#include "Imaging.h" #include #define ROUND_UP(f) ((int) ((f) >= 0.0 ? (f) + 0.5F : (f) - 0.5F)) /* 8 bits for result. Table can overflow [0, 1.0] range, so we need extra bits for overflow and negative values. NOTE: This value should be the same as in _imaging/_prepare_lut_table() */ #define PRECISION_BITS (16 - 8 - 2) static inline void interpolate3(INT16 out[3], const INT16 a[3], const INT16 b[3], float shift) { out[0] = a[0] * (1-shift) + b[0] * shift + 0.5; out[1] = a[1] * (1-shift) + b[1] * shift + 0.5; out[2] = a[2] * (1-shift) + b[2] * shift + 0.5; } static inline void interpolate4(INT16 out[3], const INT16 a[3], const INT16 b[3], float shift) { out[0] = a[0] * (1-shift) + b[0] * shift + 0.5; out[1] = a[1] * (1-shift) + b[1] * shift + 0.5; out[2] = a[2] * (1-shift) + b[2] * shift + 0.5; out[3] = a[3] * (1-shift) + b[3] * shift + 0.5; } static inline int table3D_index3(int index1D, int index2D, int index3D, int size1D, int size1D_2D) { return (index1D + index2D * size1D + index3D * size1D_2D) * 3; } static inline int table3D_index4(int index1D, int index2D, int index3D, int size1D, int size1D_2D) { return (index1D + index2D * size1D + index3D * size1D_2D) * 4; } /* Transforms colors of imIn using provided 3D look-up table and puts the result in imOut. Returns imOut on sucess or 0 on error. imOut, imIn — images, should be the same size and may be the same image. Should have 3 or 4 channels. table_channels — number of channels in the look-up table, 3 or 4. Should be less or equal than number of channels in imOut image; size1D, size_2D and size3D — dimensions of provided table; table — flatten table, array with table_channels × size1D × size2D × size3D elements, where channels are changed first, then 1D, then​ 2D, then 3D. Each element is signed 16-bit int where 0 is lowest output value and 255 << PRECISION_BITS (16320) is highest value. */ Imaging ImagingColorLUT3D_linear(Imaging imOut, Imaging imIn, int table_channels, int size1D, int size2D, int size3D, INT16* table) { /* The fractions are a way to avoid overflow. For every pixel, we interpolate 8 elements from the table: current and +1 for every dimension and they combinations. If we hit the upper cells from the table, +1 cells will be outside of the table. With this compensation we never hit the upper cells but this also doesn't introduce any noticable difference. */ float scale1D = (size1D - 1) / (255.0002); float scale2D = (size2D - 1) / (255.0002); float scale3D = (size3D - 1) / (255.0002); int size1D_2D = size1D * size2D; int x, y; if (table_channels < 3 || table_channels > 4) { PyErr_SetString(PyExc_ValueError, "table_channels could be 3 or 4"); return NULL; } if (imIn->type != IMAGING_TYPE_UINT8 || imOut->type != IMAGING_TYPE_UINT8 || imIn->bands < 3 || imOut->bands < table_channels ) { return (Imaging) ImagingError_ModeError(); } /* In case we have one extra band in imOut and don't have in imIn.*/ if (imOut->bands > table_channels && imOut->bands > imIn->bands) { return (Imaging) ImagingError_ModeError(); } for (y = 0; y < imOut->ysize; y++) { UINT8 *rowIn = (UINT8 *)imIn->image[y]; UINT8 *rowOut = (UINT8 *)imIn->image[y]; for (x = 0; x < imOut->xsize; x++) { float scaled1D = rowIn[x*4 + 0] * scale1D; float scaled2D = rowIn[x*4 + 1] * scale2D; float scaled3D = rowIn[x*4 + 2] * scale3D; int index1D = (int) scaled1D; int index2D = (int) scaled2D; int index3D = (int) scaled3D; float shift1D = scaled1D - index1D; float shift2D = scaled2D - index2D; float shift3D = scaled3D - index3D; } } return imOut; }