/* * The Python Imaging Library. * * standard encoder interfaces for the Imaging library * * History: * 1996-04-19 fl Based on decoders.c * 1996-05-12 fl Compile cleanly as C++ * 1996-12-30 fl Plugged potential memory leak for tiled images * 1997-01-03 fl Added GIF encoder * 1997-01-05 fl Plugged encoder buffer leaks * 1997-01-11 fl Added encode_to_file method * 1998-03-09 fl Added mode/rawmode argument to encoders * 1998-07-09 fl Added interlace argument to GIF encoder * 1999-02-07 fl Added PCX encoder * * Copyright (c) 1997-2001 by Secret Labs AB * Copyright (c) 1996-1997 by Fredrik Lundh * * See the README file for information on usage and redistribution. */ /* FIXME: make these pluggable! */ #define PY_SSIZE_T_CLEAN #include "Python.h" #include "libImaging/Imaging.h" #include "libImaging/Gif.h" #ifdef HAVE_UNISTD_H #include /* write */ #endif /* -------------------------------------------------------------------- */ /* Common */ /* -------------------------------------------------------------------- */ typedef struct { PyObject_HEAD int (*encode)( Imaging im, ImagingCodecState state, UINT8 *buffer, int bytes); int (*cleanup)(ImagingCodecState state); struct ImagingCodecStateInstance state; Imaging im; PyObject *lock; int pushes_fd; } ImagingEncoderObject; static PyTypeObject ImagingEncoderType; static ImagingEncoderObject * PyImaging_EncoderNew(int contextsize) { ImagingEncoderObject *encoder; void *context; if (PyType_Ready(&ImagingEncoderType) < 0) { return NULL; } encoder = PyObject_New(ImagingEncoderObject, &ImagingEncoderType); if (encoder == NULL) { return NULL; } /* Clear the encoder state */ memset(&encoder->state, 0, sizeof(encoder->state)); /* Allocate encoder context */ if (contextsize > 0) { context = (void *)calloc(1, contextsize); if (!context) { Py_DECREF(encoder); (void)ImagingError_MemoryError(); return NULL; } } else { context = 0; } /* Initialize encoder context */ encoder->state.context = context; /* Most encoders don't need this */ encoder->cleanup = NULL; /* Target image */ encoder->lock = NULL; encoder->im = NULL; encoder->pushes_fd = 0; return encoder; } static void _dealloc(ImagingEncoderObject *encoder) { if (encoder->cleanup) { encoder->cleanup(&encoder->state); } free(encoder->state.buffer); free(encoder->state.context); Py_XDECREF(encoder->lock); Py_XDECREF(encoder->state.fd); PyObject_Del(encoder); } static PyObject * _encode_cleanup(ImagingEncoderObject *encoder, PyObject *args) { int status = 0; if (encoder->cleanup) { status = encoder->cleanup(&encoder->state); } return Py_BuildValue("i", status); } static PyObject * _encode(ImagingEncoderObject *encoder, PyObject *args) { PyObject *buf; PyObject *result; int status; /* Encode to a Python string (allocated by this method) */ Py_ssize_t bufsize = 16384; if (!PyArg_ParseTuple(args, "|n", &bufsize)) { return NULL; } buf = PyBytes_FromStringAndSize(NULL, bufsize); if (!buf) { return NULL; } status = encoder->encode( encoder->im, &encoder->state, (UINT8 *)PyBytes_AsString(buf), bufsize); /* adjust string length to avoid slicing in encoder */ if (_PyBytes_Resize(&buf, (status > 0) ? status : 0) < 0) { return NULL; } result = Py_BuildValue("iiO", status, encoder->state.errcode, buf); Py_DECREF(buf); /* must release buffer!!! */ return result; } static PyObject * _encode_to_pyfd(ImagingEncoderObject *encoder, PyObject *args) { PyObject *result; int status; if (!encoder->pushes_fd) { // UNDONE, appropriate errcode??? result = Py_BuildValue("ii", 0, IMAGING_CODEC_CONFIG); ; return result; } status = encoder->encode(encoder->im, &encoder->state, (UINT8 *)NULL, 0); result = Py_BuildValue("ii", status, encoder->state.errcode); return result; } static PyObject * _encode_to_file(ImagingEncoderObject *encoder, PyObject *args) { UINT8 *buf; int status; ImagingSectionCookie cookie; /* Encode to a file handle */ Py_ssize_t fh; Py_ssize_t bufsize = 16384; if (!PyArg_ParseTuple(args, "n|n", &fh, &bufsize)) { return NULL; } /* Allocate an encoder buffer */ /* malloc check ok, either constant int, or checked by PyArg_ParseTuple */ buf = (UINT8 *)malloc(bufsize); if (!buf) { return ImagingError_MemoryError(); } ImagingSectionEnter(&cookie); do { /* This replaces the inner loop in the ImageFile _save function. */ status = encoder->encode(encoder->im, &encoder->state, buf, bufsize); if (status > 0) { if (write(fh, buf, status) < 0) { ImagingSectionLeave(&cookie); free(buf); return PyErr_SetFromErrno(PyExc_OSError); } } } while (encoder->state.errcode == 0); ImagingSectionLeave(&cookie); free(buf); return Py_BuildValue("i", encoder->state.errcode); } extern Imaging PyImaging_AsImaging(PyObject *op); static PyObject * _setimage(ImagingEncoderObject *encoder, PyObject *args) { PyObject *op; Imaging im; ImagingCodecState state; Py_ssize_t x0, y0, x1, y1; /* Define where image data should be stored */ x0 = y0 = x1 = y1 = 0; /* FIXME: should publish the ImagingType descriptor */ if (!PyArg_ParseTuple(args, "O|(nnnn)", &op, &x0, &y0, &x1, &y1)) { return NULL; } im = PyImaging_AsImaging(op); if (!im) { return NULL; } encoder->im = im; state = &encoder->state; if (x0 == 0 && x1 == 0) { state->xsize = im->xsize; state->ysize = im->ysize; } else { state->xoff = x0; state->yoff = y0; state->xsize = x1 - x0; state->ysize = y1 - y0; } if (state->xsize <= 0 || state->xsize + state->xoff > im->xsize || state->ysize <= 0 || state->ysize + state->yoff > im->ysize) { PyErr_SetString(PyExc_SystemError, "tile cannot extend outside image"); return NULL; } /* Allocate memory buffer (if bits field is set) */ if (state->bits > 0) { if (state->xsize > ((INT_MAX / state->bits) - 7)) { return ImagingError_MemoryError(); } state->bytes = (state->bits * state->xsize + 7) / 8; /* malloc check ok, overflow checked above */ state->buffer = (UINT8 *)calloc(1, state->bytes); if (!state->buffer) { return ImagingError_MemoryError(); } } /* Keep a reference to the image object, to make sure it doesn't go away before we do */ Py_INCREF(op); Py_XDECREF(encoder->lock); encoder->lock = op; Py_INCREF(Py_None); return Py_None; } static PyObject * _setfd(ImagingEncoderObject *encoder, PyObject *args) { PyObject *fd; ImagingCodecState state; if (!PyArg_ParseTuple(args, "O", &fd)) { return NULL; } state = &encoder->state; Py_XINCREF(fd); state->fd = fd; Py_INCREF(Py_None); return Py_None; } static PyObject * _get_pushes_fd(ImagingEncoderObject *encoder) { return PyBool_FromLong(encoder->pushes_fd); } static struct PyMethodDef methods[] = { {"encode", (PyCFunction)_encode, 1}, {"cleanup", (PyCFunction)_encode_cleanup, 1}, {"encode_to_file", (PyCFunction)_encode_to_file, 1}, {"encode_to_pyfd", (PyCFunction)_encode_to_pyfd, 1}, {"setimage", (PyCFunction)_setimage, 1}, {"setfd", (PyCFunction)_setfd, 1}, {NULL, NULL} /* sentinel */ }; static struct PyGetSetDef getseters[] = { {"pushes_fd", (getter)_get_pushes_fd, NULL, "True if this decoder expects to push directly to self.fd", NULL}, {NULL, NULL, NULL, NULL, NULL} /* sentinel */ }; static PyTypeObject ImagingEncoderType = { PyVarObject_HEAD_INIT(NULL, 0) "ImagingEncoder", /*tp_name*/ sizeof(ImagingEncoderObject), /*tp_size*/ 0, /*tp_itemsize*/ /* methods */ (destructor)_dealloc, /*tp_dealloc*/ 0, /*tp_print*/ 0, /*tp_getattr*/ 0, /*tp_setattr*/ 0, /*tp_compare*/ 0, /*tp_repr*/ 0, /*tp_as_number */ 0, /*tp_as_sequence */ 0, /*tp_as_mapping */ 0, /*tp_hash*/ 0, /*tp_call*/ 0, /*tp_str*/ 0, /*tp_getattro*/ 0, /*tp_setattro*/ 0, /*tp_as_buffer*/ Py_TPFLAGS_DEFAULT, /*tp_flags*/ 0, /*tp_doc*/ 0, /*tp_traverse*/ 0, /*tp_clear*/ 0, /*tp_richcompare*/ 0, /*tp_weaklistoffset*/ 0, /*tp_iter*/ 0, /*tp_iternext*/ methods, /*tp_methods*/ 0, /*tp_members*/ getseters, /*tp_getset*/ }; /* -------------------------------------------------------------------- */ int get_packer(ImagingEncoderObject *encoder, const char *mode, const char *rawmode) { int bits; ImagingShuffler pack; pack = ImagingFindPacker(mode, rawmode, &bits); if (!pack) { Py_DECREF(encoder); PyErr_Format(PyExc_ValueError, "No packer found from %s to %s", mode, rawmode); return -1; } encoder->state.shuffle = pack; encoder->state.bits = bits; return 0; } /* -------------------------------------------------------------------- */ /* EPS */ /* -------------------------------------------------------------------- */ PyObject * PyImaging_EpsEncoderNew(PyObject *self, PyObject *args) { ImagingEncoderObject *encoder; encoder = PyImaging_EncoderNew(0); if (encoder == NULL) { return NULL; } encoder->encode = ImagingEpsEncode; return (PyObject *)encoder; } /* -------------------------------------------------------------------- */ /* GIF */ /* -------------------------------------------------------------------- */ PyObject * PyImaging_GifEncoderNew(PyObject *self, PyObject *args) { ImagingEncoderObject *encoder; char *mode; char *rawmode; Py_ssize_t bits = 8; Py_ssize_t interlace = 0; if (!PyArg_ParseTuple(args, "ss|nn", &mode, &rawmode, &bits, &interlace)) { return NULL; } encoder = PyImaging_EncoderNew(sizeof(GIFENCODERSTATE)); if (encoder == NULL) { return NULL; } if (get_packer(encoder, mode, rawmode) < 0) { return NULL; } encoder->encode = ImagingGifEncode; ((GIFENCODERSTATE *)encoder->state.context)->bits = bits; ((GIFENCODERSTATE *)encoder->state.context)->interlace = interlace; return (PyObject *)encoder; } /* -------------------------------------------------------------------- */ /* PCX */ /* -------------------------------------------------------------------- */ PyObject * PyImaging_PcxEncoderNew(PyObject *self, PyObject *args) { ImagingEncoderObject *encoder; char *mode; char *rawmode; Py_ssize_t bits = 8; if (!PyArg_ParseTuple(args, "ss|n", &mode, &rawmode, &bits)) { return NULL; } encoder = PyImaging_EncoderNew(0); if (encoder == NULL) { return NULL; } if (get_packer(encoder, mode, rawmode) < 0) { return NULL; } encoder->encode = ImagingPcxEncode; return (PyObject *)encoder; } /* -------------------------------------------------------------------- */ /* RAW */ /* -------------------------------------------------------------------- */ PyObject * PyImaging_RawEncoderNew(PyObject *self, PyObject *args) { ImagingEncoderObject *encoder; char *mode; char *rawmode; Py_ssize_t stride = 0; Py_ssize_t ystep = 1; if (!PyArg_ParseTuple(args, "ss|nn", &mode, &rawmode, &stride, &ystep)) { return NULL; } encoder = PyImaging_EncoderNew(0); if (encoder == NULL) { return NULL; } if (get_packer(encoder, mode, rawmode) < 0) { return NULL; } encoder->encode = ImagingRawEncode; encoder->state.ystep = ystep; encoder->state.count = stride; return (PyObject *)encoder; } /* -------------------------------------------------------------------- */ /* TGA */ /* -------------------------------------------------------------------- */ PyObject * PyImaging_TgaRleEncoderNew(PyObject *self, PyObject *args) { ImagingEncoderObject *encoder; char *mode; char *rawmode; Py_ssize_t ystep = 1; if (!PyArg_ParseTuple(args, "ss|n", &mode, &rawmode, &ystep)) { return NULL; } encoder = PyImaging_EncoderNew(0); if (encoder == NULL) { return NULL; } if (get_packer(encoder, mode, rawmode) < 0) { return NULL; } encoder->encode = ImagingTgaRleEncode; encoder->state.ystep = ystep; return (PyObject *)encoder; } /* -------------------------------------------------------------------- */ /* XBM */ /* -------------------------------------------------------------------- */ PyObject * PyImaging_XbmEncoderNew(PyObject *self, PyObject *args) { ImagingEncoderObject *encoder; encoder = PyImaging_EncoderNew(0); if (encoder == NULL) { return NULL; } if (get_packer(encoder, "1", "1;R") < 0) { return NULL; } encoder->encode = ImagingXbmEncode; return (PyObject *)encoder; } /* -------------------------------------------------------------------- */ /* ZIP */ /* -------------------------------------------------------------------- */ #ifdef HAVE_LIBZ #include "libImaging/ZipCodecs.h" PyObject * PyImaging_ZipEncoderNew(PyObject *self, PyObject *args) { ImagingEncoderObject *encoder; char *mode; char *rawmode; Py_ssize_t optimize = 0; Py_ssize_t compress_level = -1; Py_ssize_t compress_type = -1; char *dictionary = NULL; Py_ssize_t dictionary_size = 0; if (!PyArg_ParseTuple( args, "ss|nnny#", &mode, &rawmode, &optimize, &compress_level, &compress_type, &dictionary, &dictionary_size)) { return NULL; } /* Copy to avoid referencing Python's memory */ if (dictionary && dictionary_size > 0) { /* malloc check ok, size comes from PyArg_ParseTuple */ char *p = malloc(dictionary_size); if (!p) { return ImagingError_MemoryError(); } memcpy(p, dictionary, dictionary_size); dictionary = p; } else { dictionary = NULL; } encoder = PyImaging_EncoderNew(sizeof(ZIPSTATE)); if (encoder == NULL) { free(dictionary); return NULL; } if (get_packer(encoder, mode, rawmode) < 0) { free(dictionary); return NULL; } encoder->encode = ImagingZipEncode; encoder->cleanup = ImagingZipEncodeCleanup; if (rawmode[0] == 'P') { /* disable filtering */ ((ZIPSTATE *)encoder->state.context)->mode = ZIP_PNG_PALETTE; } ((ZIPSTATE *)encoder->state.context)->optimize = optimize; ((ZIPSTATE *)encoder->state.context)->compress_level = compress_level; ((ZIPSTATE *)encoder->state.context)->compress_type = compress_type; ((ZIPSTATE *)encoder->state.context)->dictionary = dictionary; ((ZIPSTATE *)encoder->state.context)->dictionary_size = dictionary_size; return (PyObject *)encoder; } #endif /* -------------------------------------------------------------------- */ /* LibTiff */ /* -------------------------------------------------------------------- */ #ifdef HAVE_LIBTIFF #include "libImaging/TiffDecode.h" #include PyObject * PyImaging_LibTiffEncoderNew(PyObject *self, PyObject *args) { ImagingEncoderObject *encoder; char *mode; char *rawmode; char *compname; char *filename; Py_ssize_t fp; PyObject *tags, *types; PyObject *key, *value; Py_ssize_t pos = 0; int key_int, status, is_core_tag, is_var_length, num_core_tags, i; TIFFDataType type = TIFF_NOTYPE; // This list also exists in TiffTags.py const int core_tags[] = {256, 257, 258, 259, 262, 263, 266, 269, 274, 277, 278, 280, 281, 340, 341, 282, 283, 284, 286, 287, 296, 297, 320, 321, 338, 32995, 32998, 32996, 339, 32997, 330, 531, 530, 65537, 301, 532}; Py_ssize_t tags_size; PyObject *item; if (!PyArg_ParseTuple( args, "sssnsOO", &mode, &rawmode, &compname, &fp, &filename, &tags, &types)) { return NULL; } if (!PyList_Check(tags)) { PyErr_SetString(PyExc_ValueError, "Invalid tags list"); return NULL; } else { tags_size = PyList_Size(tags); TRACE(("tags size: %d\n", (int)tags_size)); for (pos = 0; pos < tags_size; pos++) { item = PyList_GetItem(tags, pos); if (!PyTuple_Check(item) || PyTuple_Size(item) != 2) { PyErr_SetString(PyExc_ValueError, "Invalid tags list"); return NULL; } } pos = 0; } if (!PyDict_Check(types)) { PyErr_SetString(PyExc_ValueError, "Invalid types dictionary"); return NULL; } TRACE(("new tiff encoder %s fp: %d, filename: %s \n", compname, fp, filename)); encoder = PyImaging_EncoderNew(sizeof(TIFFSTATE)); if (encoder == NULL) { return NULL; } if (get_packer(encoder, mode, rawmode) < 0) { return NULL; } if (!ImagingLibTiffEncodeInit(&encoder->state, filename, fp)) { Py_DECREF(encoder); PyErr_SetString(PyExc_RuntimeError, "tiff codec initialization failed"); return NULL; } num_core_tags = sizeof(core_tags) / sizeof(int); for (pos = 0; pos < tags_size; pos++) { item = PyList_GetItem(tags, pos); // We already checked that tags is a 2-tuple list. key = PyTuple_GetItem(item, 0); key_int = (int)PyLong_AsLong(key); value = PyTuple_GetItem(item, 1); status = 0; is_core_tag = 0; is_var_length = 0; type = TIFF_NOTYPE; for (i = 0; i < num_core_tags; i++) { if (core_tags[i] == key_int) { is_core_tag = 1; break; } } if (!is_core_tag) { PyObject *tag_type = PyDict_GetItem(types, key); if (tag_type) { int type_int = PyLong_AsLong(tag_type); if (type_int >= TIFF_BYTE && type_int <= TIFF_DOUBLE) { type = (TIFFDataType)type_int; } } } if (type == TIFF_NOTYPE) { // Autodetect type. Types should not be changed for backwards // compatibility. if (PyLong_Check(value)) { type = TIFF_LONG; } else if (PyFloat_Check(value)) { type = TIFF_DOUBLE; } else if (PyBytes_Check(value)) { type = TIFF_ASCII; } } if (PyTuple_Check(value)) { Py_ssize_t len; len = PyTuple_Size(value); is_var_length = 1; if (!len) { continue; } if (type == TIFF_NOTYPE) { // Autodetect type based on first item. Types should not be // changed for backwards compatibility. if (PyLong_Check(PyTuple_GetItem(value, 0))) { type = TIFF_LONG; } else if (PyFloat_Check(PyTuple_GetItem(value, 0))) { type = TIFF_FLOAT; } } } if (!is_core_tag) { // Register field for non core tags. if (type == TIFF_BYTE) { is_var_length = 1; } if (ImagingLibTiffMergeFieldInfo( &encoder->state, type, key_int, is_var_length)) { continue; } } if (type == TIFF_BYTE || type == TIFF_UNDEFINED) { status = ImagingLibTiffSetField( &encoder->state, (ttag_t)key_int, PyBytes_Size(value), PyBytes_AsString(value)); } else if (is_var_length) { Py_ssize_t len, i; TRACE(("Setting from Tuple: %d \n", key_int)); len = PyTuple_Size(value); if (key_int == TIFFTAG_COLORMAP) { int stride = 256; if (len != 768) { PyErr_SetString( PyExc_ValueError, "Requiring 768 items for Colormap"); return NULL; } UINT16 *av; /* malloc check ok, calloc checks for overflow */ av = calloc(len, sizeof(UINT16)); if (av) { for (i = 0; i < len; i++) { av[i] = (UINT16)PyLong_AsLong(PyTuple_GetItem(value, i)); } status = ImagingLibTiffSetField( &encoder->state, (ttag_t)key_int, av, av + stride, av + stride * 2); free(av); } } else if (type == TIFF_SHORT) { UINT16 *av; /* malloc check ok, calloc checks for overflow */ av = calloc(len, sizeof(UINT16)); if (av) { for (i = 0; i < len; i++) { av[i] = (UINT16)PyLong_AsLong(PyTuple_GetItem(value, i)); } status = ImagingLibTiffSetField( &encoder->state, (ttag_t)key_int, len, av); free(av); } } else if (type == TIFF_LONG) { UINT32 *av; /* malloc check ok, calloc checks for overflow */ av = calloc(len, sizeof(UINT32)); if (av) { for (i = 0; i < len; i++) { av[i] = (UINT32)PyLong_AsLong(PyTuple_GetItem(value, i)); } status = ImagingLibTiffSetField( &encoder->state, (ttag_t)key_int, len, av); free(av); } } else if (type == TIFF_SBYTE) { INT8 *av; /* malloc check ok, calloc checks for overflow */ av = calloc(len, sizeof(INT8)); if (av) { for (i = 0; i < len; i++) { av[i] = (INT8)PyLong_AsLong(PyTuple_GetItem(value, i)); } status = ImagingLibTiffSetField( &encoder->state, (ttag_t)key_int, len, av); free(av); } } else if (type == TIFF_SSHORT) { INT16 *av; /* malloc check ok, calloc checks for overflow */ av = calloc(len, sizeof(INT16)); if (av) { for (i = 0; i < len; i++) { av[i] = (INT16)PyLong_AsLong(PyTuple_GetItem(value, i)); } status = ImagingLibTiffSetField( &encoder->state, (ttag_t)key_int, len, av); free(av); } } else if (type == TIFF_SLONG) { INT32 *av; /* malloc check ok, calloc checks for overflow */ av = calloc(len, sizeof(INT32)); if (av) { for (i = 0; i < len; i++) { av[i] = (INT32)PyLong_AsLong(PyTuple_GetItem(value, i)); } status = ImagingLibTiffSetField( &encoder->state, (ttag_t)key_int, len, av); free(av); } } else if (type == TIFF_FLOAT) { FLOAT32 *av; /* malloc check ok, calloc checks for overflow */ av = calloc(len, sizeof(FLOAT32)); if (av) { for (i = 0; i < len; i++) { av[i] = (FLOAT32)PyFloat_AsDouble(PyTuple_GetItem(value, i)); } status = ImagingLibTiffSetField( &encoder->state, (ttag_t)key_int, len, av); free(av); } } else if (type == TIFF_DOUBLE) { FLOAT64 *av; /* malloc check ok, calloc checks for overflow */ av = calloc(len, sizeof(FLOAT64)); if (av) { for (i = 0; i < len; i++) { av[i] = PyFloat_AsDouble(PyTuple_GetItem(value, i)); } status = ImagingLibTiffSetField( &encoder->state, (ttag_t)key_int, len, av); free(av); } } } else { if (type == TIFF_SHORT) { status = ImagingLibTiffSetField( &encoder->state, (ttag_t)key_int, (UINT16)PyLong_AsLong(value)); } else if (type == TIFF_LONG) { status = ImagingLibTiffSetField( &encoder->state, (ttag_t)key_int, (UINT32)PyLong_AsLong(value)); } else if (type == TIFF_SSHORT) { status = ImagingLibTiffSetField( &encoder->state, (ttag_t)key_int, (INT16)PyLong_AsLong(value)); } else if (type == TIFF_SLONG) { status = ImagingLibTiffSetField( &encoder->state, (ttag_t)key_int, (INT32)PyLong_AsLong(value)); } else if (type == TIFF_FLOAT) { status = ImagingLibTiffSetField( &encoder->state, (ttag_t)key_int, (FLOAT32)PyFloat_AsDouble(value)); } else if (type == TIFF_DOUBLE) { status = ImagingLibTiffSetField( &encoder->state, (ttag_t)key_int, (FLOAT64)PyFloat_AsDouble(value)); } else if (type == TIFF_SBYTE) { status = ImagingLibTiffSetField( &encoder->state, (ttag_t)key_int, (INT8)PyLong_AsLong(value)); } else if (type == TIFF_ASCII) { status = ImagingLibTiffSetField( &encoder->state, (ttag_t)key_int, PyBytes_AsString(value)); } else if (type == TIFF_RATIONAL) { status = ImagingLibTiffSetField( &encoder->state, (ttag_t)key_int, (FLOAT64)PyFloat_AsDouble(value)); } else { TRACE( ("Unhandled type for key %d : %s \n", key_int, PyBytes_AsString(PyObject_Str(value)))); } } if (!status) { TRACE(("Error setting Field\n")); Py_DECREF(encoder); PyErr_SetString(PyExc_RuntimeError, "Error setting from dictionary"); return NULL; } } encoder->encode = ImagingLibTiffEncode; return (PyObject *)encoder; } #endif /* -------------------------------------------------------------------- */ /* JPEG */ /* -------------------------------------------------------------------- */ #ifdef HAVE_LIBJPEG /* We better define this encoder last in this file, so the following undef's won't mess things up for the Imaging library proper. */ #undef HAVE_PROTOTYPES #undef HAVE_STDDEF_H #undef HAVE_STDLIB_H #undef UINT8 #undef UINT16 #undef UINT32 #undef INT8 #undef INT16 #undef INT32 #include "libImaging/Jpeg.h" static unsigned int * get_qtables_arrays(PyObject *qtables, int *qtablesLen) { PyObject *tables; PyObject *table; PyObject *table_data; int i, j, num_tables; unsigned int *qarrays; if ((qtables == NULL) || (qtables == Py_None)) { return NULL; } if (!PySequence_Check(qtables)) { PyErr_SetString(PyExc_ValueError, "Invalid quantization tables"); return NULL; } tables = PySequence_Fast(qtables, "expected a sequence"); num_tables = PySequence_Size(qtables); if (num_tables < 1 || num_tables > NUM_QUANT_TBLS) { PyErr_SetString( PyExc_ValueError, "Not a valid number of quantization tables. Should be between 1 and 4."); Py_DECREF(tables); return NULL; } /* malloc check ok, num_tables <4, DCTSIZE2 == 64 from jpeglib.h */ qarrays = (unsigned int *)malloc(num_tables * DCTSIZE2 * sizeof(unsigned int)); if (!qarrays) { Py_DECREF(tables); return ImagingError_MemoryError(); } for (i = 0; i < num_tables; i++) { table = PySequence_Fast_GET_ITEM(tables, i); if (!PySequence_Check(table)) { PyErr_SetString(PyExc_ValueError, "Invalid quantization tables"); goto JPEG_QTABLES_ERR; } if (PySequence_Size(table) != DCTSIZE2) { PyErr_SetString(PyExc_ValueError, "Invalid quantization table size"); goto JPEG_QTABLES_ERR; } table_data = PySequence_Fast(table, "expected a sequence"); for (j = 0; j < DCTSIZE2; j++) { qarrays[i * DCTSIZE2 + j] = PyLong_AS_LONG(PySequence_Fast_GET_ITEM(table_data, j)); } Py_DECREF(table_data); } *qtablesLen = num_tables; JPEG_QTABLES_ERR: Py_DECREF(tables); // Run on both error and not error if (PyErr_Occurred()) { free(qarrays); qarrays = NULL; return NULL; } return qarrays; } PyObject * PyImaging_JpegEncoderNew(PyObject *self, PyObject *args) { ImagingEncoderObject *encoder; char *mode; char *rawmode; Py_ssize_t quality = 0; Py_ssize_t progressive = 0; Py_ssize_t smooth = 0; Py_ssize_t optimize = 0; Py_ssize_t streamtype = 0; /* 0=interchange, 1=tables only, 2=image only */ Py_ssize_t xdpi = 0, ydpi = 0; Py_ssize_t subsampling = -1; /* -1=default, 0=none, 1=medium, 2=high */ PyObject *qtables = NULL; unsigned int *qarrays = NULL; int qtablesLen = 0; char *extra = NULL; Py_ssize_t extra_size; char *rawExif = NULL; Py_ssize_t rawExifLen = 0; if (!PyArg_ParseTuple( args, "ss|nnnnnnnnOy#y#", &mode, &rawmode, &quality, &progressive, &smooth, &optimize, &streamtype, &xdpi, &ydpi, &subsampling, &qtables, &extra, &extra_size, &rawExif, &rawExifLen)) { return NULL; } encoder = PyImaging_EncoderNew(sizeof(JPEGENCODERSTATE)); if (encoder == NULL) { return NULL; } // libjpeg-turbo supports different output formats. // We are choosing Pillow's native format (3 color bytes + 1 padding) // to avoid extra conversion in Pack.c. if (ImagingJpegUseJCSExtensions() && strcmp(rawmode, "RGB") == 0) { rawmode = "RGBX"; } if (get_packer(encoder, mode, rawmode) < 0) { return NULL; } // Freed in JpegEncode, Case 5 qarrays = get_qtables_arrays(qtables, &qtablesLen); if (extra && extra_size > 0) { /* malloc check ok, length is from python parsearg */ char *p = malloc(extra_size); // Freed in JpegEncode, Case 5 if (!p) { return ImagingError_MemoryError(); } memcpy(p, extra, extra_size); extra = p; } else { extra = NULL; } if (rawExif && rawExifLen > 0) { /* malloc check ok, length is from python parsearg */ char *pp = malloc(rawExifLen); // Freed in JpegEncode, Case 5 if (!pp) { if (extra) { free(extra); } return ImagingError_MemoryError(); } memcpy(pp, rawExif, rawExifLen); rawExif = pp; } else { rawExif = NULL; } encoder->encode = ImagingJpegEncode; strncpy(((JPEGENCODERSTATE *)encoder->state.context)->rawmode, rawmode, 8); ((JPEGENCODERSTATE *)encoder->state.context)->quality = quality; ((JPEGENCODERSTATE *)encoder->state.context)->qtables = qarrays; ((JPEGENCODERSTATE *)encoder->state.context)->qtablesLen = qtablesLen; ((JPEGENCODERSTATE *)encoder->state.context)->subsampling = subsampling; ((JPEGENCODERSTATE *)encoder->state.context)->progressive = progressive; ((JPEGENCODERSTATE *)encoder->state.context)->smooth = smooth; ((JPEGENCODERSTATE *)encoder->state.context)->optimize = optimize; ((JPEGENCODERSTATE *)encoder->state.context)->streamtype = streamtype; ((JPEGENCODERSTATE *)encoder->state.context)->xdpi = xdpi; ((JPEGENCODERSTATE *)encoder->state.context)->ydpi = ydpi; ((JPEGENCODERSTATE *)encoder->state.context)->extra = extra; ((JPEGENCODERSTATE *)encoder->state.context)->extra_size = extra_size; ((JPEGENCODERSTATE *)encoder->state.context)->rawExif = rawExif; ((JPEGENCODERSTATE *)encoder->state.context)->rawExifLen = rawExifLen; return (PyObject *)encoder; } #endif /* -------------------------------------------------------------------- */ /* JPEG 2000 */ /* -------------------------------------------------------------------- */ #ifdef HAVE_OPENJPEG #include "libImaging/Jpeg2K.h" static void j2k_decode_coord_tuple(PyObject *tuple, int *x, int *y) { *x = *y = 0; if (tuple && PyTuple_Check(tuple) && PyTuple_GET_SIZE(tuple) == 2) { *x = (int)PyLong_AsLong(PyTuple_GET_ITEM(tuple, 0)); *y = (int)PyLong_AsLong(PyTuple_GET_ITEM(tuple, 1)); if (*x < 0) { *x = 0; } if (*y < 0) { *y = 0; } } } PyObject * PyImaging_Jpeg2KEncoderNew(PyObject *self, PyObject *args) { ImagingEncoderObject *encoder; JPEG2KENCODESTATE *context; char *mode; char *format; OPJ_CODEC_FORMAT codec_format; PyObject *offset = NULL, *tile_offset = NULL, *tile_size = NULL; char *quality_mode = "rates"; PyObject *quality_layers = NULL; Py_ssize_t num_resolutions = 0; PyObject *cblk_size = NULL, *precinct_size = NULL; PyObject *irreversible = NULL; char *progression = "LRCP"; OPJ_PROG_ORDER prog_order; char *cinema_mode = "no"; OPJ_CINEMA_MODE cine_mode; Py_ssize_t fd = -1; if (!PyArg_ParseTuple( args, "ss|OOOsOnOOOssn", &mode, &format, &offset, &tile_offset, &tile_size, &quality_mode, &quality_layers, &num_resolutions, &cblk_size, &precinct_size, &irreversible, &progression, &cinema_mode, &fd)) { return NULL; } if (strcmp(format, "j2k") == 0) { codec_format = OPJ_CODEC_J2K; } else if (strcmp(format, "jpt") == 0) { codec_format = OPJ_CODEC_JPT; } else if (strcmp(format, "jp2") == 0) { codec_format = OPJ_CODEC_JP2; } else { return NULL; } if (strcmp(progression, "LRCP") == 0) { prog_order = OPJ_LRCP; } else if (strcmp(progression, "RLCP") == 0) { prog_order = OPJ_RLCP; } else if (strcmp(progression, "RPCL") == 0) { prog_order = OPJ_RPCL; } else if (strcmp(progression, "PCRL") == 0) { prog_order = OPJ_PCRL; } else if (strcmp(progression, "CPRL") == 0) { prog_order = OPJ_CPRL; } else { return NULL; } if (strcmp(cinema_mode, "no") == 0) { cine_mode = OPJ_OFF; } else if (strcmp(cinema_mode, "cinema2k-24") == 0) { cine_mode = OPJ_CINEMA2K_24; } else if (strcmp(cinema_mode, "cinema2k-48") == 0) { cine_mode = OPJ_CINEMA2K_48; } else if (strcmp(cinema_mode, "cinema4k-24") == 0) { cine_mode = OPJ_CINEMA4K_24; } else { return NULL; } encoder = PyImaging_EncoderNew(sizeof(JPEG2KENCODESTATE)); if (!encoder) { return NULL; } encoder->encode = ImagingJpeg2KEncode; encoder->cleanup = ImagingJpeg2KEncodeCleanup; encoder->pushes_fd = 1; context = (JPEG2KENCODESTATE *)encoder->state.context; context->fd = fd; context->format = codec_format; context->offset_x = context->offset_y = 0; j2k_decode_coord_tuple(offset, &context->offset_x, &context->offset_y); j2k_decode_coord_tuple( tile_offset, &context->tile_offset_x, &context->tile_offset_y); j2k_decode_coord_tuple(tile_size, &context->tile_size_x, &context->tile_size_y); /* Error on illegal tile offsets */ if (context->tile_size_x && context->tile_size_y) { if (context->tile_offset_x <= context->offset_x - context->tile_size_x || context->tile_offset_y <= context->offset_y - context->tile_size_y) { PyErr_SetString( PyExc_ValueError, "JPEG 2000 tile offset too small; top left tile must " "intersect image area"); Py_DECREF(encoder); return NULL; } if (context->tile_offset_x > context->offset_x || context->tile_offset_y > context->offset_y) { PyErr_SetString( PyExc_ValueError, "JPEG 2000 tile offset too large to cover image area"); Py_DECREF(encoder); return NULL; } } if (quality_layers && PySequence_Check(quality_layers)) { context->quality_is_in_db = strcmp(quality_mode, "dB") == 0; context->quality_layers = quality_layers; Py_INCREF(quality_layers); } context->num_resolutions = num_resolutions; j2k_decode_coord_tuple(cblk_size, &context->cblk_width, &context->cblk_height); j2k_decode_coord_tuple( precinct_size, &context->precinct_width, &context->precinct_height); context->irreversible = PyObject_IsTrue(irreversible); context->progression = prog_order; context->cinema_mode = cine_mode; return (PyObject *)encoder; } #endif /* * Local Variables: * c-basic-offset: 4 * End: * */