from __future__ import print_function import sys from helper import unittest, PillowTestCase, hopper from PIL import Image try: import site import numpy assert site # silence warning assert numpy # silence warning except ImportError: # Skip via setUp() pass TEST_IMAGE_SIZE = (10, 10) # Numpy on pypy as of pypy 5.3.1 is corrupting the numpy.array(Image) # call such that it's returning a object of type numpy.ndarray, but # the repr is that of a PIL.Image. Size and shape are 1 and (), not the # size and shape of the array. This causes failures in several tests. SKIP_NUMPY_ON_PYPY = hasattr(sys, 'pypy_version_info') and ( sys.pypy_version_info <= (5, 3, 1, 'final', 0)) class TestNumpy(PillowTestCase): def setUp(self): try: import site import numpy assert site # silence warning assert numpy # silence warning except ImportError: self.skipTest("ImportError") def test_numpy_to_image(self): def to_image(dtype, bands=1, boolean=0): if bands == 1: if boolean: data = [0, 1] * 50 else: data = list(range(100)) a = numpy.array(data, dtype=dtype) a.shape = TEST_IMAGE_SIZE i = Image.fromarray(a) if list(i.getdata()) != data: print("data mismatch for", dtype) else: data = list(range(100)) a = numpy.array([[x]*bands for x in data], dtype=dtype) a.shape = TEST_IMAGE_SIZE[0], TEST_IMAGE_SIZE[1], bands i = Image.fromarray(a) if list(i.split()[0].getdata()) != list(range(100)): print("data mismatch for", dtype) # print dtype, list(i.getdata()) return i # Check supported 1-bit integer formats self.assertRaises(TypeError, lambda: to_image(numpy.bool)) self.assertRaises(TypeError, lambda: to_image(numpy.bool8)) # Check supported 8-bit integer formats self.assert_image(to_image(numpy.uint8), "L", TEST_IMAGE_SIZE) self.assert_image(to_image(numpy.uint8, 3), "RGB", TEST_IMAGE_SIZE) self.assert_image(to_image(numpy.uint8, 4), "RGBA", TEST_IMAGE_SIZE) self.assert_image(to_image(numpy.int8), "I", TEST_IMAGE_SIZE) # Check non-fixed-size integer types # These may fail, depending on the platform, since we have no native # 64 bit int image types. # self.assert_image(to_image(numpy.uint), "I", TEST_IMAGE_SIZE) # self.assert_image(to_image(numpy.int), "I", TEST_IMAGE_SIZE) # Check 16-bit integer formats if Image._ENDIAN == '<': self.assert_image(to_image(numpy.uint16), "I;16", TEST_IMAGE_SIZE) else: self.assert_image(to_image(numpy.uint16), "I;16B", TEST_IMAGE_SIZE) self.assert_image(to_image(numpy.int16), "I", TEST_IMAGE_SIZE) # Check 32-bit integer formats self.assert_image(to_image(numpy.uint32), "I", TEST_IMAGE_SIZE) self.assert_image(to_image(numpy.int32), "I", TEST_IMAGE_SIZE) # Check 64-bit integer formats self.assertRaises(TypeError, lambda: to_image(numpy.uint64)) self.assertRaises(TypeError, lambda: to_image(numpy.int64)) # Check floating-point formats self.assert_image(to_image(numpy.float), "F", TEST_IMAGE_SIZE) self.assertRaises(TypeError, lambda: to_image(numpy.float16)) self.assert_image(to_image(numpy.float32), "F", TEST_IMAGE_SIZE) self.assert_image(to_image(numpy.float64), "F", TEST_IMAGE_SIZE) self.assert_image(to_image(numpy.uint8, 2), "LA", (10, 10)) self.assert_image(to_image(numpy.uint8, 3), "RGB", (10, 10)) self.assert_image(to_image(numpy.uint8, 4), "RGBA", (10, 10)) # based on an erring example at # http://stackoverflow.com/questions/10854903/what-is-causing-dimension-dependent-attributeerror-in-pil-fromarray-function def test_3d_array(self): size = (5, TEST_IMAGE_SIZE[0], TEST_IMAGE_SIZE[1]) a = numpy.ones(size, dtype=numpy.uint8) self.assert_image(Image.fromarray(a[1, :, :]), "L", TEST_IMAGE_SIZE) size = (TEST_IMAGE_SIZE[0], 5, TEST_IMAGE_SIZE[1]) a = numpy.ones(size, dtype=numpy.uint8) self.assert_image(Image.fromarray(a[:, 1, :]), "L", TEST_IMAGE_SIZE) size = (TEST_IMAGE_SIZE[0], TEST_IMAGE_SIZE[1], 5) a = numpy.ones(size, dtype=numpy.uint8) self.assert_image(Image.fromarray(a[:, :, 1]), "L", TEST_IMAGE_SIZE) def _test_img_equals_nparray(self, img, np): self.assertGreaterEqual(len(np.shape), 2) np_size = np.shape[1], np.shape[0] self.assertEqual(img.size, np_size) px = img.load() for x in range(0, img.size[0], int(img.size[0]/10)): for y in range(0, img.size[1], int(img.size[1]/10)): self.assert_deep_equal(px[x, y], np[y, x]) @unittest.skipIf(SKIP_NUMPY_ON_PYPY, "numpy.array(Image) is flaky on PyPy") def test_16bit(self): img = Image.open('Tests/images/16bit.cropped.tif') np_img = numpy.array(img) self._test_img_equals_nparray(img, np_img) self.assertEqual(np_img.dtype, numpy.dtype('u2'), ("I;16L", '