/* * The Python Imaging Library. * * the imaging library bindings * * history: * 1995-09-24 fl Created * 1996-03-24 fl Ready for first public release (release 0.0) * 1996-03-25 fl Added fromstring (for Jack's "img" library) * 1996-03-28 fl Added channel operations * 1996-03-31 fl Added point operation * 1996-04-08 fl Added new/new_block/new_array factories * 1996-04-13 fl Added decoders * 1996-05-04 fl Added palette hack * 1996-05-12 fl Compile cleanly as C++ * 1996-05-19 fl Added matrix conversions, gradient fills * 1996-05-27 fl Added display_mode * 1996-07-22 fl Added getbbox, offset * 1996-07-23 fl Added sequence semantics * 1996-08-13 fl Added logical operators, point mode * 1996-08-16 fl Modified paste interface * 1996-09-06 fl Added putdata methods, use abstract interface * 1996-11-01 fl Added xbm encoder * 1996-11-04 fl Added experimental path stuff, draw_lines, etc * 1996-12-10 fl Added zip decoder, crc32 interface * 1996-12-14 fl Added modulo arithmetics * 1996-12-29 fl Added zip encoder * 1997-01-03 fl Added fli and msp decoders * 1997-01-04 fl Added experimental sun_rle and tga_rle decoders * 1997-01-05 fl Added gif encoder, getpalette hack * 1997-02-23 fl Added histogram mask * 1997-05-12 fl Minor tweaks to match the IFUNC95 interface * 1997-05-21 fl Added noise generator, spread effect * 1997-06-05 fl Added mandelbrot generator * 1997-08-02 fl Modified putpalette to coerce image mode if necessary * 1998-01-11 fl Added INT32 support * 1998-01-22 fl Fixed draw_points to draw the last point too * 1998-06-28 fl Added getpixel, getink, draw_ink * 1998-07-12 fl Added getextrema * 1998-07-17 fl Added point conversion to arbitrary formats * 1998-09-21 fl Added support for resampling filters * 1998-09-22 fl Added support for quad transform * 1998-12-29 fl Added support for arcs, chords, and pieslices * 1999-01-10 fl Added some experimental arrow graphics stuff * 1999-02-06 fl Added draw_bitmap, font acceleration stuff * 2001-04-17 fl Fixed some egcs compiler nits * 2001-09-17 fl Added screen grab primitives (win32) * 2002-03-09 fl Added stretch primitive * 2002-03-10 fl Fixed filter handling in rotate * 2002-06-06 fl Added I, F, and RGB support to putdata * 2002-06-08 fl Added rankfilter * 2002-06-09 fl Added support for user-defined filter kernels * 2002-11-19 fl Added clipboard grab primitives (win32) * 2002-12-11 fl Added draw context * 2003-04-26 fl Tweaks for Python 2.3 beta 1 * 2003-05-21 fl Added createwindow primitive (win32) * 2003-09-13 fl Added thread section hooks * 2003-09-15 fl Added expand helper * 2003-09-26 fl Added experimental LA support * 2004-02-21 fl Handle zero-size images in quantize * 2004-06-05 fl Added ptr attribute (used to access Imaging objects) * 2004-06-05 fl Don't crash when fetching pixels from zero-wide images * 2004-09-17 fl Added getcolors * 2004-10-04 fl Added modefilter * 2005-10-02 fl Added access proxy * 2006-06-18 fl Always draw last point in polyline * * Copyright (c) 1997-2006 by Secret Labs AB * Copyright (c) 1995-2006 by Fredrik Lundh * * See the README file for information on usage and redistribution. */ #define PY_SSIZE_T_CLEAN #include "Python.h" #ifdef HAVE_LIBJPEG #include "jconfig.h" #endif #ifdef HAVE_LIBZ #include "zlib.h" #endif #ifdef HAVE_LIBTIFF #ifndef _TIFFIO_ #include #endif #endif #include "libImaging/Imaging.h" #define _USE_MATH_DEFINES #include /* Configuration stuff. Feel free to undef things you don't need. */ #define WITH_IMAGECHOPS /* ImageChops support */ #define WITH_IMAGEDRAW /* ImageDraw support */ #define WITH_MAPPING /* use memory mapping to read some file formats */ #define WITH_IMAGEPATH /* ImagePath stuff */ #define WITH_ARROW /* arrow graphics stuff (experimental) */ #define WITH_EFFECTS /* special effects */ #define WITH_QUANTIZE /* quantization support */ #define WITH_RANKFILTER /* rank filter */ #define WITH_MODEFILTER /* mode filter */ #define WITH_THREADING /* "friendly" threading support */ #define WITH_UNSHARPMASK /* Kevin Cazabon's unsharpmask module */ #undef VERBOSE #define B16(p, i) ((((int)p[(i)]) << 8) + p[(i) + 1]) #define L16(p, i) ((((int)p[(i) + 1]) << 8) + p[(i)]) #define S16(v) ((v) < 32768 ? (v) : ((v)-65536)) /* -------------------------------------------------------------------- */ /* OBJECT ADMINISTRATION */ /* -------------------------------------------------------------------- */ typedef struct { PyObject_HEAD Imaging image; ImagingAccess access; } ImagingObject; static PyTypeObject Imaging_Type; #ifdef WITH_IMAGEDRAW typedef struct { /* to write a character, cut out sxy from glyph data, place at current position plus dxy, and advance by (dx, dy) */ int dx, dy; int dx0, dy0, dx1, dy1; int sx0, sy0, sx1, sy1; } Glyph; typedef struct { PyObject_HEAD ImagingObject *ref; Imaging bitmap; int ysize; int baseline; Glyph glyphs[256]; } ImagingFontObject; static PyTypeObject ImagingFont_Type; typedef struct { PyObject_HEAD ImagingObject *image; UINT8 ink[4]; int blend; } ImagingDrawObject; static PyTypeObject ImagingDraw_Type; #endif typedef struct { PyObject_HEAD ImagingObject *image; int readonly; } PixelAccessObject; static PyTypeObject PixelAccess_Type; PyObject * PyImagingNew(Imaging imOut) { ImagingObject *imagep; if (!imOut) { return NULL; } imagep = PyObject_New(ImagingObject, &Imaging_Type); if (imagep == NULL) { ImagingDelete(imOut); return NULL; } #ifdef VERBOSE printf("imaging %p allocated\n", imagep); #endif imagep->image = imOut; imagep->access = ImagingAccessNew(imOut); return (PyObject *)imagep; } static void _dealloc(ImagingObject *imagep) { #ifdef VERBOSE printf("imaging %p deleted\n", imagep); #endif if (imagep->access) { ImagingAccessDelete(imagep->image, imagep->access); } ImagingDelete(imagep->image); PyObject_Del(imagep); } #define PyImaging_Check(op) (Py_TYPE(op) == &Imaging_Type) Imaging PyImaging_AsImaging(PyObject *op) { if (!PyImaging_Check(op)) { PyErr_BadInternalCall(); return NULL; } return ((ImagingObject *)op)->image; } /* -------------------------------------------------------------------- */ /* THREAD HANDLING */ /* -------------------------------------------------------------------- */ void ImagingSectionEnter(ImagingSectionCookie *cookie) { #ifdef WITH_THREADING *cookie = (PyThreadState *)PyEval_SaveThread(); #endif } void ImagingSectionLeave(ImagingSectionCookie *cookie) { #ifdef WITH_THREADING PyEval_RestoreThread((PyThreadState *)*cookie); #endif } /* -------------------------------------------------------------------- */ /* BUFFER HANDLING */ /* -------------------------------------------------------------------- */ /* Python compatibility API */ int PyImaging_CheckBuffer(PyObject *buffer) { return PyObject_CheckBuffer(buffer); } int PyImaging_GetBuffer(PyObject *buffer, Py_buffer *view) { /* must call check_buffer first! */ return PyObject_GetBuffer(buffer, view, PyBUF_SIMPLE); } /* -------------------------------------------------------------------- */ /* EXCEPTION REROUTING */ /* -------------------------------------------------------------------- */ /* error messages */ static const char *must_be_sequence = "argument must be a sequence"; static const char *must_be_two_coordinates = "coordinate list must contain exactly 2 coordinates"; static const char *incorrectly_ordered_x_coordinate = "x1 must be greater than or equal to x0"; static const char *incorrectly_ordered_y_coordinate = "y1 must be greater than or equal to y0"; static const char *wrong_mode = "unrecognized image mode"; static const char *wrong_raw_mode = "unrecognized raw mode"; static const char *outside_image = "image index out of range"; static const char *outside_palette = "palette index out of range"; static const char *wrong_palette_size = "invalid palette size"; static const char *no_palette = "image has no palette"; static const char *readonly = "image is readonly"; /* static const char* no_content = "image has no content"; */ void * ImagingError_OSError(void) { PyErr_SetString(PyExc_OSError, "error when accessing file"); return NULL; } void * ImagingError_MemoryError(void) { return PyErr_NoMemory(); } void * ImagingError_Mismatch(void) { PyErr_SetString(PyExc_ValueError, "images do not match"); return NULL; } void * ImagingError_ModeError(void) { PyErr_SetString(PyExc_ValueError, "image has wrong mode"); return NULL; } void * ImagingError_ValueError(const char *message) { PyErr_SetString( PyExc_ValueError, (message) ? (char *)message : "unrecognized argument value"); return NULL; } void ImagingError_Clear(void) { PyErr_Clear(); } /* -------------------------------------------------------------------- */ /* HELPERS */ /* -------------------------------------------------------------------- */ static int getbands(const char *mode) { Imaging im; int bands; /* FIXME: add primitive to libImaging to avoid extra allocation */ im = ImagingNew(mode, 0, 0); if (!im) { return -1; } bands = im->bands; ImagingDelete(im); return bands; } #define TYPE_UINT8 (0x100 | sizeof(UINT8)) #define TYPE_INT32 (0x200 | sizeof(INT32)) #define TYPE_FLOAT16 (0x500 | sizeof(FLOAT16)) #define TYPE_FLOAT32 (0x300 | sizeof(FLOAT32)) #define TYPE_DOUBLE (0x400 | sizeof(double)) static void * getlist(PyObject *arg, Py_ssize_t *length, const char *wrong_length, int type) { /* - allocates and returns a c array of the items in the python sequence arg. - the size of the returned array is in length - all of the arg items must be numeric items of the type specified in type - sequence length is checked against the length parameter IF an error parameter is passed in wrong_length - caller is responsible for freeing the memory */ Py_ssize_t i, n; int itemp; double dtemp; FLOAT32 ftemp; UINT8 *list; PyObject *seq; PyObject *op; if (!PySequence_Check(arg)) { PyErr_SetString(PyExc_TypeError, must_be_sequence); return NULL; } n = PySequence_Size(arg); if (length && wrong_length && n != *length) { PyErr_SetString(PyExc_ValueError, wrong_length); return NULL; } /* malloc check ok, type & ff is just a sizeof(something) calloc checks for overflow */ list = calloc(n, type & 0xff); if (!list) { return ImagingError_MemoryError(); } seq = PySequence_Fast(arg, must_be_sequence); if (!seq) { free(list); return NULL; } for (i = 0; i < n; i++) { op = PySequence_Fast_GET_ITEM(seq, i); // DRY, branch prediction is going to work _really_ well // on this switch. And 3 fewer loops to copy/paste. switch (type) { case TYPE_UINT8: itemp = PyLong_AsLong(op); list[i] = CLIP8(itemp); break; case TYPE_INT32: itemp = PyLong_AsLong(op); memcpy(list + i * sizeof(INT32), &itemp, sizeof(itemp)); break; case TYPE_FLOAT32: ftemp = (FLOAT32)PyFloat_AsDouble(op); memcpy(list + i * sizeof(ftemp), &ftemp, sizeof(ftemp)); break; case TYPE_DOUBLE: dtemp = PyFloat_AsDouble(op); memcpy(list + i * sizeof(dtemp), &dtemp, sizeof(dtemp)); break; } } Py_DECREF(seq); if (PyErr_Occurred()) { free(list); return NULL; } if (length) { *length = n; } return list; } FLOAT32 float16tofloat32(const FLOAT16 in) { UINT32 t1; UINT32 t2; UINT32 t3; FLOAT32 out[1] = {0}; t1 = in & 0x7fff; // Non-sign bits t2 = in & 0x8000; // Sign bit t3 = in & 0x7c00; // Exponent t1 <<= 13; // Align mantissa on MSB t2 <<= 16; // Shift sign bit into position t1 += 0x38000000; // Adjust bias t1 = (t3 == 0 ? 0 : t1); // Denormals-as-zero t1 |= t2; // Re-insert sign bit memcpy(out, &t1, 4); return out[0]; } static inline PyObject * getpixel(Imaging im, ImagingAccess access, int x, int y) { union { UINT8 b[4]; UINT16 h; INT32 i; FLOAT32 f; } pixel; if (x < 0) { x = im->xsize + x; } if (y < 0) { y = im->ysize + y; } if (x < 0 || x >= im->xsize || y < 0 || y >= im->ysize) { PyErr_SetString(PyExc_IndexError, outside_image); return NULL; } access->get_pixel(im, x, y, &pixel); switch (im->type) { case IMAGING_TYPE_UINT8: switch (im->bands) { case 1: return PyLong_FromLong(pixel.b[0]); case 2: return Py_BuildValue("BB", pixel.b[0], pixel.b[1]); case 3: return Py_BuildValue("BBB", pixel.b[0], pixel.b[1], pixel.b[2]); case 4: return Py_BuildValue( "BBBB", pixel.b[0], pixel.b[1], pixel.b[2], pixel.b[3]); } break; case IMAGING_TYPE_INT32: return PyLong_FromLong(pixel.i); case IMAGING_TYPE_FLOAT32: return PyFloat_FromDouble(pixel.f); case IMAGING_TYPE_SPECIAL: if (strncmp(im->mode, "I;16", 4) == 0) { return PyLong_FromLong(pixel.h); } break; } /* unknown type */ Py_INCREF(Py_None); return Py_None; } static char * getink(PyObject *color, Imaging im, char *ink) { int g = 0, b = 0, a = 0; double f = 0; /* Windows 64 bit longs are 32 bits, and 0xFFFFFFFF (white) is a Python long (not int) that raises an overflow error when trying to return it into a 32 bit C long */ PY_LONG_LONG r = 0; FLOAT32 ftmp; INT32 itmp; /* fill ink buffer (four bytes) with something that can be cast to either UINT8 or INT32 */ int rIsInt = 0; int tupleSize; if (PyTuple_Check(color)) { tupleSize = PyTuple_GET_SIZE(color); if (tupleSize == 1) { color = PyTuple_GetItem(color, 0); } } if (im->type == IMAGING_TYPE_UINT8 || im->type == IMAGING_TYPE_INT32 || im->type == IMAGING_TYPE_SPECIAL) { if (PyLong_Check(color)) { r = PyLong_AsLongLong(color); if (r == -1 && PyErr_Occurred()) { return NULL; } rIsInt = 1; } else if (im->bands == 1) { PyErr_SetString( PyExc_TypeError, "color must be int or single-element tuple"); return NULL; } else if (!PyTuple_Check(color)) { PyErr_SetString(PyExc_TypeError, "color must be int or tuple"); return NULL; } } switch (im->type) { case IMAGING_TYPE_UINT8: /* unsigned integer */ if (im->bands == 1) { /* unsigned integer, single layer */ if (rIsInt != 1) { if (tupleSize != 1) { PyErr_SetString(PyExc_TypeError, "color must be int or single-element tuple"); return NULL; } else if (!PyArg_ParseTuple(color, "L", &r)) { return NULL; } } ink[0] = (char)CLIP8(r); ink[1] = ink[2] = ink[3] = 0; } else { if (rIsInt) { /* compatibility: ABGR */ a = (UINT8)(r >> 24); b = (UINT8)(r >> 16); g = (UINT8)(r >> 8); r = (UINT8)r; } else { a = 255; if (im->bands == 2) { if (tupleSize != 1 && tupleSize != 2) { PyErr_SetString(PyExc_TypeError, "color must be int, or tuple of one or two elements"); return NULL; } else if (!PyArg_ParseTuple(color, "L|i", &r, &a)) { return NULL; } g = b = r; } else { if (tupleSize != 3 && tupleSize != 4) { PyErr_SetString(PyExc_TypeError, "color must be int, or tuple of one, three or four elements"); return NULL; } else if (!PyArg_ParseTuple(color, "Lii|i", &r, &g, &b, &a)) { return NULL; } } } ink[0] = (char)CLIP8(r); ink[1] = (char)CLIP8(g); ink[2] = (char)CLIP8(b); ink[3] = (char)CLIP8(a); } return ink; case IMAGING_TYPE_INT32: /* signed integer */ itmp = r; memcpy(ink, &itmp, sizeof(itmp)); return ink; case IMAGING_TYPE_FLOAT32: /* floating point */ f = PyFloat_AsDouble(color); if (f == -1.0 && PyErr_Occurred()) { return NULL; } ftmp = f; memcpy(ink, &ftmp, sizeof(ftmp)); return ink; case IMAGING_TYPE_SPECIAL: if (strncmp(im->mode, "I;16", 4) == 0) { ink[0] = (UINT8)r; ink[1] = (UINT8)(r >> 8); ink[2] = ink[3] = 0; return ink; } else { if (rIsInt) { b = (UINT8)(r >> 16); g = (UINT8)(r >> 8); r = (UINT8)r; } else if (tupleSize != 3) { PyErr_SetString(PyExc_TypeError, "color must be int, or tuple of one or three elements"); return NULL; } else if (!PyArg_ParseTuple(color, "Lii", &r, &g, &b)) { return NULL; } if (!strcmp(im->mode, "BGR;15")) { UINT16 v = ((((UINT16)r) << 7) & 0x7c00) + ((((UINT16)g) << 2) & 0x03e0) + ((((UINT16)b) >> 3) & 0x001f); ink[0] = (UINT8)v; ink[1] = (UINT8)(v >> 8); ink[2] = ink[3] = 0; return ink; } else if (!strcmp(im->mode, "BGR;16")) { UINT16 v = ((((UINT16)r) << 8) & 0xf800) + ((((UINT16)g) << 3) & 0x07e0) + ((((UINT16)b) >> 3) & 0x001f); ink[0] = (UINT8)v; ink[1] = (UINT8)(v >> 8); ink[2] = ink[3] = 0; return ink; } else if (!strcmp(im->mode, "BGR;24")) { ink[0] = (UINT8)b; ink[1] = (UINT8)g; ink[2] = (UINT8)r; ink[3] = 0; return ink; } } } PyErr_SetString(PyExc_ValueError, wrong_mode); return NULL; } /* -------------------------------------------------------------------- */ /* FACTORIES */ /* -------------------------------------------------------------------- */ static PyObject * _fill(PyObject *self, PyObject *args) { char *mode; int xsize, ysize; PyObject *color; char buffer[4]; Imaging im; xsize = ysize = 256; color = NULL; if (!PyArg_ParseTuple(args, "s|(ii)O", &mode, &xsize, &ysize, &color)) { return NULL; } im = ImagingNewDirty(mode, xsize, ysize); if (!im) { return NULL; } buffer[0] = buffer[1] = buffer[2] = buffer[3] = 0; if (color) { if (!getink(color, im, buffer)) { ImagingDelete(im); return NULL; } } (void)ImagingFill(im, buffer); return PyImagingNew(im); } static PyObject * _new(PyObject *self, PyObject *args) { char *mode; int xsize, ysize; if (!PyArg_ParseTuple(args, "s(ii)", &mode, &xsize, &ysize)) { return NULL; } return PyImagingNew(ImagingNew(mode, xsize, ysize)); } static PyObject * _new_block(PyObject *self, PyObject *args) { char *mode; int xsize, ysize; if (!PyArg_ParseTuple(args, "s(ii)", &mode, &xsize, &ysize)) { return NULL; } return PyImagingNew(ImagingNewBlock(mode, xsize, ysize)); } static PyObject * _linear_gradient(PyObject *self, PyObject *args) { char *mode; if (!PyArg_ParseTuple(args, "s", &mode)) { return NULL; } return PyImagingNew(ImagingFillLinearGradient(mode)); } static PyObject * _radial_gradient(PyObject *self, PyObject *args) { char *mode; if (!PyArg_ParseTuple(args, "s", &mode)) { return NULL; } return PyImagingNew(ImagingFillRadialGradient(mode)); } static PyObject * _alpha_composite(ImagingObject *self, PyObject *args) { ImagingObject *imagep1; ImagingObject *imagep2; if (!PyArg_ParseTuple( args, "O!O!", &Imaging_Type, &imagep1, &Imaging_Type, &imagep2)) { return NULL; } return PyImagingNew(ImagingAlphaComposite(imagep1->image, imagep2->image)); } static PyObject * _blend(ImagingObject *self, PyObject *args) { ImagingObject *imagep1; ImagingObject *imagep2; double alpha; alpha = 0.5; if (!PyArg_ParseTuple( args, "O!O!|d", &Imaging_Type, &imagep1, &Imaging_Type, &imagep2, &alpha)) { return NULL; } return PyImagingNew(ImagingBlend(imagep1->image, imagep2->image, (float)alpha)); } /* -------------------------------------------------------------------- */ /* METHODS */ /* -------------------------------------------------------------------- */ static INT16 * _prepare_lut_table(PyObject *table, Py_ssize_t table_size) { int i; Py_buffer buffer_info; INT32 data_type = TYPE_FLOAT32; float item = 0; void *table_data = NULL; int free_table_data = 0; INT16 *prepared; /* NOTE: This value should be the same as in ColorLUT.c */ #define PRECISION_BITS (16 - 8 - 2) const char *wrong_size = ("The table should have table_channels * " "size1D * size2D * size3D float items."); if (PyObject_CheckBuffer(table)) { if (!PyObject_GetBuffer(table, &buffer_info, PyBUF_CONTIG_RO | PyBUF_FORMAT)) { if (buffer_info.ndim == 1 && buffer_info.shape[0] == table_size) { if (strlen(buffer_info.format) == 1) { switch (buffer_info.format[0]) { case 'e': data_type = TYPE_FLOAT16; table_data = buffer_info.buf; break; case 'f': data_type = TYPE_FLOAT32; table_data = buffer_info.buf; break; case 'd': data_type = TYPE_DOUBLE; table_data = buffer_info.buf; break; } } } PyBuffer_Release(&buffer_info); } } if (!table_data) { free_table_data = 1; table_data = getlist(table, &table_size, wrong_size, TYPE_FLOAT32); if (!table_data) { return NULL; } } /* malloc check ok, max is 2 * 4 * 65**3 = 2197000 */ prepared = (INT16 *)malloc(sizeof(INT16) * table_size); if (!prepared) { if (free_table_data) { free(table_data); } return (INT16 *)ImagingError_MemoryError(); } for (i = 0; i < table_size; i++) { FLOAT16 htmp; double dtmp; switch (data_type) { case TYPE_FLOAT16: memcpy(&htmp, ((char *)table_data) + i * sizeof(htmp), sizeof(htmp)); item = float16tofloat32(htmp); break; case TYPE_FLOAT32: memcpy( &item, ((char *)table_data) + i * sizeof(FLOAT32), sizeof(FLOAT32)); break; case TYPE_DOUBLE: memcpy(&dtmp, ((char *)table_data) + i * sizeof(dtmp), sizeof(dtmp)); item = (FLOAT32)dtmp; break; } /* Max value for INT16 */ if (item >= (0x7fff - 0.5) / (255 << PRECISION_BITS)) { prepared[i] = 0x7fff; continue; } /* Min value for INT16 */ if (item <= (-0x8000 + 0.5) / (255 << PRECISION_BITS)) { prepared[i] = -0x8000; continue; } if (item < 0) { prepared[i] = item * (255 << PRECISION_BITS) - 0.5; } else { prepared[i] = item * (255 << PRECISION_BITS) + 0.5; } } #undef PRECISION_BITS if (free_table_data) { free(table_data); } return prepared; } static PyObject * _color_lut_3d(ImagingObject *self, PyObject *args) { char *mode; int filter; int table_channels; int size1D, size2D, size3D; PyObject *table; INT16 *prepared_table; Imaging imOut; if (!PyArg_ParseTuple( args, "siiiiiO:color_lut_3d", &mode, &filter, &table_channels, &size1D, &size2D, &size3D, &table)) { return NULL; } /* actually, it is trilinear */ if (filter != IMAGING_TRANSFORM_BILINEAR) { PyErr_SetString(PyExc_ValueError, "Only LINEAR filter is supported."); return NULL; } if (1 > table_channels || table_channels > 4) { PyErr_SetString(PyExc_ValueError, "table_channels should be from 1 to 4"); return NULL; } if (2 > size1D || size1D > 65 || 2 > size2D || size2D > 65 || 2 > size3D || size3D > 65) { PyErr_SetString( PyExc_ValueError, "Table size in any dimension should be from 2 to 65"); return NULL; } prepared_table = _prepare_lut_table(table, table_channels * size1D * size2D * size3D); if (!prepared_table) { return NULL; } imOut = ImagingNewDirty(mode, self->image->xsize, self->image->ysize); if (!imOut) { free(prepared_table); return NULL; } if (!ImagingColorLUT3D_linear( imOut, self->image, table_channels, size1D, size2D, size3D, prepared_table)) { free(prepared_table); ImagingDelete(imOut); return NULL; } free(prepared_table); return PyImagingNew(imOut); } static PyObject * _convert(ImagingObject *self, PyObject *args) { char *mode; int dither = 0; ImagingObject *paletteimage = NULL; if (!PyArg_ParseTuple(args, "s|iO", &mode, &dither, &paletteimage)) { return NULL; } if (paletteimage != NULL) { if (!PyImaging_Check(paletteimage)) { PyObject_Print((PyObject *)paletteimage, stderr, 0); PyErr_SetString( PyExc_ValueError, "palette argument must be image with mode 'P'"); return NULL; } if (paletteimage->image->palette == NULL) { PyErr_SetString(PyExc_ValueError, "null palette"); return NULL; } } return PyImagingNew(ImagingConvert( self->image, mode, paletteimage ? paletteimage->image->palette : NULL, dither)); } static PyObject * _convert2(ImagingObject *self, PyObject *args) { ImagingObject *imagep1; ImagingObject *imagep2; if (!PyArg_ParseTuple( args, "O!O!", &Imaging_Type, &imagep1, &Imaging_Type, &imagep2)) { return NULL; } if (!ImagingConvert2(imagep1->image, imagep2->image)) { return NULL; } Py_INCREF(Py_None); return Py_None; } static PyObject * _convert_matrix(ImagingObject *self, PyObject *args) { char *mode; float m[12]; if (!PyArg_ParseTuple(args, "s(ffff)", &mode, m + 0, m + 1, m + 2, m + 3)) { PyErr_Clear(); if (!PyArg_ParseTuple( args, "s(ffffffffffff)", &mode, m + 0, m + 1, m + 2, m + 3, m + 4, m + 5, m + 6, m + 7, m + 8, m + 9, m + 10, m + 11)) { return NULL; } } return PyImagingNew(ImagingConvertMatrix(self->image, mode, m)); } static PyObject * _convert_transparent(ImagingObject *self, PyObject *args) { char *mode; int r, g, b; if (PyArg_ParseTuple(args, "s(iii)", &mode, &r, &g, &b)) { return PyImagingNew(ImagingConvertTransparent(self->image, mode, r, g, b)); } PyErr_Clear(); if (PyArg_ParseTuple(args, "si", &mode, &r)) { return PyImagingNew(ImagingConvertTransparent(self->image, mode, r, 0, 0)); } return NULL; } static PyObject * _copy(ImagingObject *self, PyObject *args) { if (!PyArg_ParseTuple(args, "")) { return NULL; } return PyImagingNew(ImagingCopy(self->image)); } static PyObject * _crop(ImagingObject *self, PyObject *args) { int x0, y0, x1, y1; if (!PyArg_ParseTuple(args, "(iiii)", &x0, &y0, &x1, &y1)) { return NULL; } return PyImagingNew(ImagingCrop(self->image, x0, y0, x1, y1)); } static PyObject * _expand_image(ImagingObject *self, PyObject *args) { int x, y; int mode = 0; if (!PyArg_ParseTuple(args, "ii|i", &x, &y, &mode)) { return NULL; } return PyImagingNew(ImagingExpand(self->image, x, y, mode)); } static PyObject * _filter(ImagingObject *self, PyObject *args) { PyObject *imOut; Py_ssize_t kernelsize; FLOAT32 *kerneldata; int xsize, ysize, i; float divisor, offset; PyObject *kernel = NULL; if (!PyArg_ParseTuple( args, "(ii)ffO", &xsize, &ysize, &divisor, &offset, &kernel)) { return NULL; } /* get user-defined kernel */ kerneldata = getlist(kernel, &kernelsize, NULL, TYPE_FLOAT32); if (!kerneldata) { return NULL; } if (kernelsize != (Py_ssize_t)xsize * (Py_ssize_t)ysize) { free(kerneldata); return ImagingError_ValueError("bad kernel size"); } for (i = 0; i < kernelsize; ++i) { kerneldata[i] /= divisor; } imOut = PyImagingNew(ImagingFilter(self->image, xsize, ysize, kerneldata, offset)); free(kerneldata); return imOut; } #ifdef WITH_UNSHARPMASK static PyObject * _gaussian_blur(ImagingObject *self, PyObject *args) { Imaging imIn; Imaging imOut; float radius = 0; int passes = 3; if (!PyArg_ParseTuple(args, "f|i", &radius, &passes)) { return NULL; } imIn = self->image; imOut = ImagingNewDirty(imIn->mode, imIn->xsize, imIn->ysize); if (!imOut) { return NULL; } if (!ImagingGaussianBlur(imOut, imIn, radius, passes)) { ImagingDelete(imOut); return NULL; } return PyImagingNew(imOut); } #endif static PyObject * _getpalette(ImagingObject *self, PyObject *args) { PyObject *palette; int palettesize; int bits; ImagingShuffler pack; char *mode = "RGB"; char *rawmode = "RGB"; if (!PyArg_ParseTuple(args, "|ss", &mode, &rawmode)) { return NULL; } if (!self->image->palette) { PyErr_SetString(PyExc_ValueError, no_palette); return NULL; } pack = ImagingFindPacker(mode, rawmode, &bits); if (!pack) { PyErr_SetString(PyExc_ValueError, wrong_raw_mode); return NULL; } palettesize = self->image->palette->size; palette = PyBytes_FromStringAndSize(NULL, palettesize * bits / 8); if (!palette) { return NULL; } pack( (UINT8 *)PyBytes_AsString(palette), self->image->palette->palette, palettesize); return palette; } static PyObject * _getpalettemode(ImagingObject *self) { if (!self->image->palette) { PyErr_SetString(PyExc_ValueError, no_palette); return NULL; } return PyUnicode_FromString(self->image->palette->mode); } static inline int _getxy(PyObject *xy, int *x, int *y) { PyObject *value; if (!PyTuple_Check(xy) || PyTuple_GET_SIZE(xy) != 2) { goto badarg; } value = PyTuple_GET_ITEM(xy, 0); if (PyLong_Check(value)) { *x = PyLong_AS_LONG(value); } else if (PyFloat_Check(value)) { *x = (int)PyFloat_AS_DOUBLE(value); } else { PyObject *int_value = PyObject_CallMethod(value, "__int__", NULL); if (int_value != NULL && PyLong_Check(int_value)) { *x = PyLong_AS_LONG(int_value); } else { goto badval; } } value = PyTuple_GET_ITEM(xy, 1); if (PyLong_Check(value)) { *y = PyLong_AS_LONG(value); } else if (PyFloat_Check(value)) { *y = (int)PyFloat_AS_DOUBLE(value); } else { PyObject *int_value = PyObject_CallMethod(value, "__int__", NULL); if (int_value != NULL && PyLong_Check(int_value)) { *y = PyLong_AS_LONG(int_value); } else { goto badval; } } return 0; badarg: PyErr_SetString(PyExc_TypeError, "argument must be sequence of length 2"); return -1; badval: PyErr_SetString(PyExc_TypeError, "an integer is required"); return -1; } static PyObject * _getpixel(ImagingObject *self, PyObject *args) { PyObject *xy; int x, y; if (PyTuple_GET_SIZE(args) != 1) { PyErr_SetString(PyExc_TypeError, "argument 1 must be sequence of length 2"); return NULL; } xy = PyTuple_GET_ITEM(args, 0); if (_getxy(xy, &x, &y)) { return NULL; } if (self->access == NULL) { Py_INCREF(Py_None); return Py_None; } return getpixel(self->image, self->access, x, y); } union hist_extrema { UINT8 u[2]; INT32 i[2]; FLOAT32 f[2]; }; static union hist_extrema * parse_histogram_extremap( ImagingObject *self, PyObject *extremap, union hist_extrema *ep) { int i0, i1; double f0, f1; if (extremap) { switch (self->image->type) { case IMAGING_TYPE_UINT8: if (!PyArg_ParseTuple(extremap, "ii", &i0, &i1)) { return NULL; } ep->u[0] = CLIP8(i0); ep->u[1] = CLIP8(i1); break; case IMAGING_TYPE_INT32: if (!PyArg_ParseTuple(extremap, "ii", &i0, &i1)) { return NULL; } ep->i[0] = i0; ep->i[1] = i1; break; case IMAGING_TYPE_FLOAT32: if (!PyArg_ParseTuple(extremap, "dd", &f0, &f1)) { return NULL; } ep->f[0] = (FLOAT32)f0; ep->f[1] = (FLOAT32)f1; break; default: return NULL; } } else { return NULL; } return ep; } static PyObject * _histogram(ImagingObject *self, PyObject *args) { ImagingHistogram h; PyObject *list; int i; union hist_extrema extrema; union hist_extrema *ep; PyObject *extremap = NULL; ImagingObject *maskp = NULL; if (!PyArg_ParseTuple(args, "|OO!", &extremap, &Imaging_Type, &maskp)) { return NULL; } /* Using a var to avoid allocations. */ ep = parse_histogram_extremap(self, extremap, &extrema); h = ImagingGetHistogram(self->image, (maskp) ? maskp->image : NULL, ep); if (!h) { return NULL; } /* Build an integer list containing the histogram */ list = PyList_New(h->bands * 256); for (i = 0; i < h->bands * 256; i++) { PyObject *item; item = PyLong_FromLong(h->histogram[i]); if (item == NULL) { Py_DECREF(list); list = NULL; break; } PyList_SetItem(list, i, item); } /* Destroy the histogram structure */ ImagingHistogramDelete(h); return list; } static PyObject * _entropy(ImagingObject *self, PyObject *args) { ImagingHistogram h; int idx, length; long sum; double entropy, fsum, p; union hist_extrema extrema; union hist_extrema *ep; PyObject *extremap = NULL; ImagingObject *maskp = NULL; if (!PyArg_ParseTuple(args, "|OO!", &extremap, &Imaging_Type, &maskp)) { return NULL; } /* Using a local var to avoid allocations. */ ep = parse_histogram_extremap(self, extremap, &extrema); h = ImagingGetHistogram(self->image, (maskp) ? maskp->image : NULL, ep); if (!h) { return NULL; } /* Calculate the histogram entropy */ /* First, sum the histogram data */ length = h->bands * 256; sum = 0; for (idx = 0; idx < length; idx++) { sum += h->histogram[idx]; } /* Next, normalize the histogram data, */ /* using the histogram sum value */ fsum = (double)sum; entropy = 0.0; for (idx = 0; idx < length; idx++) { p = (double)h->histogram[idx] / fsum; if (p != 0.0) { entropy += p * log(p) * M_LOG2E; } } /* Destroy the histogram structure */ ImagingHistogramDelete(h); return PyFloat_FromDouble(-entropy); } #ifdef WITH_MODEFILTER static PyObject * _modefilter(ImagingObject *self, PyObject *args) { int size; if (!PyArg_ParseTuple(args, "i", &size)) { return NULL; } return PyImagingNew(ImagingModeFilter(self->image, size)); } #endif static PyObject * _offset(ImagingObject *self, PyObject *args) { int xoffset, yoffset; if (!PyArg_ParseTuple(args, "ii", &xoffset, &yoffset)) { return NULL; } return PyImagingNew(ImagingOffset(self->image, xoffset, yoffset)); } static PyObject * _paste(ImagingObject *self, PyObject *args) { int status; char ink[4]; PyObject *source; int x0, y0, x1, y1; ImagingObject *maskp = NULL; if (!PyArg_ParseTuple( args, "O(iiii)|O!", &source, &x0, &y0, &x1, &y1, &Imaging_Type, &maskp)) { return NULL; } if (PyImaging_Check(source)) { status = ImagingPaste( self->image, PyImaging_AsImaging(source), (maskp) ? maskp->image : NULL, x0, y0, x1, y1); } else { if (!getink(source, self->image, ink)) { return NULL; } status = ImagingFill2( self->image, ink, (maskp) ? maskp->image : NULL, x0, y0, x1, y1); } if (status < 0) { return NULL; } Py_INCREF(Py_None); return Py_None; } static PyObject * _point(ImagingObject *self, PyObject *args) { static const char *wrong_number = "wrong number of lut entries"; Py_ssize_t n; int i, bands; Imaging im; PyObject *list; char *mode; if (!PyArg_ParseTuple(args, "Oz", &list, &mode)) { return NULL; } if (mode && !strcmp(mode, "F")) { FLOAT32 *data; /* map from 8-bit data to floating point */ n = 256; data = getlist(list, &n, wrong_number, TYPE_FLOAT32); if (!data) { return NULL; } im = ImagingPoint(self->image, mode, (void *)data); free(data); } else if (!strcmp(self->image->mode, "I") && mode && !strcmp(mode, "L")) { UINT8 *data; /* map from 16-bit subset of 32-bit data to 8-bit */ /* FIXME: support arbitrary number of entries (requires API change) */ n = 65536; data = getlist(list, &n, wrong_number, TYPE_UINT8); if (!data) { return NULL; } im = ImagingPoint(self->image, mode, (void *)data); free(data); } else { INT32 *data; UINT8 lut[1024]; if (mode) { bands = getbands(mode); if (bands < 0) { return NULL; } } else { bands = self->image->bands; } /* map to integer data */ n = 256 * bands; data = getlist(list, &n, wrong_number, TYPE_INT32); if (!data) { return NULL; } if (mode && !strcmp(mode, "I")) { im = ImagingPoint(self->image, mode, (void *)data); } else if (mode && bands > 1) { for (i = 0; i < 256; i++) { lut[i * 4] = CLIP8(data[i]); lut[i * 4 + 1] = CLIP8(data[i + 256]); lut[i * 4 + 2] = CLIP8(data[i + 512]); if (n > 768) { lut[i * 4 + 3] = CLIP8(data[i + 768]); } } im = ImagingPoint(self->image, mode, (void *)lut); } else { /* map individual bands */ for (i = 0; i < n; i++) { lut[i] = CLIP8(data[i]); } im = ImagingPoint(self->image, mode, (void *)lut); } free(data); } return PyImagingNew(im); } static PyObject * _point_transform(ImagingObject *self, PyObject *args) { double scale = 1.0; double offset = 0.0; if (!PyArg_ParseTuple(args, "|dd", &scale, &offset)) { return NULL; } return PyImagingNew(ImagingPointTransform(self->image, scale, offset)); } static PyObject * _putdata(ImagingObject *self, PyObject *args) { Imaging image; // i & n are # pixels, require py_ssize_t. x can be as large as n. y, just because. Py_ssize_t n, i, x, y; PyObject *data; PyObject *seq = NULL; PyObject *op; double scale = 1.0; double offset = 0.0; if (!PyArg_ParseTuple(args, "O|dd", &data, &scale, &offset)) { return NULL; } if (!PySequence_Check(data)) { PyErr_SetString(PyExc_TypeError, must_be_sequence); return NULL; } image = self->image; n = PyObject_Length(data); if (n > (Py_ssize_t)image->xsize * (Py_ssize_t)image->ysize) { PyErr_SetString(PyExc_TypeError, "too many data entries"); return NULL; } #define set_value_to_item(seq, i) \ op = PySequence_Fast_GET_ITEM(seq, i); \ if (PySequence_Check(op)) { \ PyErr_SetString(PyExc_TypeError, "sequence must be flattened"); \ return NULL; \ } else { \ value = PyFloat_AsDouble(op); \ } if (image->image8) { if (PyBytes_Check(data)) { unsigned char *p; p = (unsigned char *)PyBytes_AS_STRING(data); if (scale == 1.0 && offset == 0.0) { /* Plain string data */ for (i = y = 0; i < n; i += image->xsize, y++) { x = n - i; if (x > (int)image->xsize) { x = image->xsize; } memcpy(image->image8[y], p + i, x); } } else { /* Scaled and clipped string data */ for (i = x = y = 0; i < n; i++) { image->image8[y][x] = CLIP8((int)(p[i] * scale + offset)); if (++x >= (int)image->xsize) { x = 0, y++; } } } } else { seq = PySequence_Fast(data, must_be_sequence); if (!seq) { PyErr_SetString(PyExc_TypeError, must_be_sequence); return NULL; } int endian = strncmp(image->mode, "I;16", 4) == 0 ? (strcmp(image->mode, "I;16B") == 0 ? 2 : 1) : 0; double value; for (i = x = y = 0; i < n; i++) { set_value_to_item(seq, i); if (scale != 1.0 || offset != 0.0) { value = value * scale + offset; } if (endian == 0) { image->image8[y][x] = (UINT8)CLIP8(value); } else { image->image8[y][x * 2 + (endian == 2 ? 1 : 0)] = CLIP8((int)value % 256); image->image8[y][x * 2 + (endian == 2 ? 0 : 1)] = CLIP8((int)value >> 8); } if (++x >= (int)image->xsize) { x = 0, y++; } } PyErr_Clear(); /* Avoid weird exceptions */ } } else { /* 32-bit images */ seq = PySequence_Fast(data, must_be_sequence); if (!seq) { PyErr_SetString(PyExc_TypeError, must_be_sequence); return NULL; } switch (image->type) { case IMAGING_TYPE_INT32: for (i = x = y = 0; i < n; i++) { double value; set_value_to_item(seq, i); IMAGING_PIXEL_INT32(image, x, y) = (INT32)(value * scale + offset); if (++x >= (int)image->xsize) { x = 0, y++; } } PyErr_Clear(); /* Avoid weird exceptions */ break; case IMAGING_TYPE_FLOAT32: for (i = x = y = 0; i < n; i++) { double value; set_value_to_item(seq, i); IMAGING_PIXEL_FLOAT32(image, x, y) = (FLOAT32)(value * scale + offset); if (++x >= (int)image->xsize) { x = 0, y++; } } PyErr_Clear(); /* Avoid weird exceptions */ break; default: for (i = x = y = 0; i < n; i++) { union { char ink[4]; INT32 inkint; } u; u.inkint = 0; op = PySequence_Fast_GET_ITEM(seq, i); if (!op || !getink(op, image, u.ink)) { Py_DECREF(seq); return NULL; } /* FIXME: what about scale and offset? */ image->image32[y][x] = u.inkint; if (++x >= (int)image->xsize) { x = 0, y++; } } PyErr_Clear(); /* Avoid weird exceptions */ break; } } Py_XDECREF(seq); Py_INCREF(Py_None); return Py_None; } #ifdef WITH_QUANTIZE static PyObject * _quantize(ImagingObject *self, PyObject *args) { int colours = 256; int method = 0; int kmeans = 0; if (!PyArg_ParseTuple(args, "|iii", &colours, &method, &kmeans)) { return NULL; } if (!self->image->xsize || !self->image->ysize) { /* no content; return an empty image */ return PyImagingNew(ImagingNew("P", self->image->xsize, self->image->ysize)); } return PyImagingNew(ImagingQuantize(self->image, colours, method, kmeans)); } #endif static PyObject * _putpalette(ImagingObject *self, PyObject *args) { ImagingShuffler unpack; int bits; char *rawmode, *palette_mode; UINT8 *palette; Py_ssize_t palettesize; if (!PyArg_ParseTuple(args, "sy#", &rawmode, &palette, &palettesize)) { return NULL; } if (strcmp(self->image->mode, "L") && strcmp(self->image->mode, "LA") && strcmp(self->image->mode, "P") && strcmp(self->image->mode, "PA")) { PyErr_SetString(PyExc_ValueError, wrong_mode); return NULL; } palette_mode = strncmp("RGBA", rawmode, 4) == 0 ? "RGBA" : "RGB"; unpack = ImagingFindUnpacker(palette_mode, rawmode, &bits); if (!unpack) { PyErr_SetString(PyExc_ValueError, wrong_raw_mode); return NULL; } if (palettesize * 8 / bits > 256) { PyErr_SetString(PyExc_ValueError, wrong_palette_size); return NULL; } ImagingPaletteDelete(self->image->palette); strcpy(self->image->mode, strlen(self->image->mode) == 2 ? "PA" : "P"); self->image->palette = ImagingPaletteNew(palette_mode); self->image->palette->size = palettesize * 8 / bits; unpack(self->image->palette->palette, palette, self->image->palette->size); Py_INCREF(Py_None); return Py_None; } static PyObject * _putpalettealpha(ImagingObject *self, PyObject *args) { int index; int alpha = 0; if (!PyArg_ParseTuple(args, "i|i", &index, &alpha)) { return NULL; } if (!self->image->palette) { PyErr_SetString(PyExc_ValueError, no_palette); return NULL; } if (index < 0 || index >= 256) { PyErr_SetString(PyExc_ValueError, outside_palette); return NULL; } strcpy(self->image->palette->mode, "RGBA"); self->image->palette->palette[index * 4 + 3] = (UINT8)alpha; Py_INCREF(Py_None); return Py_None; } static PyObject * _putpalettealphas(ImagingObject *self, PyObject *args) { int i; UINT8 *values; Py_ssize_t length; if (!PyArg_ParseTuple(args, "y#", &values, &length)) { return NULL; } if (!self->image->palette) { PyErr_SetString(PyExc_ValueError, no_palette); return NULL; } if (length > 256) { PyErr_SetString(PyExc_ValueError, outside_palette); return NULL; } strcpy(self->image->palette->mode, "RGBA"); for (i = 0; i < length; i++) { self->image->palette->palette[i * 4 + 3] = (UINT8)values[i]; } Py_INCREF(Py_None); return Py_None; } static PyObject * _putpixel(ImagingObject *self, PyObject *args) { Imaging im; char ink[4]; int x, y; PyObject *color; if (!PyArg_ParseTuple(args, "(ii)O", &x, &y, &color)) { return NULL; } im = self->image; if (x < 0) { x = im->xsize + x; } if (y < 0) { y = im->ysize + y; } if (x < 0 || x >= im->xsize || y < 0 || y >= im->ysize) { PyErr_SetString(PyExc_IndexError, outside_image); return NULL; } if (!getink(color, im, ink)) { return NULL; } if (self->access) { self->access->put_pixel(im, x, y, ink); } Py_INCREF(Py_None); return Py_None; } #ifdef WITH_RANKFILTER static PyObject * _rankfilter(ImagingObject *self, PyObject *args) { int size, rank; if (!PyArg_ParseTuple(args, "ii", &size, &rank)) { return NULL; } return PyImagingNew(ImagingRankFilter(self->image, size, rank)); } #endif static PyObject * _resize(ImagingObject *self, PyObject *args) { Imaging imIn; Imaging imOut; int xsize, ysize; int filter = IMAGING_TRANSFORM_NEAREST; float box[4] = {0, 0, 0, 0}; imIn = self->image; box[2] = imIn->xsize; box[3] = imIn->ysize; if (!PyArg_ParseTuple( args, "(ii)|i(ffff)", &xsize, &ysize, &filter, &box[0], &box[1], &box[2], &box[3])) { return NULL; } if (xsize < 1 || ysize < 1) { return ImagingError_ValueError("height and width must be > 0"); } if (box[0] < 0 || box[1] < 0) { return ImagingError_ValueError("box offset can't be negative"); } if (box[2] > imIn->xsize || box[3] > imIn->ysize) { return ImagingError_ValueError("box can't exceed original image size"); } if (box[2] - box[0] < 0 || box[3] - box[1] < 0) { return ImagingError_ValueError("box can't be empty"); } // If box's coordinates are int and box size matches requested size if (box[0] - (int)box[0] == 0 && box[2] - box[0] == xsize && box[1] - (int)box[1] == 0 && box[3] - box[1] == ysize) { imOut = ImagingCrop(imIn, box[0], box[1], box[2], box[3]); } else if (filter == IMAGING_TRANSFORM_NEAREST) { double a[8]; memset(a, 0, sizeof a); a[0] = (double)(box[2] - box[0]) / xsize; a[4] = (double)(box[3] - box[1]) / ysize; a[2] = box[0]; a[5] = box[1]; imOut = ImagingNewDirty(imIn->mode, xsize, ysize); imOut = ImagingTransform( imOut, imIn, IMAGING_TRANSFORM_AFFINE, 0, 0, xsize, ysize, a, filter, 1); } else { imOut = ImagingResample(imIn, xsize, ysize, filter, box); } return PyImagingNew(imOut); } static PyObject * _reduce(ImagingObject *self, PyObject *args) { Imaging imIn; Imaging imOut; int xscale, yscale; int box[4] = {0, 0, 0, 0}; imIn = self->image; box[2] = imIn->xsize; box[3] = imIn->ysize; if (!PyArg_ParseTuple( args, "(ii)|(iiii)", &xscale, &yscale, &box[0], &box[1], &box[2], &box[3])) { return NULL; } if (xscale < 1 || yscale < 1) { return ImagingError_ValueError("scale must be > 0"); } if (box[0] < 0 || box[1] < 0) { return ImagingError_ValueError("box offset can't be negative"); } if (box[2] > imIn->xsize || box[3] > imIn->ysize) { return ImagingError_ValueError("box can't exceed original image size"); } if (box[2] <= box[0] || box[3] <= box[1]) { return ImagingError_ValueError("box can't be empty"); } if (xscale == 1 && yscale == 1) { imOut = ImagingCrop(imIn, box[0], box[1], box[2], box[3]); } else { // Change box format: (left, top, width, height) box[2] -= box[0]; box[3] -= box[1]; imOut = ImagingReduce(imIn, xscale, yscale, box); } return PyImagingNew(imOut); } #define IS_RGB(mode) \ (!strcmp(mode, "RGB") || !strcmp(mode, "RGBA") || !strcmp(mode, "RGBX")) static PyObject * im_setmode(ImagingObject *self, PyObject *args) { /* attempt to modify the mode of an image in place */ Imaging im; char *mode; Py_ssize_t modelen; if (!PyArg_ParseTuple(args, "s#:setmode", &mode, &modelen)) { return NULL; } im = self->image; /* move all logic in here to the libImaging primitive */ if (!strcmp(im->mode, mode)) { ; /* same mode; always succeeds */ } else if (IS_RGB(im->mode) && IS_RGB(mode)) { /* color to color */ strcpy(im->mode, mode); im->bands = modelen; if (!strcmp(mode, "RGBA")) { (void)ImagingFillBand(im, 3, 255); } } else { /* trying doing an in-place conversion */ if (!ImagingConvertInPlace(im, mode)) { return NULL; } } if (self->access) { ImagingAccessDelete(im, self->access); } self->access = ImagingAccessNew(im); Py_INCREF(Py_None); return Py_None; } static PyObject * _transform2(ImagingObject *self, PyObject *args) { static const char *wrong_number = "wrong number of matrix entries"; Imaging imOut; Py_ssize_t n; double *a; ImagingObject *imagep; int x0, y0, x1, y1; int method; PyObject *data; int filter = IMAGING_TRANSFORM_NEAREST; int fill = 1; if (!PyArg_ParseTuple( args, "(iiii)O!iO|ii", &x0, &y0, &x1, &y1, &Imaging_Type, &imagep, &method, &data, &filter, &fill)) { return NULL; } switch (method) { case IMAGING_TRANSFORM_AFFINE: n = 6; break; case IMAGING_TRANSFORM_PERSPECTIVE: n = 8; break; case IMAGING_TRANSFORM_QUAD: n = 8; break; default: n = -1; /* force error */ } a = getlist(data, &n, wrong_number, TYPE_DOUBLE); if (!a) { return NULL; } imOut = ImagingTransform( self->image, imagep->image, method, x0, y0, x1, y1, a, filter, fill); free(a); if (!imOut) { return NULL; } Py_INCREF(Py_None); return Py_None; } static PyObject * _transpose(ImagingObject *self, PyObject *args) { Imaging imIn; Imaging imOut; int op; if (!PyArg_ParseTuple(args, "i", &op)) { return NULL; } imIn = self->image; switch (op) { case 0: /* flip left right */ case 1: /* flip top bottom */ case 3: /* rotate 180 */ imOut = ImagingNewDirty(imIn->mode, imIn->xsize, imIn->ysize); break; case 2: /* rotate 90 */ case 4: /* rotate 270 */ case 5: /* transpose */ case 6: /* transverse */ imOut = ImagingNewDirty(imIn->mode, imIn->ysize, imIn->xsize); break; default: PyErr_SetString(PyExc_ValueError, "No such transpose operation"); return NULL; } if (imOut) { switch (op) { case 0: (void)ImagingFlipLeftRight(imOut, imIn); break; case 1: (void)ImagingFlipTopBottom(imOut, imIn); break; case 2: (void)ImagingRotate90(imOut, imIn); break; case 3: (void)ImagingRotate180(imOut, imIn); break; case 4: (void)ImagingRotate270(imOut, imIn); break; case 5: (void)ImagingTranspose(imOut, imIn); break; case 6: (void)ImagingTransverse(imOut, imIn); break; } } return PyImagingNew(imOut); } #ifdef WITH_UNSHARPMASK static PyObject * _unsharp_mask(ImagingObject *self, PyObject *args) { Imaging imIn; Imaging imOut; float radius; int percent, threshold; if (!PyArg_ParseTuple(args, "fii", &radius, &percent, &threshold)) { return NULL; } imIn = self->image; imOut = ImagingNewDirty(imIn->mode, imIn->xsize, imIn->ysize); if (!imOut) { return NULL; } if (!ImagingUnsharpMask(imOut, imIn, radius, percent, threshold)) { return NULL; } return PyImagingNew(imOut); } #endif static PyObject * _box_blur(ImagingObject *self, PyObject *args) { Imaging imIn; Imaging imOut; float radius; int n = 1; if (!PyArg_ParseTuple(args, "f|i", &radius, &n)) { return NULL; } imIn = self->image; imOut = ImagingNewDirty(imIn->mode, imIn->xsize, imIn->ysize); if (!imOut) { return NULL; } if (!ImagingBoxBlur(imOut, imIn, radius, n)) { ImagingDelete(imOut); return NULL; } return PyImagingNew(imOut); } /* -------------------------------------------------------------------- */ static PyObject * _isblock(ImagingObject *self) { return PyBool_FromLong(self->image->block != NULL); } static PyObject * _getbbox(ImagingObject *self) { int bbox[4]; if (!ImagingGetBBox(self->image, bbox)) { Py_INCREF(Py_None); return Py_None; } return Py_BuildValue("iiii", bbox[0], bbox[1], bbox[2], bbox[3]); } static PyObject * _getcolors(ImagingObject *self, PyObject *args) { ImagingColorItem *items; int i, colors; PyObject *out; int maxcolors = 256; if (!PyArg_ParseTuple(args, "i:getcolors", &maxcolors)) { return NULL; } items = ImagingGetColors(self->image, maxcolors, &colors); if (!items) { return NULL; } if (colors > maxcolors) { out = Py_None; Py_INCREF(out); } else { out = PyList_New(colors); for (i = 0; i < colors; i++) { ImagingColorItem *v = &items[i]; PyObject *item = Py_BuildValue( "iN", v->count, getpixel(self->image, self->access, v->x, v->y)); PyList_SetItem(out, i, item); } } free(items); return out; } static PyObject * _getextrema(ImagingObject *self) { union { UINT8 u[2]; INT32 i[2]; FLOAT32 f[2]; UINT16 s[2]; } extrema; int status; status = ImagingGetExtrema(self->image, &extrema); if (status < 0) { return NULL; } if (status) { switch (self->image->type) { case IMAGING_TYPE_UINT8: return Py_BuildValue("BB", extrema.u[0], extrema.u[1]); case IMAGING_TYPE_INT32: return Py_BuildValue("ii", extrema.i[0], extrema.i[1]); case IMAGING_TYPE_FLOAT32: return Py_BuildValue("dd", extrema.f[0], extrema.f[1]); case IMAGING_TYPE_SPECIAL: if (strcmp(self->image->mode, "I;16") == 0) { return Py_BuildValue("HH", extrema.s[0], extrema.s[1]); } } } Py_INCREF(Py_None); return Py_None; } static PyObject * _getprojection(ImagingObject *self) { unsigned char *xprofile; unsigned char *yprofile; PyObject *result; /* malloc check ok */ xprofile = malloc(self->image->xsize); yprofile = malloc(self->image->ysize); if (xprofile == NULL || yprofile == NULL) { free(xprofile); free(yprofile); return ImagingError_MemoryError(); } ImagingGetProjection( self->image, (unsigned char *)xprofile, (unsigned char *)yprofile); result = Py_BuildValue( "y#y#", xprofile, (Py_ssize_t)self->image->xsize, yprofile, (Py_ssize_t)self->image->ysize); free(xprofile); free(yprofile); return result; } /* -------------------------------------------------------------------- */ static PyObject * _getband(ImagingObject *self, PyObject *args) { int band; if (!PyArg_ParseTuple(args, "i", &band)) { return NULL; } return PyImagingNew(ImagingGetBand(self->image, band)); } static PyObject * _fillband(ImagingObject *self, PyObject *args) { int band; int color; if (!PyArg_ParseTuple(args, "ii", &band, &color)) { return NULL; } if (!ImagingFillBand(self->image, band, color)) { return NULL; } Py_INCREF(Py_None); return Py_None; } static PyObject * _putband(ImagingObject *self, PyObject *args) { ImagingObject *imagep; int band; if (!PyArg_ParseTuple(args, "O!i", &Imaging_Type, &imagep, &band)) { return NULL; } if (!ImagingPutBand(self->image, imagep->image, band)) { return NULL; } Py_INCREF(Py_None); return Py_None; } static PyObject * _merge(PyObject *self, PyObject *args) { char *mode; ImagingObject *band0 = NULL; ImagingObject *band1 = NULL; ImagingObject *band2 = NULL; ImagingObject *band3 = NULL; Imaging bands[4] = {NULL, NULL, NULL, NULL}; if (!PyArg_ParseTuple( args, "sO!|O!O!O!", &mode, &Imaging_Type, &band0, &Imaging_Type, &band1, &Imaging_Type, &band2, &Imaging_Type, &band3)) { return NULL; } if (band0) { bands[0] = band0->image; } if (band1) { bands[1] = band1->image; } if (band2) { bands[2] = band2->image; } if (band3) { bands[3] = band3->image; } return PyImagingNew(ImagingMerge(mode, bands)); } static PyObject * _split(ImagingObject *self) { int fails = 0; Py_ssize_t i; PyObject *list; PyObject *imaging_object; Imaging bands[4] = {NULL, NULL, NULL, NULL}; if (!ImagingSplit(self->image, bands)) { return NULL; } list = PyTuple_New(self->image->bands); for (i = 0; i < self->image->bands; i++) { imaging_object = PyImagingNew(bands[i]); if (!imaging_object) { fails += 1; } PyTuple_SET_ITEM(list, i, imaging_object); } if (fails) { Py_DECREF(list); list = NULL; } return list; } /* -------------------------------------------------------------------- */ #ifdef WITH_IMAGECHOPS static PyObject * _chop_invert(ImagingObject *self) { return PyImagingNew(ImagingNegative(self->image)); } static PyObject * _chop_lighter(ImagingObject *self, PyObject *args) { ImagingObject *imagep; if (!PyArg_ParseTuple(args, "O!", &Imaging_Type, &imagep)) { return NULL; } return PyImagingNew(ImagingChopLighter(self->image, imagep->image)); } static PyObject * _chop_darker(ImagingObject *self, PyObject *args) { ImagingObject *imagep; if (!PyArg_ParseTuple(args, "O!", &Imaging_Type, &imagep)) { return NULL; } return PyImagingNew(ImagingChopDarker(self->image, imagep->image)); } static PyObject * _chop_difference(ImagingObject *self, PyObject *args) { ImagingObject *imagep; if (!PyArg_ParseTuple(args, "O!", &Imaging_Type, &imagep)) { return NULL; } return PyImagingNew(ImagingChopDifference(self->image, imagep->image)); } static PyObject * _chop_multiply(ImagingObject *self, PyObject *args) { ImagingObject *imagep; if (!PyArg_ParseTuple(args, "O!", &Imaging_Type, &imagep)) { return NULL; } return PyImagingNew(ImagingChopMultiply(self->image, imagep->image)); } static PyObject * _chop_screen(ImagingObject *self, PyObject *args) { ImagingObject *imagep; if (!PyArg_ParseTuple(args, "O!", &Imaging_Type, &imagep)) { return NULL; } return PyImagingNew(ImagingChopScreen(self->image, imagep->image)); } static PyObject * _chop_add(ImagingObject *self, PyObject *args) { ImagingObject *imagep; float scale; int offset; scale = 1.0; offset = 0; if (!PyArg_ParseTuple(args, "O!|fi", &Imaging_Type, &imagep, &scale, &offset)) { return NULL; } return PyImagingNew(ImagingChopAdd(self->image, imagep->image, scale, offset)); } static PyObject * _chop_subtract(ImagingObject *self, PyObject *args) { ImagingObject *imagep; float scale; int offset; scale = 1.0; offset = 0; if (!PyArg_ParseTuple(args, "O!|fi", &Imaging_Type, &imagep, &scale, &offset)) { return NULL; } return PyImagingNew(ImagingChopSubtract(self->image, imagep->image, scale, offset)); } static PyObject * _chop_and(ImagingObject *self, PyObject *args) { ImagingObject *imagep; if (!PyArg_ParseTuple(args, "O!", &Imaging_Type, &imagep)) { return NULL; } return PyImagingNew(ImagingChopAnd(self->image, imagep->image)); } static PyObject * _chop_or(ImagingObject *self, PyObject *args) { ImagingObject *imagep; if (!PyArg_ParseTuple(args, "O!", &Imaging_Type, &imagep)) { return NULL; } return PyImagingNew(ImagingChopOr(self->image, imagep->image)); } static PyObject * _chop_xor(ImagingObject *self, PyObject *args) { ImagingObject *imagep; if (!PyArg_ParseTuple(args, "O!", &Imaging_Type, &imagep)) { return NULL; } return PyImagingNew(ImagingChopXor(self->image, imagep->image)); } static PyObject * _chop_add_modulo(ImagingObject *self, PyObject *args) { ImagingObject *imagep; if (!PyArg_ParseTuple(args, "O!", &Imaging_Type, &imagep)) { return NULL; } return PyImagingNew(ImagingChopAddModulo(self->image, imagep->image)); } static PyObject * _chop_subtract_modulo(ImagingObject *self, PyObject *args) { ImagingObject *imagep; if (!PyArg_ParseTuple(args, "O!", &Imaging_Type, &imagep)) { return NULL; } return PyImagingNew(ImagingChopSubtractModulo(self->image, imagep->image)); } static PyObject * _chop_soft_light(ImagingObject *self, PyObject *args) { ImagingObject *imagep; if (!PyArg_ParseTuple(args, "O!", &Imaging_Type, &imagep)) { return NULL; } return PyImagingNew(ImagingChopSoftLight(self->image, imagep->image)); } static PyObject * _chop_hard_light(ImagingObject *self, PyObject *args) { ImagingObject *imagep; if (!PyArg_ParseTuple(args, "O!", &Imaging_Type, &imagep)) { return NULL; } return PyImagingNew(ImagingChopHardLight(self->image, imagep->image)); } static PyObject * _chop_overlay(ImagingObject *self, PyObject *args) { ImagingObject *imagep; if (!PyArg_ParseTuple(args, "O!", &Imaging_Type, &imagep)) { return NULL; } return PyImagingNew(ImagingOverlay(self->image, imagep->image)); } #endif /* -------------------------------------------------------------------- */ #ifdef WITH_IMAGEDRAW static PyObject * _font_new(PyObject *self_, PyObject *args) { ImagingFontObject *self; int i, y0, y1; static const char *wrong_length = "descriptor table has wrong size"; ImagingObject *imagep; unsigned char *glyphdata; Py_ssize_t glyphdata_length; if (!PyArg_ParseTuple( args, "O!y#", &Imaging_Type, &imagep, &glyphdata, &glyphdata_length)) { return NULL; } if (glyphdata_length != 256 * 20) { PyErr_SetString(PyExc_ValueError, wrong_length); return NULL; } self = PyObject_New(ImagingFontObject, &ImagingFont_Type); if (self == NULL) { return NULL; } /* glyph bitmap */ self->bitmap = imagep->image; y0 = y1 = 0; /* glyph glyphs */ for (i = 0; i < 256; i++) { self->glyphs[i].dx = S16(B16(glyphdata, 0)); self->glyphs[i].dy = S16(B16(glyphdata, 2)); self->glyphs[i].dx0 = S16(B16(glyphdata, 4)); self->glyphs[i].dy0 = S16(B16(glyphdata, 6)); self->glyphs[i].dx1 = S16(B16(glyphdata, 8)); self->glyphs[i].dy1 = S16(B16(glyphdata, 10)); self->glyphs[i].sx0 = S16(B16(glyphdata, 12)); self->glyphs[i].sy0 = S16(B16(glyphdata, 14)); self->glyphs[i].sx1 = S16(B16(glyphdata, 16)); self->glyphs[i].sy1 = S16(B16(glyphdata, 18)); if (self->glyphs[i].dy0 < y0) { y0 = self->glyphs[i].dy0; } if (self->glyphs[i].dy1 > y1) { y1 = self->glyphs[i].dy1; } glyphdata += 20; } self->baseline = -y0; self->ysize = y1 - y0; /* keep a reference to the bitmap object */ Py_INCREF(imagep); self->ref = imagep; return (PyObject *)self; } static void _font_dealloc(ImagingFontObject *self) { Py_XDECREF(self->ref); PyObject_Del(self); } static inline int textwidth(ImagingFontObject *self, const unsigned char *text) { int xsize; for (xsize = 0; *text; text++) { xsize += self->glyphs[*text].dx; } return xsize; } void _font_text_asBytes(PyObject *encoded_string, unsigned char **text) { /* Allocates *text, returns a 'new reference'. Caller is required to free */ PyObject *bytes = NULL; Py_ssize_t len = 0; char *buffer; *text = NULL; if (PyUnicode_CheckExact(encoded_string)) { bytes = PyUnicode_AsLatin1String(encoded_string); if (!bytes) { return; } PyBytes_AsStringAndSize(bytes, &buffer, &len); } else if (PyBytes_Check(encoded_string)) { PyBytes_AsStringAndSize(encoded_string, &buffer, &len); } *text = calloc(len + 1, 1); if (*text) { memcpy(*text, buffer, len); } else { ImagingError_MemoryError(); } if (bytes) { Py_DECREF(bytes); } return; } static PyObject * _font_getmask(ImagingFontObject *self, PyObject *args) { Imaging im; Imaging bitmap; int x, b; int i = 0; int status; Glyph *glyph; PyObject *encoded_string; unsigned char *text; char *mode = ""; if (!PyArg_ParseTuple(args, "O|s:getmask", &encoded_string, &mode)) { return NULL; } _font_text_asBytes(encoded_string, &text); if (!text) { return NULL; } im = ImagingNew(self->bitmap->mode, textwidth(self, text), self->ysize); if (!im) { free(text); return ImagingError_MemoryError(); } b = 0; (void)ImagingFill(im, &b); b = self->baseline; for (x = 0; text[i]; i++) { glyph = &self->glyphs[text[i]]; bitmap = ImagingCrop(self->bitmap, glyph->sx0, glyph->sy0, glyph->sx1, glyph->sy1); if (!bitmap) { goto failed; } status = ImagingPaste( im, bitmap, NULL, glyph->dx0 + x, glyph->dy0 + b, glyph->dx1 + x, glyph->dy1 + b); ImagingDelete(bitmap); if (status < 0) { goto failed; } x = x + glyph->dx; b = b + glyph->dy; } free(text); return PyImagingNew(im); failed: free(text); ImagingDelete(im); Py_RETURN_NONE; } static PyObject * _font_getsize(ImagingFontObject *self, PyObject *args) { unsigned char *text; PyObject *encoded_string; PyObject *val; if (!PyArg_ParseTuple(args, "O:getsize", &encoded_string)) { return NULL; } _font_text_asBytes(encoded_string, &text); if (!text) { return NULL; } val = Py_BuildValue("ii", textwidth(self, text), self->ysize); free(text); return val; } static struct PyMethodDef _font_methods[] = { {"getmask", (PyCFunction)_font_getmask, METH_VARARGS}, {"getsize", (PyCFunction)_font_getsize, METH_VARARGS}, {NULL, NULL} /* sentinel */ }; /* -------------------------------------------------------------------- */ static PyObject * _draw_new(PyObject *self_, PyObject *args) { ImagingDrawObject *self; ImagingObject *imagep; int blend = 0; if (!PyArg_ParseTuple(args, "O!|i", &Imaging_Type, &imagep, &blend)) { return NULL; } self = PyObject_New(ImagingDrawObject, &ImagingDraw_Type); if (self == NULL) { return NULL; } /* keep a reference to the image object */ Py_INCREF(imagep); self->image = imagep; self->ink[0] = self->ink[1] = self->ink[2] = self->ink[3] = 0; self->blend = blend; return (PyObject *)self; } static void _draw_dealloc(ImagingDrawObject *self) { Py_XDECREF(self->image); PyObject_Del(self); } extern Py_ssize_t PyPath_Flatten(PyObject *data, double **xy); static PyObject * _draw_ink(ImagingDrawObject *self, PyObject *args) { INT32 ink = 0; PyObject *color; if (!PyArg_ParseTuple(args, "O", &color)) { return NULL; } if (!getink(color, self->image->image, (char *)&ink)) { return NULL; } return PyLong_FromLong((int)ink); } static PyObject * _draw_arc(ImagingDrawObject *self, PyObject *args) { double *xy; Py_ssize_t n; PyObject *data; int ink; int width = 0; float start, end; if (!PyArg_ParseTuple(args, "Offi|i", &data, &start, &end, &ink, &width)) { return NULL; } n = PyPath_Flatten(data, &xy); if (n < 0) { return NULL; } if (n != 2) { PyErr_SetString(PyExc_TypeError, must_be_two_coordinates); free(xy); return NULL; } if (xy[2] < xy[0]) { PyErr_SetString(PyExc_ValueError, incorrectly_ordered_x_coordinate); free(xy); return NULL; } if (xy[3] < xy[1]) { PyErr_SetString(PyExc_ValueError, incorrectly_ordered_y_coordinate); free(xy); return NULL; } n = ImagingDrawArc( self->image->image, (int)xy[0], (int)xy[1], (int)xy[2], (int)xy[3], start, end, &ink, width, self->blend); free(xy); if (n < 0) { return NULL; } Py_INCREF(Py_None); return Py_None; } static PyObject * _draw_bitmap(ImagingDrawObject *self, PyObject *args) { double *xy; Py_ssize_t n; PyObject *data; ImagingObject *bitmap; int ink; if (!PyArg_ParseTuple(args, "OO!i", &data, &Imaging_Type, &bitmap, &ink)) { return NULL; } n = PyPath_Flatten(data, &xy); if (n < 0) { return NULL; } if (n != 1) { PyErr_SetString( PyExc_TypeError, "coordinate list must contain exactly 1 coordinate"); free(xy); return NULL; } n = ImagingDrawBitmap( self->image->image, (int)xy[0], (int)xy[1], bitmap->image, &ink, self->blend); free(xy); if (n < 0) { return NULL; } Py_INCREF(Py_None); return Py_None; } static PyObject * _draw_chord(ImagingDrawObject *self, PyObject *args) { double *xy; Py_ssize_t n; PyObject *data; int ink, fill; int width = 0; float start, end; if (!PyArg_ParseTuple(args, "Offii|i", &data, &start, &end, &ink, &fill, &width)) { return NULL; } n = PyPath_Flatten(data, &xy); if (n < 0) { return NULL; } if (n != 2) { PyErr_SetString(PyExc_TypeError, must_be_two_coordinates); free(xy); return NULL; } if (xy[2] < xy[0]) { PyErr_SetString(PyExc_ValueError, incorrectly_ordered_x_coordinate); free(xy); return NULL; } if (xy[3] < xy[1]) { PyErr_SetString(PyExc_ValueError, incorrectly_ordered_y_coordinate); free(xy); return NULL; } n = ImagingDrawChord( self->image->image, (int)xy[0], (int)xy[1], (int)xy[2], (int)xy[3], start, end, &ink, fill, width, self->blend); free(xy); if (n < 0) { return NULL; } Py_INCREF(Py_None); return Py_None; } static PyObject * _draw_ellipse(ImagingDrawObject *self, PyObject *args) { double *xy; Py_ssize_t n; PyObject *data; int ink; int fill = 0; int width = 0; if (!PyArg_ParseTuple(args, "Oi|ii", &data, &ink, &fill, &width)) { return NULL; } n = PyPath_Flatten(data, &xy); if (n < 0) { return NULL; } if (n != 2) { PyErr_SetString(PyExc_TypeError, must_be_two_coordinates); free(xy); return NULL; } if (xy[2] < xy[0]) { PyErr_SetString(PyExc_ValueError, incorrectly_ordered_x_coordinate); free(xy); return NULL; } if (xy[3] < xy[1]) { PyErr_SetString(PyExc_ValueError, incorrectly_ordered_y_coordinate); free(xy); return NULL; } n = ImagingDrawEllipse( self->image->image, (int)xy[0], (int)xy[1], (int)xy[2], (int)xy[3], &ink, fill, width, self->blend); free(xy); if (n < 0) { return NULL; } Py_INCREF(Py_None); return Py_None; } static PyObject * _draw_lines(ImagingDrawObject *self, PyObject *args) { double *xy; Py_ssize_t i, n; PyObject *data; int ink; int width = 0; if (!PyArg_ParseTuple(args, "Oi|i", &data, &ink, &width)) { return NULL; } n = PyPath_Flatten(data, &xy); if (n < 0) { return NULL; } if (width <= 1) { double *p = NULL; for (i = 0; i < n - 1; i++) { p = &xy[i + i]; if (ImagingDrawLine( self->image->image, (int)p[0], (int)p[1], (int)p[2], (int)p[3], &ink, self->blend) < 0) { free(xy); return NULL; } } if (p) { /* draw last point */ ImagingDrawPoint( self->image->image, (int)p[2], (int)p[3], &ink, self->blend); } } else { for (i = 0; i < n - 1; i++) { double *p = &xy[i + i]; if (ImagingDrawWideLine( self->image->image, (int)p[0], (int)p[1], (int)p[2], (int)p[3], &ink, width, self->blend) < 0) { free(xy); return NULL; } } } free(xy); Py_INCREF(Py_None); return Py_None; } static PyObject * _draw_points(ImagingDrawObject *self, PyObject *args) { double *xy; Py_ssize_t i, n; PyObject *data; int ink; if (!PyArg_ParseTuple(args, "Oi", &data, &ink)) { return NULL; } n = PyPath_Flatten(data, &xy); if (n < 0) { return NULL; } for (i = 0; i < n; i++) { double *p = &xy[i + i]; if (ImagingDrawPoint( self->image->image, (int)p[0], (int)p[1], &ink, self->blend) < 0) { free(xy); return NULL; } } free(xy); Py_INCREF(Py_None); return Py_None; } #ifdef WITH_ARROW /* from outline.c */ extern ImagingOutline PyOutline_AsOutline(PyObject *outline); static PyObject * _draw_outline(ImagingDrawObject *self, PyObject *args) { ImagingOutline outline; PyObject *outline_; int ink; int fill = 0; if (!PyArg_ParseTuple(args, "Oi|i", &outline_, &ink, &fill)) { return NULL; } outline = PyOutline_AsOutline(outline_); if (!outline) { PyErr_SetString(PyExc_TypeError, "expected outline object"); return NULL; } if (ImagingDrawOutline(self->image->image, outline, &ink, fill, self->blend) < 0) { return NULL; } Py_INCREF(Py_None); return Py_None; } #endif static PyObject * _draw_pieslice(ImagingDrawObject *self, PyObject *args) { double *xy; Py_ssize_t n; PyObject *data; int ink, fill; int width = 0; float start, end; if (!PyArg_ParseTuple(args, "Offii|i", &data, &start, &end, &ink, &fill, &width)) { return NULL; } n = PyPath_Flatten(data, &xy); if (n < 0) { return NULL; } if (n != 2) { PyErr_SetString(PyExc_TypeError, must_be_two_coordinates); free(xy); return NULL; } if (xy[2] < xy[0]) { PyErr_SetString(PyExc_ValueError, incorrectly_ordered_x_coordinate); free(xy); return NULL; } if (xy[3] < xy[1]) { PyErr_SetString(PyExc_ValueError, incorrectly_ordered_y_coordinate); free(xy); return NULL; } n = ImagingDrawPieslice( self->image->image, (int)xy[0], (int)xy[1], (int)xy[2], (int)xy[3], start, end, &ink, fill, width, self->blend); free(xy); if (n < 0) { return NULL; } Py_INCREF(Py_None); return Py_None; } static PyObject * _draw_polygon(ImagingDrawObject *self, PyObject *args) { double *xy; int *ixy; Py_ssize_t n, i; PyObject *data; int ink; int fill = 0; int width = 0; if (!PyArg_ParseTuple(args, "Oi|ii", &data, &ink, &fill, &width)) { return NULL; } n = PyPath_Flatten(data, &xy); if (n < 0) { return NULL; } if (n < 2) { PyErr_SetString( PyExc_TypeError, "coordinate list must contain at least 2 coordinates"); free(xy); return NULL; } /* Copy list of vertices to array */ ixy = (int *)calloc(n, 2 * sizeof(int)); if (ixy == NULL) { free(xy); return ImagingError_MemoryError(); } for (i = 0; i < n; i++) { ixy[i + i] = (int)xy[i + i]; ixy[i + i + 1] = (int)xy[i + i + 1]; } free(xy); if (ImagingDrawPolygon(self->image->image, n, ixy, &ink, fill, width, self->blend) < 0) { free(ixy); return NULL; } free(ixy); Py_INCREF(Py_None); return Py_None; } static PyObject * _draw_rectangle(ImagingDrawObject *self, PyObject *args) { double *xy; Py_ssize_t n; PyObject *data; int ink; int fill = 0; int width = 0; if (!PyArg_ParseTuple(args, "Oi|ii", &data, &ink, &fill, &width)) { return NULL; } n = PyPath_Flatten(data, &xy); if (n < 0) { return NULL; } if (n != 2) { PyErr_SetString(PyExc_TypeError, must_be_two_coordinates); free(xy); return NULL; } if (xy[2] < xy[0]) { PyErr_SetString(PyExc_ValueError, incorrectly_ordered_x_coordinate); free(xy); return NULL; } if (xy[3] < xy[1]) { PyErr_SetString(PyExc_ValueError, incorrectly_ordered_y_coordinate); free(xy); return NULL; } n = ImagingDrawRectangle( self->image->image, (int)xy[0], (int)xy[1], (int)xy[2], (int)xy[3], &ink, fill, width, self->blend); free(xy); if (n < 0) { return NULL; } Py_INCREF(Py_None); return Py_None; } static struct PyMethodDef _draw_methods[] = { #ifdef WITH_IMAGEDRAW /* Graphics (ImageDraw) */ {"draw_lines", (PyCFunction)_draw_lines, METH_VARARGS}, #ifdef WITH_ARROW {"draw_outline", (PyCFunction)_draw_outline, METH_VARARGS}, #endif {"draw_polygon", (PyCFunction)_draw_polygon, METH_VARARGS}, {"draw_rectangle", (PyCFunction)_draw_rectangle, METH_VARARGS}, {"draw_points", (PyCFunction)_draw_points, METH_VARARGS}, {"draw_arc", (PyCFunction)_draw_arc, METH_VARARGS}, {"draw_bitmap", (PyCFunction)_draw_bitmap, METH_VARARGS}, {"draw_chord", (PyCFunction)_draw_chord, METH_VARARGS}, {"draw_ellipse", (PyCFunction)_draw_ellipse, METH_VARARGS}, {"draw_pieslice", (PyCFunction)_draw_pieslice, METH_VARARGS}, {"draw_ink", (PyCFunction)_draw_ink, METH_VARARGS}, #endif {NULL, NULL} /* sentinel */ }; #endif static PyObject * pixel_access_new(ImagingObject *imagep, PyObject *args) { PixelAccessObject *self; int readonly = 0; if (!PyArg_ParseTuple(args, "|i", &readonly)) { return NULL; } self = PyObject_New(PixelAccessObject, &PixelAccess_Type); if (self == NULL) { return NULL; } /* keep a reference to the image object */ Py_INCREF(imagep); self->image = imagep; self->readonly = readonly; return (PyObject *)self; } static void pixel_access_dealloc(PixelAccessObject *self) { Py_XDECREF(self->image); PyObject_Del(self); } static PyObject * pixel_access_getitem(PixelAccessObject *self, PyObject *xy) { int x, y; if (_getxy(xy, &x, &y)) { return NULL; } return getpixel(self->image->image, self->image->access, x, y); } static int pixel_access_setitem(PixelAccessObject *self, PyObject *xy, PyObject *color) { Imaging im = self->image->image; char ink[4]; int x, y; if (self->readonly) { (void)ImagingError_ValueError(readonly); return -1; } if (_getxy(xy, &x, &y)) { return -1; } if (x < 0) { x = im->xsize + x; } if (y < 0) { y = im->ysize + y; } if (x < 0 || x >= im->xsize || y < 0 || y >= im->ysize) { PyErr_SetString(PyExc_IndexError, outside_image); return -1; } if (!color) { /* FIXME: raise exception? */ return 0; } if (!getink(color, im, ink)) { return -1; } self->image->access->put_pixel(im, x, y, ink); return 0; } /* -------------------------------------------------------------------- */ /* EFFECTS (experimental) */ /* -------------------------------------------------------------------- */ #ifdef WITH_EFFECTS static PyObject * _effect_mandelbrot(ImagingObject *self, PyObject *args) { int xsize = 512; int ysize = 512; double extent[4]; int quality = 100; extent[0] = -3; extent[1] = -2.5; extent[2] = 2; extent[3] = 2.5; if (!PyArg_ParseTuple( args, "|(ii)(dddd)i", &xsize, &ysize, &extent[0], &extent[1], &extent[2], &extent[3], &quality)) { return NULL; } return PyImagingNew(ImagingEffectMandelbrot(xsize, ysize, extent, quality)); } static PyObject * _effect_noise(ImagingObject *self, PyObject *args) { int xsize, ysize; float sigma = 128; if (!PyArg_ParseTuple(args, "(ii)|f", &xsize, &ysize, &sigma)) { return NULL; } return PyImagingNew(ImagingEffectNoise(xsize, ysize, sigma)); } static PyObject * _effect_spread(ImagingObject *self, PyObject *args) { int dist; if (!PyArg_ParseTuple(args, "i", &dist)) { return NULL; } return PyImagingNew(ImagingEffectSpread(self->image, dist)); } #endif /* -------------------------------------------------------------------- */ /* UTILITIES */ /* -------------------------------------------------------------------- */ static PyObject * _getcodecstatus(PyObject *self, PyObject *args) { int status; char *msg; if (!PyArg_ParseTuple(args, "i", &status)) { return NULL; } switch (status) { case IMAGING_CODEC_OVERRUN: msg = "buffer overrun"; break; case IMAGING_CODEC_BROKEN: msg = "broken data stream"; break; case IMAGING_CODEC_UNKNOWN: msg = "unrecognized data stream contents"; break; case IMAGING_CODEC_CONFIG: msg = "codec configuration error"; break; case IMAGING_CODEC_MEMORY: msg = "out of memory"; break; default: Py_RETURN_NONE; } return PyUnicode_FromString(msg); } /* -------------------------------------------------------------------- */ /* DEBUGGING HELPERS */ /* -------------------------------------------------------------------- */ static PyObject * _save_ppm(ImagingObject *self, PyObject *args) { char *filename; if (!PyArg_ParseTuple(args, "s", &filename)) { return NULL; } if (!ImagingSavePPM(self->image, filename)) { return NULL; } Py_INCREF(Py_None); return Py_None; } /* -------------------------------------------------------------------- */ /* methods */ static struct PyMethodDef methods[] = { /* Put commonly used methods first */ {"getpixel", (PyCFunction)_getpixel, METH_VARARGS}, {"putpixel", (PyCFunction)_putpixel, METH_VARARGS}, {"pixel_access", (PyCFunction)pixel_access_new, METH_VARARGS}, /* Standard processing methods (Image) */ {"color_lut_3d", (PyCFunction)_color_lut_3d, METH_VARARGS}, {"convert", (PyCFunction)_convert, METH_VARARGS}, {"convert2", (PyCFunction)_convert2, METH_VARARGS}, {"convert_matrix", (PyCFunction)_convert_matrix, METH_VARARGS}, {"convert_transparent", (PyCFunction)_convert_transparent, METH_VARARGS}, {"copy", (PyCFunction)_copy, METH_VARARGS}, {"crop", (PyCFunction)_crop, METH_VARARGS}, {"expand", (PyCFunction)_expand_image, METH_VARARGS}, {"filter", (PyCFunction)_filter, METH_VARARGS}, {"histogram", (PyCFunction)_histogram, METH_VARARGS}, {"entropy", (PyCFunction)_entropy, METH_VARARGS}, #ifdef WITH_MODEFILTER {"modefilter", (PyCFunction)_modefilter, METH_VARARGS}, #endif {"offset", (PyCFunction)_offset, METH_VARARGS}, {"paste", (PyCFunction)_paste, METH_VARARGS}, {"point", (PyCFunction)_point, METH_VARARGS}, {"point_transform", (PyCFunction)_point_transform, METH_VARARGS}, {"putdata", (PyCFunction)_putdata, METH_VARARGS}, #ifdef WITH_QUANTIZE {"quantize", (PyCFunction)_quantize, METH_VARARGS}, #endif #ifdef WITH_RANKFILTER {"rankfilter", (PyCFunction)_rankfilter, METH_VARARGS}, #endif {"resize", (PyCFunction)_resize, METH_VARARGS}, {"reduce", (PyCFunction)_reduce, METH_VARARGS}, {"transpose", (PyCFunction)_transpose, METH_VARARGS}, {"transform2", (PyCFunction)_transform2, METH_VARARGS}, {"isblock", (PyCFunction)_isblock, METH_NOARGS}, {"getbbox", (PyCFunction)_getbbox, METH_NOARGS}, {"getcolors", (PyCFunction)_getcolors, METH_VARARGS}, {"getextrema", (PyCFunction)_getextrema, METH_NOARGS}, {"getprojection", (PyCFunction)_getprojection, METH_NOARGS}, {"getband", (PyCFunction)_getband, METH_VARARGS}, {"putband", (PyCFunction)_putband, METH_VARARGS}, {"split", (PyCFunction)_split, METH_NOARGS}, {"fillband", (PyCFunction)_fillband, METH_VARARGS}, {"setmode", (PyCFunction)im_setmode, METH_VARARGS}, {"getpalette", (PyCFunction)_getpalette, METH_VARARGS}, {"getpalettemode", (PyCFunction)_getpalettemode, METH_NOARGS}, {"putpalette", (PyCFunction)_putpalette, METH_VARARGS}, {"putpalettealpha", (PyCFunction)_putpalettealpha, METH_VARARGS}, {"putpalettealphas", (PyCFunction)_putpalettealphas, METH_VARARGS}, #ifdef WITH_IMAGECHOPS /* Channel operations (ImageChops) */ {"chop_invert", (PyCFunction)_chop_invert, METH_NOARGS}, {"chop_lighter", (PyCFunction)_chop_lighter, METH_VARARGS}, {"chop_darker", (PyCFunction)_chop_darker, METH_VARARGS}, {"chop_difference", (PyCFunction)_chop_difference, METH_VARARGS}, {"chop_multiply", (PyCFunction)_chop_multiply, METH_VARARGS}, {"chop_screen", (PyCFunction)_chop_screen, METH_VARARGS}, {"chop_add", (PyCFunction)_chop_add, METH_VARARGS}, {"chop_subtract", (PyCFunction)_chop_subtract, METH_VARARGS}, {"chop_add_modulo", (PyCFunction)_chop_add_modulo, METH_VARARGS}, {"chop_subtract_modulo", (PyCFunction)_chop_subtract_modulo, METH_VARARGS}, {"chop_and", (PyCFunction)_chop_and, METH_VARARGS}, {"chop_or", (PyCFunction)_chop_or, METH_VARARGS}, {"chop_xor", (PyCFunction)_chop_xor, METH_VARARGS}, {"chop_soft_light", (PyCFunction)_chop_soft_light, METH_VARARGS}, {"chop_hard_light", (PyCFunction)_chop_hard_light, METH_VARARGS}, {"chop_overlay", (PyCFunction)_chop_overlay, METH_VARARGS}, #endif #ifdef WITH_UNSHARPMASK /* Kevin Cazabon's unsharpmask extension */ {"gaussian_blur", (PyCFunction)_gaussian_blur, METH_VARARGS}, {"unsharp_mask", (PyCFunction)_unsharp_mask, METH_VARARGS}, #endif {"box_blur", (PyCFunction)_box_blur, METH_VARARGS}, #ifdef WITH_EFFECTS /* Special effects */ {"effect_spread", (PyCFunction)_effect_spread, METH_VARARGS}, #endif /* Misc. */ {"new_block", (PyCFunction)_new_block, METH_VARARGS}, {"save_ppm", (PyCFunction)_save_ppm, METH_VARARGS}, {NULL, NULL} /* sentinel */ }; /* attributes */ static PyObject * _getattr_mode(ImagingObject *self, void *closure) { return PyUnicode_FromString(self->image->mode); } static PyObject * _getattr_size(ImagingObject *self, void *closure) { return Py_BuildValue("ii", self->image->xsize, self->image->ysize); } static PyObject * _getattr_bands(ImagingObject *self, void *closure) { return PyLong_FromLong(self->image->bands); } static PyObject * _getattr_id(ImagingObject *self, void *closure) { return PyLong_FromSsize_t((Py_ssize_t)self->image); } static PyObject * _getattr_ptr(ImagingObject *self, void *closure) { return PyCapsule_New(self->image, IMAGING_MAGIC, NULL); } static PyObject * _getattr_unsafe_ptrs(ImagingObject *self, void *closure) { return Py_BuildValue( "(sn)(sn)(sn)", "image8", self->image->image8, "image32", self->image->image32, "image", self->image->image); }; static struct PyGetSetDef getsetters[] = { {"mode", (getter)_getattr_mode}, {"size", (getter)_getattr_size}, {"bands", (getter)_getattr_bands}, {"id", (getter)_getattr_id}, {"ptr", (getter)_getattr_ptr}, {"unsafe_ptrs", (getter)_getattr_unsafe_ptrs}, {NULL}}; /* basic sequence semantics */ static Py_ssize_t image_length(ImagingObject *self) { Imaging im = self->image; return (Py_ssize_t)im->xsize * im->ysize; } static PyObject * image_item(ImagingObject *self, Py_ssize_t i) { int x, y; Imaging im = self->image; if (im->xsize > 0) { x = i % im->xsize; y = i / im->xsize; } else { x = y = 0; /* leave it to getpixel to raise an exception */ } return getpixel(im, self->access, x, y); } static PySequenceMethods image_as_sequence = { (lenfunc)image_length, /*sq_length*/ (binaryfunc)NULL, /*sq_concat*/ (ssizeargfunc)NULL, /*sq_repeat*/ (ssizeargfunc)image_item, /*sq_item*/ (ssizessizeargfunc)NULL, /*sq_slice*/ (ssizeobjargproc)NULL, /*sq_ass_item*/ (ssizessizeobjargproc)NULL, /*sq_ass_slice*/ }; /* type description */ static PyTypeObject Imaging_Type = { PyVarObject_HEAD_INIT(NULL, 0) "ImagingCore", /*tp_name*/ sizeof(ImagingObject), /*tp_size*/ 0, /*tp_itemsize*/ /* methods */ (destructor)_dealloc, /*tp_dealloc*/ 0, /*tp_print*/ 0, /*tp_getattr*/ 0, /*tp_setattr*/ 0, /*tp_compare*/ 0, /*tp_repr*/ 0, /*tp_as_number */ &image_as_sequence, /*tp_as_sequence */ 0, /*tp_as_mapping */ 0, /*tp_hash*/ 0, /*tp_call*/ 0, /*tp_str*/ 0, /*tp_getattro*/ 0, /*tp_setattro*/ 0, /*tp_as_buffer*/ Py_TPFLAGS_DEFAULT, /*tp_flags*/ 0, /*tp_doc*/ 0, /*tp_traverse*/ 0, /*tp_clear*/ 0, /*tp_richcompare*/ 0, /*tp_weaklistoffset*/ 0, /*tp_iter*/ 0, /*tp_iternext*/ methods, /*tp_methods*/ 0, /*tp_members*/ getsetters, /*tp_getset*/ }; #ifdef WITH_IMAGEDRAW static PyTypeObject ImagingFont_Type = { PyVarObject_HEAD_INIT(NULL, 0) "ImagingFont", /*tp_name*/ sizeof(ImagingFontObject), /*tp_size*/ 0, /*tp_itemsize*/ /* methods */ (destructor)_font_dealloc, /*tp_dealloc*/ 0, /*tp_print*/ 0, /*tp_getattr*/ 0, /*tp_setattr*/ 0, /*tp_compare*/ 0, /*tp_repr*/ 0, /*tp_as_number */ 0, /*tp_as_sequence */ 0, /*tp_as_mapping */ 0, /*tp_hash*/ 0, /*tp_call*/ 0, /*tp_str*/ 0, /*tp_getattro*/ 0, /*tp_setattro*/ 0, /*tp_as_buffer*/ Py_TPFLAGS_DEFAULT, /*tp_flags*/ 0, /*tp_doc*/ 0, /*tp_traverse*/ 0, /*tp_clear*/ 0, /*tp_richcompare*/ 0, /*tp_weaklistoffset*/ 0, /*tp_iter*/ 0, /*tp_iternext*/ _font_methods, /*tp_methods*/ 0, /*tp_members*/ 0, /*tp_getset*/ }; static PyTypeObject ImagingDraw_Type = { PyVarObject_HEAD_INIT(NULL, 0) "ImagingDraw", /*tp_name*/ sizeof(ImagingDrawObject), /*tp_size*/ 0, /*tp_itemsize*/ /* methods */ (destructor)_draw_dealloc, /*tp_dealloc*/ 0, /*tp_print*/ 0, /*tp_getattr*/ 0, /*tp_setattr*/ 0, /*tp_compare*/ 0, /*tp_repr*/ 0, /*tp_as_number */ 0, /*tp_as_sequence */ 0, /*tp_as_mapping */ 0, /*tp_hash*/ 0, /*tp_call*/ 0, /*tp_str*/ 0, /*tp_getattro*/ 0, /*tp_setattro*/ 0, /*tp_as_buffer*/ Py_TPFLAGS_DEFAULT, /*tp_flags*/ 0, /*tp_doc*/ 0, /*tp_traverse*/ 0, /*tp_clear*/ 0, /*tp_richcompare*/ 0, /*tp_weaklistoffset*/ 0, /*tp_iter*/ 0, /*tp_iternext*/ _draw_methods, /*tp_methods*/ 0, /*tp_members*/ 0, /*tp_getset*/ }; #endif static PyMappingMethods pixel_access_as_mapping = { (lenfunc)NULL, /*mp_length*/ (binaryfunc)pixel_access_getitem, /*mp_subscript*/ (objobjargproc)pixel_access_setitem, /*mp_ass_subscript*/ }; /* type description */ static PyTypeObject PixelAccess_Type = { PyVarObject_HEAD_INIT(NULL, 0) "PixelAccess", sizeof(PixelAccessObject), 0, /* methods */ (destructor)pixel_access_dealloc, /*tp_dealloc*/ 0, /*tp_print*/ 0, /*tp_getattr*/ 0, /*tp_setattr*/ 0, /*tp_compare*/ 0, /*tp_repr*/ 0, /*tp_as_number */ 0, /*tp_as_sequence */ &pixel_access_as_mapping, /*tp_as_mapping */ 0 /*tp_hash*/ }; /* -------------------------------------------------------------------- */ static PyObject * _get_stats(PyObject *self, PyObject *args) { PyObject *d; PyObject *v; ImagingMemoryArena arena = &ImagingDefaultArena; if (!PyArg_ParseTuple(args, ":get_stats")) { return NULL; } d = PyDict_New(); if (!d) { return NULL; } v = PyLong_FromLong(arena->stats_new_count); PyDict_SetItemString(d, "new_count", v ? v : Py_None); Py_XDECREF(v); v = PyLong_FromLong(arena->stats_allocated_blocks); PyDict_SetItemString(d, "allocated_blocks", v ? v : Py_None); Py_XDECREF(v); v = PyLong_FromLong(arena->stats_reused_blocks); PyDict_SetItemString(d, "reused_blocks", v ? v : Py_None); Py_XDECREF(v); v = PyLong_FromLong(arena->stats_reallocated_blocks); PyDict_SetItemString(d, "reallocated_blocks", v ? v : Py_None); Py_XDECREF(v); v = PyLong_FromLong(arena->stats_freed_blocks); PyDict_SetItemString(d, "freed_blocks", v ? v : Py_None); Py_XDECREF(v); v = PyLong_FromLong(arena->blocks_cached); PyDict_SetItemString(d, "blocks_cached", v ? v : Py_None); Py_XDECREF(v); return d; } static PyObject * _reset_stats(PyObject *self, PyObject *args) { ImagingMemoryArena arena = &ImagingDefaultArena; if (!PyArg_ParseTuple(args, ":reset_stats")) { return NULL; } arena->stats_new_count = 0; arena->stats_allocated_blocks = 0; arena->stats_reused_blocks = 0; arena->stats_reallocated_blocks = 0; arena->stats_freed_blocks = 0; Py_INCREF(Py_None); return Py_None; } static PyObject * _get_alignment(PyObject *self, PyObject *args) { if (!PyArg_ParseTuple(args, ":get_alignment")) { return NULL; } return PyLong_FromLong(ImagingDefaultArena.alignment); } static PyObject * _get_block_size(PyObject *self, PyObject *args) { if (!PyArg_ParseTuple(args, ":get_block_size")) { return NULL; } return PyLong_FromLong(ImagingDefaultArena.block_size); } static PyObject * _get_blocks_max(PyObject *self, PyObject *args) { if (!PyArg_ParseTuple(args, ":get_blocks_max")) { return NULL; } return PyLong_FromLong(ImagingDefaultArena.blocks_max); } static PyObject * _set_alignment(PyObject *self, PyObject *args) { int alignment; if (!PyArg_ParseTuple(args, "i:set_alignment", &alignment)) { return NULL; } if (alignment < 1 || alignment > 128) { PyErr_SetString(PyExc_ValueError, "alignment should be from 1 to 128"); return NULL; } /* Is power of two */ if (alignment & (alignment - 1)) { PyErr_SetString(PyExc_ValueError, "alignment should be power of two"); return NULL; } ImagingDefaultArena.alignment = alignment; Py_INCREF(Py_None); return Py_None; } static PyObject * _set_block_size(PyObject *self, PyObject *args) { int block_size; if (!PyArg_ParseTuple(args, "i:set_block_size", &block_size)) { return NULL; } if (block_size <= 0) { PyErr_SetString(PyExc_ValueError, "block_size should be greater than 0"); return NULL; } if (block_size & 0xfff) { PyErr_SetString(PyExc_ValueError, "block_size should be multiple of 4096"); return NULL; } ImagingDefaultArena.block_size = block_size; Py_INCREF(Py_None); return Py_None; } static PyObject * _set_blocks_max(PyObject *self, PyObject *args) { int blocks_max; if (!PyArg_ParseTuple(args, "i:set_blocks_max", &blocks_max)) { return NULL; } if (blocks_max < 0) { PyErr_SetString(PyExc_ValueError, "blocks_max should be greater than 0"); return NULL; } else if ( (unsigned long)blocks_max > SIZE_MAX / sizeof(ImagingDefaultArena.blocks_pool[0])) { PyErr_SetString(PyExc_ValueError, "blocks_max is too large"); return NULL; } if (!ImagingMemorySetBlocksMax(&ImagingDefaultArena, blocks_max)) { return ImagingError_MemoryError(); } Py_INCREF(Py_None); return Py_None; } static PyObject * _clear_cache(PyObject *self, PyObject *args) { int i = 0; if (!PyArg_ParseTuple(args, "|i:clear_cache", &i)) { return NULL; } ImagingMemoryClearCache(&ImagingDefaultArena, i); Py_INCREF(Py_None); return Py_None; } /* -------------------------------------------------------------------- */ /* FIXME: this is something of a mess. Should replace this with pluggable codecs, but not before PIL 1.2 */ /* Decoders (in decode.c) */ extern PyObject * PyImaging_BcnDecoderNew(PyObject *self, PyObject *args); extern PyObject * PyImaging_BitDecoderNew(PyObject *self, PyObject *args); extern PyObject * PyImaging_FliDecoderNew(PyObject *self, PyObject *args); extern PyObject * PyImaging_GifDecoderNew(PyObject *self, PyObject *args); extern PyObject * PyImaging_HexDecoderNew(PyObject *self, PyObject *args); extern PyObject * PyImaging_JpegDecoderNew(PyObject *self, PyObject *args); extern PyObject * PyImaging_Jpeg2KDecoderNew(PyObject *self, PyObject *args); extern PyObject * PyImaging_LibTiffDecoderNew(PyObject *self, PyObject *args); extern PyObject * PyImaging_PackbitsDecoderNew(PyObject *self, PyObject *args); extern PyObject * PyImaging_PcdDecoderNew(PyObject *self, PyObject *args); extern PyObject * PyImaging_PcxDecoderNew(PyObject *self, PyObject *args); extern PyObject * PyImaging_RawDecoderNew(PyObject *self, PyObject *args); extern PyObject * PyImaging_SgiRleDecoderNew(PyObject *self, PyObject *args); extern PyObject * PyImaging_SunRleDecoderNew(PyObject *self, PyObject *args); extern PyObject * PyImaging_TgaRleDecoderNew(PyObject *self, PyObject *args); extern PyObject * PyImaging_XbmDecoderNew(PyObject *self, PyObject *args); extern PyObject * PyImaging_ZipDecoderNew(PyObject *self, PyObject *args); /* Encoders (in encode.c) */ extern PyObject * PyImaging_EpsEncoderNew(PyObject *self, PyObject *args); extern PyObject * PyImaging_GifEncoderNew(PyObject *self, PyObject *args); extern PyObject * PyImaging_JpegEncoderNew(PyObject *self, PyObject *args); extern PyObject * PyImaging_Jpeg2KEncoderNew(PyObject *self, PyObject *args); extern PyObject * PyImaging_PcxEncoderNew(PyObject *self, PyObject *args); extern PyObject * PyImaging_RawEncoderNew(PyObject *self, PyObject *args); extern PyObject * PyImaging_TgaRleEncoderNew(PyObject *self, PyObject *args); extern PyObject * PyImaging_XbmEncoderNew(PyObject *self, PyObject *args); extern PyObject * PyImaging_ZipEncoderNew(PyObject *self, PyObject *args); extern PyObject * PyImaging_LibTiffEncoderNew(PyObject *self, PyObject *args); /* Display support etc (in display.c) */ #ifdef _WIN32 extern PyObject * PyImaging_CreateWindowWin32(PyObject *self, PyObject *args); extern PyObject * PyImaging_DisplayWin32(PyObject *self, PyObject *args); extern PyObject * PyImaging_DisplayModeWin32(PyObject *self, PyObject *args); extern PyObject * PyImaging_GrabScreenWin32(PyObject *self, PyObject *args); extern PyObject * PyImaging_GrabClipboardWin32(PyObject *self, PyObject *args); extern PyObject * PyImaging_EventLoopWin32(PyObject *self, PyObject *args); extern PyObject * PyImaging_DrawWmf(PyObject *self, PyObject *args); #endif #ifdef HAVE_XCB extern PyObject * PyImaging_GrabScreenX11(PyObject *self, PyObject *args); #endif /* Experimental path stuff (in path.c) */ extern PyObject * PyPath_Create(ImagingObject *self, PyObject *args); /* Experimental outline stuff (in outline.c) */ extern PyObject * PyOutline_Create(ImagingObject *self, PyObject *args); extern PyObject * PyImaging_MapBuffer(PyObject *self, PyObject *args); static PyMethodDef functions[] = { /* Object factories */ {"alpha_composite", (PyCFunction)_alpha_composite, METH_VARARGS}, {"blend", (PyCFunction)_blend, METH_VARARGS}, {"fill", (PyCFunction)_fill, METH_VARARGS}, {"new", (PyCFunction)_new, METH_VARARGS}, {"merge", (PyCFunction)_merge, METH_VARARGS}, /* Functions */ {"convert", (PyCFunction)_convert2, METH_VARARGS}, /* Codecs */ {"bcn_decoder", (PyCFunction)PyImaging_BcnDecoderNew, METH_VARARGS}, {"bit_decoder", (PyCFunction)PyImaging_BitDecoderNew, METH_VARARGS}, {"eps_encoder", (PyCFunction)PyImaging_EpsEncoderNew, METH_VARARGS}, {"fli_decoder", (PyCFunction)PyImaging_FliDecoderNew, METH_VARARGS}, {"gif_decoder", (PyCFunction)PyImaging_GifDecoderNew, METH_VARARGS}, {"gif_encoder", (PyCFunction)PyImaging_GifEncoderNew, METH_VARARGS}, {"hex_decoder", (PyCFunction)PyImaging_HexDecoderNew, METH_VARARGS}, {"hex_encoder", (PyCFunction)PyImaging_EpsEncoderNew, METH_VARARGS}, /* EPS=HEX! */ #ifdef HAVE_LIBJPEG {"jpeg_decoder", (PyCFunction)PyImaging_JpegDecoderNew, METH_VARARGS}, {"jpeg_encoder", (PyCFunction)PyImaging_JpegEncoderNew, METH_VARARGS}, #endif #ifdef HAVE_OPENJPEG {"jpeg2k_decoder", (PyCFunction)PyImaging_Jpeg2KDecoderNew, METH_VARARGS}, {"jpeg2k_encoder", (PyCFunction)PyImaging_Jpeg2KEncoderNew, METH_VARARGS}, #endif #ifdef HAVE_LIBTIFF {"libtiff_decoder", (PyCFunction)PyImaging_LibTiffDecoderNew, METH_VARARGS}, {"libtiff_encoder", (PyCFunction)PyImaging_LibTiffEncoderNew, METH_VARARGS}, #endif {"packbits_decoder", (PyCFunction)PyImaging_PackbitsDecoderNew, METH_VARARGS}, {"pcd_decoder", (PyCFunction)PyImaging_PcdDecoderNew, METH_VARARGS}, {"pcx_decoder", (PyCFunction)PyImaging_PcxDecoderNew, METH_VARARGS}, {"pcx_encoder", (PyCFunction)PyImaging_PcxEncoderNew, METH_VARARGS}, {"raw_decoder", (PyCFunction)PyImaging_RawDecoderNew, METH_VARARGS}, {"raw_encoder", (PyCFunction)PyImaging_RawEncoderNew, METH_VARARGS}, {"sgi_rle_decoder", (PyCFunction)PyImaging_SgiRleDecoderNew, METH_VARARGS}, {"sun_rle_decoder", (PyCFunction)PyImaging_SunRleDecoderNew, METH_VARARGS}, {"tga_rle_decoder", (PyCFunction)PyImaging_TgaRleDecoderNew, METH_VARARGS}, {"tga_rle_encoder", (PyCFunction)PyImaging_TgaRleEncoderNew, METH_VARARGS}, {"xbm_decoder", (PyCFunction)PyImaging_XbmDecoderNew, METH_VARARGS}, {"xbm_encoder", (PyCFunction)PyImaging_XbmEncoderNew, METH_VARARGS}, #ifdef HAVE_LIBZ {"zip_decoder", (PyCFunction)PyImaging_ZipDecoderNew, METH_VARARGS}, {"zip_encoder", (PyCFunction)PyImaging_ZipEncoderNew, METH_VARARGS}, #endif /* Memory mapping */ #ifdef WITH_MAPPING {"map_buffer", (PyCFunction)PyImaging_MapBuffer, METH_VARARGS}, #endif /* Display support */ #ifdef _WIN32 {"display", (PyCFunction)PyImaging_DisplayWin32, METH_VARARGS}, {"display_mode", (PyCFunction)PyImaging_DisplayModeWin32, METH_VARARGS}, {"grabscreen_win32", (PyCFunction)PyImaging_GrabScreenWin32, METH_VARARGS}, {"grabclipboard_win32", (PyCFunction)PyImaging_GrabClipboardWin32, METH_VARARGS}, {"createwindow", (PyCFunction)PyImaging_CreateWindowWin32, METH_VARARGS}, {"eventloop", (PyCFunction)PyImaging_EventLoopWin32, METH_VARARGS}, {"drawwmf", (PyCFunction)PyImaging_DrawWmf, METH_VARARGS}, #endif #ifdef HAVE_XCB {"grabscreen_x11", (PyCFunction)PyImaging_GrabScreenX11, METH_VARARGS}, #endif /* Utilities */ {"getcodecstatus", (PyCFunction)_getcodecstatus, METH_VARARGS}, /* Special effects (experimental) */ #ifdef WITH_EFFECTS {"effect_mandelbrot", (PyCFunction)_effect_mandelbrot, METH_VARARGS}, {"effect_noise", (PyCFunction)_effect_noise, METH_VARARGS}, {"linear_gradient", (PyCFunction)_linear_gradient, METH_VARARGS}, {"radial_gradient", (PyCFunction)_radial_gradient, METH_VARARGS}, {"wedge", (PyCFunction)_linear_gradient, METH_VARARGS}, /* Compatibility */ #endif /* Drawing support stuff */ #ifdef WITH_IMAGEDRAW {"font", (PyCFunction)_font_new, METH_VARARGS}, {"draw", (PyCFunction)_draw_new, METH_VARARGS}, #endif /* Experimental path stuff */ #ifdef WITH_IMAGEPATH {"path", (PyCFunction)PyPath_Create, METH_VARARGS}, #endif /* Experimental arrow graphics stuff */ #ifdef WITH_ARROW {"outline", (PyCFunction)PyOutline_Create, METH_VARARGS}, #endif /* Resource management */ {"get_stats", (PyCFunction)_get_stats, METH_VARARGS}, {"reset_stats", (PyCFunction)_reset_stats, METH_VARARGS}, {"get_alignment", (PyCFunction)_get_alignment, METH_VARARGS}, {"get_block_size", (PyCFunction)_get_block_size, METH_VARARGS}, {"get_blocks_max", (PyCFunction)_get_blocks_max, METH_VARARGS}, {"set_alignment", (PyCFunction)_set_alignment, METH_VARARGS}, {"set_block_size", (PyCFunction)_set_block_size, METH_VARARGS}, {"set_blocks_max", (PyCFunction)_set_blocks_max, METH_VARARGS}, {"clear_cache", (PyCFunction)_clear_cache, METH_VARARGS}, {NULL, NULL} /* sentinel */ }; static int setup_module(PyObject *m) { PyObject *d = PyModule_GetDict(m); const char *version = (char *)PILLOW_VERSION; /* Ready object types */ if (PyType_Ready(&Imaging_Type) < 0) { return -1; } #ifdef WITH_IMAGEDRAW if (PyType_Ready(&ImagingFont_Type) < 0) { return -1; } if (PyType_Ready(&ImagingDraw_Type) < 0) { return -1; } #endif if (PyType_Ready(&PixelAccess_Type) < 0) { return -1; } ImagingAccessInit(); #ifdef HAVE_LIBJPEG { extern const char *ImagingJpegVersion(void); PyObject *v = PyUnicode_FromString(ImagingJpegVersion()); PyDict_SetItemString(d, "jpeglib_version", v ? v : Py_None); Py_XDECREF(v); } #endif #ifdef HAVE_OPENJPEG { extern const char *ImagingJpeg2KVersion(void); PyObject *v = PyUnicode_FromString(ImagingJpeg2KVersion()); PyDict_SetItemString(d, "jp2klib_version", v ? v : Py_None); Py_XDECREF(v); } #endif PyObject *have_libjpegturbo; #ifdef LIBJPEG_TURBO_VERSION have_libjpegturbo = Py_True; { #define tostr1(a) #a #define tostr(a) tostr1(a) PyObject *v = PyUnicode_FromString(tostr(LIBJPEG_TURBO_VERSION)); PyDict_SetItemString(d, "libjpeg_turbo_version", v ? v : Py_None); Py_XDECREF(v); #undef tostr #undef tostr1 } #else have_libjpegturbo = Py_False; #endif Py_INCREF(have_libjpegturbo); PyModule_AddObject(m, "HAVE_LIBJPEGTURBO", have_libjpegturbo); PyObject *have_libimagequant; #ifdef HAVE_LIBIMAGEQUANT have_libimagequant = Py_True; { extern const char *ImagingImageQuantVersion(void); PyObject *v = PyUnicode_FromString(ImagingImageQuantVersion()); PyDict_SetItemString(d, "imagequant_version", v ? v : Py_None); Py_XDECREF(v); } #else have_libimagequant = Py_False; #endif Py_INCREF(have_libimagequant); PyModule_AddObject(m, "HAVE_LIBIMAGEQUANT", have_libimagequant); #ifdef HAVE_LIBZ /* zip encoding strategies */ PyModule_AddIntConstant(m, "DEFAULT_STRATEGY", Z_DEFAULT_STRATEGY); PyModule_AddIntConstant(m, "FILTERED", Z_FILTERED); PyModule_AddIntConstant(m, "HUFFMAN_ONLY", Z_HUFFMAN_ONLY); PyModule_AddIntConstant(m, "RLE", Z_RLE); PyModule_AddIntConstant(m, "FIXED", Z_FIXED); { extern const char *ImagingZipVersion(void); PyObject *v = PyUnicode_FromString(ImagingZipVersion()); PyDict_SetItemString(d, "zlib_version", v ? v : Py_None); Py_XDECREF(v); } #endif #ifdef HAVE_LIBTIFF { extern const char *ImagingTiffVersion(void); PyObject *v = PyUnicode_FromString(ImagingTiffVersion()); PyDict_SetItemString(d, "libtiff_version", v ? v : Py_None); Py_XDECREF(v); // Test for libtiff 4.0 or later, excluding libtiff 3.9.6 and 3.9.7 PyObject *support_custom_tags; #if TIFFLIB_VERSION >= 20111221 && TIFFLIB_VERSION != 20120218 && \ TIFFLIB_VERSION != 20120922 support_custom_tags = Py_True; #else support_custom_tags = Py_False; #endif PyDict_SetItemString(d, "libtiff_support_custom_tags", support_custom_tags); } #endif PyObject *have_xcb; #ifdef HAVE_XCB have_xcb = Py_True; #else have_xcb = Py_False; #endif Py_INCREF(have_xcb); PyModule_AddObject(m, "HAVE_XCB", have_xcb); PyObject *pillow_version = PyUnicode_FromString(version); PyDict_SetItemString(d, "PILLOW_VERSION", pillow_version ? pillow_version : Py_None); Py_XDECREF(pillow_version); return 0; } PyMODINIT_FUNC PyInit__imaging(void) { PyObject *m; static PyModuleDef module_def = { PyModuleDef_HEAD_INIT, "_imaging", /* m_name */ NULL, /* m_doc */ -1, /* m_size */ functions, /* m_methods */ }; m = PyModule_Create(&module_def); if (setup_module(m) < 0) { return NULL; } return m; }