImagingSavePPM(self->image, filename)) return NULL; Py_INCREF(Py_None); return Py_None; } #endif /* -------------------------------------------------------------------- */ /* methods */ static struct PyMethodDef methods[] = { /* Put commonly used methods first */ {"getpixel", (PyCFunction)_getpixel, 1}, {"putpixel", (PyCFunction)_putpixel, 1}, {"pixel_access", (PyCFunction)pixel_access_new, 1}, /* Standard processing methods (Image) */ {"convert", (PyCFunction)_convert, 1}, {"convert2", (PyCFunction)_convert2, 1}, {"convert_matrix", (PyCFunction)_convert_matrix, 1}, {"convert_transparent", (PyCFunction)_convert_transparent, 1}, {"copy", (PyCFunction)_copy, 1}, {"copy2", (PyCFunction)_copy2, 1}, #ifdef WITH_CRACKCODE {"crackcode", (PyCFunction)_crackcode, 1}, #endif {"crop", (PyCFunction)_crop, 1}, {"expand", (PyCFunction)_expand, 1}, {"filter", (PyCFunction)_filter, 1}, {"histogram", (PyCFunction)_histogram, 1}, #ifdef WITH_MODEFILTER {"modefilter", (PyCFunction)_modefilter, 1}, #endif {"offset", (PyCFunction)_offset, 1}, {"paste", (PyCFunction)_paste, 1}, {"point", (PyCFunction)_point, 1}, {"point_transform", (PyCFunction)_point_transform, 1}, {"putdata", (PyCFunction)_putdata, 1}, #ifdef WITH_QUANTIZE {"quantize", (PyCFunction)_quantize, 1}, #endif #ifdef WITH_RANKFILTER {"rankfilter", (PyCFunction)_rankfilter, 1}, #endif {"resize", (PyCFunction)_resize, 1}, {"rotate", (PyCFunction)_rotate, 1}, {"stretch", (PyCFunction)_stretch, 1}, {"transpose", (PyCFunction)_transpose, 1}, {"transform2", (PyCFunction)_transform2, 1}, {"isblock", (PyCFunction)_isblock, 1}, {"getbbox", (PyCFunction)_getbbox, 1}, {"getcolors", (PyCFunction)_getcolors, 1}, {"getextrema", (PyCFunction)_getextrema, 1}, {"getprojection", (PyCFunction)_getprojection, 1}, {"getband", (PyCFunction)_getband, 1}, {"putband", (PyCFunction)_putband, 1}, {"fillband", (PyCFunction)_fillband, 1}, {"setmode", (PyCFunction)im_setmode, 1}, {"getpalette", (PyCFunction)_getpalette, 1}, {"getpalettemode", (PyCFunction)_getpalettemode, 1}, {"putpalette", (PyCFunction)_putpalette, 1}, {"putpalettealpha", (PyCFunction)_putpalettealpha, 1}, {"putpalettealphas", (PyCFunction)_putpalettealphas, 1}, #ifdef WITH_IMAGECHOPS /* Channel operations (ImageChops) */ {"chop_invert", (PyCFunction)_chop_invert, 1}, {"chop_lighter", (PyCFunction)_chop_lighter, 1}, {"chop_darker", (PyCFunction)_chop_darker, 1}, {"chop_difference", (PyCFunction)_chop_difference, 1}, {"chop_multiply", (PyCFunction)_chop_multiply, 1}, {"chop_screen", (PyCFunction)_chop_screen, 1}, {"chop_add", (PyCFunction)_chop_add, 1}, {"chop_subtract", (PyCFunction)_chop_subtract, 1}, {"chop_add_modulo", (PyCFunction)_chop_add_modulo, 1}, {"chop_subtract_modulo", (PyCFunction)_chop_subtract_modulo, 1}, {"chop_and", (PyCFunction)_chop_and, 1}, {"chop_or", (PyCFunction)_chop_or, 1}, {"chop_xor", (PyCFunction)_chop_xor, 1}, #endif #ifdef WITH_UNSHARPMASK /* Kevin Cazabon's unsharpmask extension */ {"gaussian_blur", (PyCFunction)_gaussian_blur, 1}, {"unsharp_mask", (PyCFunction)_unsharp_mask, 1}, #endif #ifdef WITH_EFFECTS /* Special effects */ {"effect_spread", (PyCFunction)_effect_spread, 1}, #endif /* Misc. */ {"new_array", (PyCFunction)_new_array, 1}, {"new_block", (PyCFunction)_new_block, 1}, #ifdef WITH_DEBUG {"save_ppm", (PyCFunction)_save_ppm, 1}, #endif {NULL, NULL} /* sentinel */ }; /* attributes */ static PyObject* _getattr_mode(ImagingObject* self, void* closure) { return PyUnicode_FromString(self->image->mode); } static PyObject* _getattr_size(ImagingObject* self, void* closure) { return Py_BuildValue("ii", self->image->xsize, self->image->ysize); } static PyObject* _getattr_bands(ImagingObject* self, void* closure) { return PyInt_FromLong(self->image->bands); } static PyObject* _getattr_id(ImagingObject* self, void* closure) { return PyInt_FromSsize_t((Py_ssize_t) self->image); } static PyObject* _getattr_ptr(ImagingObject* self, void* closure) { #if (PY_VERSION_HEX >= 0x02070000 && PY_VERSION_HEX < 0x03000000) || PY_VERSION_HEX >= 0x03010000 return PyCapsule_New(self->image, IMAGING_MAGIC, NULL); #else return PyCObject_FromVoidPtrAndDesc(self->image, IMAGING_MAGIC, NULL); #endif } static PyObject* _getattr_unsafe_ptrs(ImagingObject* self, void* closure) { return Py_BuildValue("(ss)(si)(si)(si)(si)(si)(sn)(sn)(sn)(sn)(sn)(si)(si)(sn)", "mode", self->image->mode, "type", self->image->type, "depth", self->image->depth, "bands", self->image->bands, "xsize", self->image->xsize, "ysize", self->image->ysize, "palette", self->image->palette, "image8", self->image->image8, "image32", self->image->image32, "image", self->image->image, "block", self->image->block, "pixelsize", self->image->pixelsize, "linesize", self->image->linesize, "destroy", self->image->destroy ); }; static struct PyGetSetDef getsetters[] = { { "mode", (getter) _getattr_mode }, { "size", (getter) _getattr_size }, { "bands", (getter) _getattr_bands }, { "id", (getter) _getattr_id }, { "ptr", (getter) _getattr_ptr }, { "unsafe_ptrs", (getter) _getattr_unsafe_ptrs }, { NULL } }; /* basic sequence semantics */ static Py_ssize_t image_length(ImagingObject *self) { Imaging im = self->image; return (Py_ssize_t) im->xsize * im->ysize; } static PyObject * image_item(ImagingObject *self, Py_ssize_t i) { int x, y; Imaging im = self->image; if (im->xsize > 0) { x = i % im->xsize; y = i / im->xsize; } else x = y = 0; /* leave it to getpixel to raise an exception */ return getpixel(im, self->access, x, y); } static PySequenceMethods image_as_sequence = { (lenfunc) image_length, /*sq_length*/ (binaryfunc) NULL, /*sq_concat*/ (ssizeargfunc) NULL, /*sq_repeat*/ (ssizeargfunc) image_item, /*sq_item*/ (ssizessizeargfunc) NULL, /*sq_slice*/ (ssizeobjargproc) NULL, /*sq_ass_item*/ (ssizessizeobjargproc) NULL, /*sq_ass_slice*/ }; /* type description */ static PyTypeObject Imaging_Type = { PyVarObject_HEAD_INIT(NULL, 0) "ImagingCore", /*tp_name*/ sizeof(ImagingObject), /*tp_size*/ 0, /*tp_itemsize*/ /* methods */ (destructor)_dealloc, /*tp_dealloc*/ 0, /*tp_print*/ 0, /*tp_getattr*/ 0, /*tp_setattr*/ 0, /*tp_compare*/ 0, /*tp_repr*/ 0, /*tp_as_number */ &image_as_sequence, /*tp_as_sequence */ 0, /*tp_as_mapping */ 0, /*tp_hash*/ 0, /*tp_call*/ 0, /*tp_str*/ 0, /*tp_getattro*/ 0, /*tp_setattro*/ 0, /*tp_as_buffer*/ Py_TPFLAGS_DEFAULT, /*tp_flags*/ 0, /*tp_doc*/ 0, /*tp_traverse*/ 0, /*tp_clear*/ 0, /*tp_richcompare*/ 0, /*tp_weaklistoffset*/ 0, /*tp_iter*/ 0, /*tp_iternext*/ methods, /*tp_methods*/ 0, /*tp_members*/ getsetters, /*tp_getset*/ }; #ifdef WITH_IMAGEDRAW static PyTypeObject ImagingFont_Type = { PyVarObject_HEAD_INIT(NULL, 0) "ImagingFont", /*tp_name*/ sizeof(ImagingFontObject), /*tp_size*/ 0, /*tp_itemsize*/ /* methods */ (destructor)_font_dealloc, /*tp_dealloc*/ 0, /*tp_print*/ 0, /*tp_getattr*/ 0, /*tp_setattr*/ 0, /*tp_compare*/ 0, /*tp_repr*/ 0, /*tp_as_number */ 0, /*tp_as_sequence */ 0, /*tp_as_mapping */ 0, /*tp_hash*/ 0, /*tp_call*/ 0, /*tp_str*/ 0, /*tp_getattro*/ 0, /*tp_setattro*/ 0, /*tp_as_buffer*/ Py_TPFLAGS_DEFAULT, /*tp_flags*/ 0, /*tp_doc*/ 0, /*tp_traverse*/ 0, /*tp_clear*/ 0, /*tp_richcompare*/ 0, /*tp_weaklistoffset*/ 0, /*tp_iter*/ 0, /*tp_iternext*/ _font_methods, /*tp_methods*/ 0, /*tp_members*/ 0, /*tp_getset*/ }; static PyTypeObject ImagingDraw_Type = { PyVarObject_HEAD_INIT(NULL, 0) "ImagingDraw", /*tp_name*/ sizeof(ImagingDrawObject), /*tp_size*/ 0, /*tp_itemsize*/ /* methods */ (destructor)_draw_dealloc, /*tp_dealloc*/ 0, /*tp_print*/ 0, /*tp_getattr*/ 0, /*tp_setattr*/ 0, /*tp_compare*/ 0, /*tp_repr*/ 0, /*tp_as_number */ 0, /*tp_as_sequence */ 0, /*tp_as_mapping */ 0, /*tp_hash*/ 0, /*tp_call*/ 0, /*tp_str*/ 0, /*tp_getattro*/ 0, /*tp_setattro*/ 0, /*tp_as_buffer*/ Py_TPFLAGS_DEFAULT, /*tp_flags*/ 0, /*tp_doc*/ 0, /*tp_traverse*/ 0, /*tp_clear*/ 0, /*tp_richcompare*/ 0, /*tp_weaklistoffset*/ 0, /*tp_iter*/ 0, /*tp_iternext*/ _draw_methods, /*tp_methods*/ 0, /*tp_members*/ 0, /*tp_getset*/ }; #endif static PyMappingMethods pixel_access_as_mapping = { (lenfunc) NULL, /*mp_length*/ (binaryfunc) pixel_access_getitem, /*mp_subscript*/ (objobjargproc) pixel_access_setitem, /*mp_ass_subscript*/ }; /* type description */ static PyTypeObject PixelAccess_Type = { PyVarObject_HEAD_INIT(NULL, 0) "PixelAccess", sizeof(PixelAccessObject), 0, /* methods */ (destructor)pixel_access_dealloc, /*tp_dealloc*/ 0, /*tp_print*/ 0, /*tp_getattr*/ 0, /*tp_setattr*/ 0, /*tp_compare*/ 0, /*tp_repr*/ 0, /*tp_as_number */ 0, /*tp_as_sequence */ &pixel_access_as_mapping, /*tp_as_mapping */ 0 /*tp_hash*/ }; /* -------------------------------------------------------------------- */ /* FIXME: this is something of a mess. Should replace this with pluggable codecs, but not before PIL 1.2 */ /* Decoders (in decode.c) */ extern PyObject* PyImaging_BitDecoderNew(PyObject* self, PyObject* args); extern PyObject* PyImaging_FliDecoderNew(PyObject* self, PyObject* args); extern PyObject* PyImaging_GifDecoderNew(PyObject* self, PyObject* args); extern PyObject* PyImaging_HexDecoderNew(PyObject* self, PyObject* args); extern PyObject* PyImaging_JpegDecoderNew(PyObject* self, PyObject* args); extern PyObject* PyImaging_TiffLzwDecoderNew(PyObject* self, PyObject* args); extern PyObject* PyImaging_LibTiffDecoderNew(PyObject* self, PyObject* args); extern PyObject* PyImaging_MspDecoderNew(PyObject* self, PyObject* args); extern PyObject* PyImaging_PackbitsDecoderNew(PyObject* self, PyObject* args); extern PyObject* PyImaging_PcdDecoderNew(PyObject* self, PyObject* args); extern PyObject* PyImaging_PcxDecoderNew(PyObject* self, PyObject* args); extern PyObject* PyImaging_RawDecoderNew(PyObject* self, PyObject* args); extern PyObject* PyImaging_SunRleDecoderNew(PyObject* self, PyObject* args); extern PyObject* PyImaging_TgaRleDecoderNew(PyObject* self, PyObject* args); extern PyObject* PyImaging_XbmDecoderNew(PyObject* self, PyObject* args); extern PyObject* PyImaging_ZipDecoderNew(PyObject* self, PyObject* args); /* Encoders (in encode.c) */ extern PyObject* PyImaging_EpsEncoderNew(PyObject* self, PyObject* args); extern PyObject* PyImaging_GifEncoderNew(PyObject* self, PyObject* args); extern PyObject* PyImaging_JpegEncoderNew(PyObject* self, PyObject* args); extern PyObject* PyImaging_PcxEncoderNew(PyObject* self, PyObject* args); extern PyObject* PyImaging_RawEncoderNew(PyObject* self, PyObject* args); extern PyObject* PyImaging_XbmEncoderNew(PyObject* self, PyObject* args); extern PyObject* PyImaging_ZipEncoderNew(PyObject* self, PyObject* args); extern PyObject* PyImaging_LibTiffEncoderNew(PyObject* self, PyObject* args); /* Display support etc (in display.c) */ #ifdef WIN32 extern PyObject* PyImaging_CreateWindowWin32(PyObject* self, PyObject* args); extern PyObject* PyImaging_DisplayWin32(PyObject* self, PyObject* args); extern PyObject* PyImaging_DisplayModeWin32(PyObject* self, PyObject* args); extern PyObject* PyImaging_GrabScreenWin32(PyObject* self, PyObject* args); extern PyObject* PyImaging_GrabClipboardWin32(PyObject* self, PyObject* args); extern PyObject* PyImaging_ListWindowsWin32(PyObject* self, PyObject* args); extern PyObject* PyImaging_EventLoopWin32(PyObject* self, PyObject* args); extern PyObject* PyImaging_DrawWmf(PyObject* self, PyObject* args); #endif /* Experimental path stuff (in path.c) */ extern PyObject* PyPath_Create(ImagingObject* self, PyObject* args); /* Experimental outline stuff (in outline.c) */ extern PyObject* PyOutline_Create(ImagingObject* self, PyObject* args); extern PyObject* PyImaging_Mapper(PyObject* self, PyObject* args); extern PyObject* PyImaging_MapBuffer(PyObject* self, PyObject* args); static PyMethodDef functions[] = { /* Object factories */ {"alpha_composite", (PyCFunction)_alpha_composite, 1}, {"blend", (PyCFunction)_blend, 1}, {"fill", (PyCFunction)_fill, 1}, {"new", (PyCFunction)_new, 1}, {"getcount", (PyCFunction)_getcount, 1}, /* Functions */ {"convert", (PyCFunction)_convert2, 1}, {"copy", (PyCFunction)_copy2, 1}, /* Codecs */ {"bit_decoder", (PyCFunction)PyImaging_BitDecoderNew, 1}, {"eps_encoder", (PyCFunction)PyImaging_EpsEncoderNew, 1}, {"fli_decoder", (PyCFunction)PyImaging_FliDecoderNew, 1}, {"gif_decoder", (PyCFunction)PyImaging_GifDecoderNew, 1}, {"gif_encoder", (PyCFunction)PyImaging_GifEncoderNew, 1}, {"hex_decoder", (PyCFunction)PyImaging_HexDecoderNew, 1}, {"hex_encoder", (PyCFunction)PyImaging_EpsEncoderNew, 1}, /* EPS=HEX! */ #ifdef HAVE_LIBJPEG {"jpeg_decoder", (PyCFunction)PyImaging_JpegDecoderNew, 1}, {"jpeg_encoder", (PyCFunction)PyImaging_JpegEncoderNew, 1}, #endif {"tiff_lzw_decoder", (PyCFunction)PyImaging_TiffLzwDecoderNew, 1}, #ifdef HAVE_LIBTIFF {"libtiff_decoder", (PyCFunction)PyImaging_LibTiffDecoderNew, 1}, {"libtiff_encoder", (PyCFunction)PyImaging_LibTiffEncoderNew, 1}, #endif {"msp_decoder", (PyCFunction)PyImaging_MspDecoderNew, 1}, {"packbits_decoder", (PyCFunction)PyImaging_PackbitsDecoderNew, 1}, {"pcd_decoder", (PyCFunction)PyImaging_PcdDecoderNew, 1}, {"pcx_decoder", (PyCFunction)PyImaging_PcxDecoderNew, 1}, {"pcx_encoder", (PyCFunction)PyImaging_PcxEncoderNew, 1}, {"raw_decoder", (PyCFunction)PyImaging_RawDecoderNew, 1}, {"raw_encoder", (PyCFunction)PyImaging_RawEncoderNew, 1}, {"sun_rle_decoder", (PyCFunction)PyImaging_SunRleDecoderNew, 1}, {"tga_rle_decoder", (PyCFunction)PyImaging_TgaRleDecoderNew, 1}, {"xbm_decoder", (PyCFunction)PyImaging_XbmDecoderNew, 1}, {"xbm_encoder", (PyCFunction)PyImaging_XbmEncoderNew, 1}, #ifdef HAVE_LIBZ {"zip_decoder", (PyCFunction)PyImaging_ZipDecoderNew, 1}, {"zip_encoder", (PyCFunction)PyImaging_ZipEncoderNew, 1}, #endif /* Memory mapping */ #ifdef WITH_MAPPING #ifdef WIN32 {"map", (PyCFunction)PyImaging_Mapper, 1}, #endif {"map_buffer", (PyCFunction)PyImaging_MapBuffer, 1}, #endif /* Display support */ #ifdef WIN32 {"display", (PyCFunction)PyImaging_DisplayWin32, 1}, {"display_mode", (PyCFunction)PyImaging_DisplayModeWin32, 1}, {"grabscreen", (PyCFunction)PyImaging_GrabScreenWin32, 1}, {"grabclipboard", (PyCFunction)PyImaging_GrabClipboardWin32, 1}, {"createwindow", (PyCFunction)PyImaging_CreateWindowWin32, 1}, {"eventloop", (PyCFunction)PyImaging_EventLoopWin32, 1}, {"listwindows", (PyCFunction)PyImaging_ListWindowsWin32, 1}, {"drawwmf", (PyCFunction)PyImaging_DrawWmf, 1}, #endif /* Utilities */ {"crc32", (PyCFunction)_crc32, 1}, {"getcodecstatus", (PyCFunction)_getcodecstatus, 1}, /* Debugging stuff */ {"open_ppm", (PyCFunction)_open_ppm, 1}, /* Special effects (experimental) */ #ifdef WITH_EFFECTS {"effect_mandelbrot", (PyCFunction)_effect_mandelbrot, 1}, {"effect_noise", (PyCFunction)_effect_noise, 1}, {"linear_gradient", (PyCFunction)_linear_gradient, 1}, {"radial_gradient", (PyCFunction)_radial_gradient, 1}, {"wedge", (PyCFunction)_linear_gradient, 1}, /* Compatibility */ #endif /* Drawing support stuff */ #ifdef WITH_IMAGEDRAW {"font", (PyCFunction)_font_new, 1}, {"draw", (PyCFunction)_draw_new, 1}, #endif /* Experimental path stuff */ #ifdef WITH_IMAGEPATH {"path", (PyCFunction)PyPath_Create, 1}, #endif /* Experimental arrow graphics stuff */ #ifdef WITH_ARROW {"outline", (PyCFunction)PyOutline_Create, 1}, #endif {NULL, NULL} /* sentinel */ }; static int setup_module(PyObject* m) { PyObject* d = PyModule_GetDict(m); /* Ready object types */ if (PyType_Ready(&Imaging_Type) < 0) return -1; #ifdef WITH_IMAGEDRAW if (PyType_Ready(&ImagingFont_Type) < 0) return -1; if (PyType_Ready(&ImagingDraw_Type) < 0) return -1; #endif if (PyType_Ready(&PixelAccess_Type) < 0) return -1; ImagingAccessInit(); #ifdef HAVE_LIBJPEG { extern const char* ImagingJpegVersion(void); PyDict_SetItemString(d, "jpeglib_version", PyUnicode_FromString(ImagingJpegVersion())); } #endif #ifdef HAVE_LIBZ /* zip encoding strategies */ PyModule_AddIntConstant(m, "DEFAULT_STRATEGY", Z_DEFAULT_STRATEGY); PyModule_AddIntConstant(m, "FILTERED", Z_FILTERED); PyModule_AddIntConstant(m, "HUFFMAN_ONLY", Z_HUFFMAN_ONLY); PyModule_AddIntConstant(m, "RLE", Z_RLE); PyModule_AddIntConstant(m, "FIXED", Z_FIXED); { extern const char* ImagingZipVersion(void); PyDict_SetItemString(d, "zlib_version", PyUnicode_FromString(ImagingZipVersion())); } #endif PyDict_SetItemString(d, "PILLOW_VERSION", PyUnicode_FromString(PILLOW_VERSION)); return 0; } #if PY_VERSION_HEX >= 0x03000000 PyMODINIT_FUNC PyInit__imaging(void) { PyObject* m; static PyModuleDef module_def = { PyModuleDef_HEAD_INIT, "_imaging", /* m_name */ NULL, /* m_doc */ -1, /* m_size */ functions, /* m_methods */ }; m = PyModule_Create(&module_def); if (setup_module(m) < 0) return NULL; return m; } #else PyMODINIT_FUNC init_imaging(void) { PyObject* m = Py_InitModule("_imaging", functions); setup_module(m); } #endif