.. py:module:: PIL.ImageMath .. py:currentmodule:: PIL.ImageMath :py:mod:`~PIL.ImageMath` Module =============================== The :py:mod:`~PIL.ImageMath` module can be used to evaluate “image expressions”, that can take a number of images and generate a result. :py:mod:`~PIL.ImageMath` only supports single-layer images. To process multi-band images, use the :py:meth:`~PIL.Image.Image.split` method or :py:func:`~PIL.Image.merge` function. Example: Using the :py:mod:`~PIL.ImageMath` module -------------------------------------------------- :: from PIL import Image, ImageMath with Image.open("image1.jpg") as im1: with Image.open("image2.jpg") as im2: out = ImageMath.lambda_eval( lambda args: args["convert"](args["min"](args["a"], args["b"]), 'L'), a=im1, b=im2 ) out = ImageMath.unsafe_eval( "convert(min(a, b), 'L')", a=im1, b=im2 ) .. py:function:: lambda_eval(expression, options, **kw) Returns the result of an image function. :param expression: A function that receives a dictionary. :param options: Values to add to the function's dictionary. Note that the names must be valid Python identifiers. Deprecated. You can instead use one or more keyword arguments, as shown in the above example. :param \**kw: Values to add to the function's dictionary, mapping image names to Image instances. :return: An image, an integer value, a floating point value, or a pixel tuple, depending on the expression. .. py:function:: unsafe_eval(expression, options, **kw) Evaluates an image expression. .. danger:: This uses Python's ``eval()`` function to process the expression string, and carries the security risks of doing so. It is not recommended to process expressions without considering this. :py:meth:`lambda_eval` is a more secure alternative. :py:mod:`~PIL.ImageMath` only supports single-layer images. To process multi-band images, use the :py:meth:`~PIL.Image.Image.split` method or :py:func:`~PIL.Image.merge` function. :param expression: A string which uses the standard Python expression syntax. In addition to the standard operators, you can also use the functions described below. :param options: Values to add to the evaluation context. Note that the names must be valid Python identifiers. Deprecated. You can instead use one or more keyword arguments, as shown in the above example. :param \**kw: Values to add to the evaluation context, mapping image names to Image instances. :return: An image, an integer value, a floating point value, or a pixel tuple, depending on the expression. Expression syntax ----------------- * :py:meth:`lambda_eval` expressions are functions that receive a dictionary containing images and operators. * :py:meth:`unsafe_eval` expressions are standard Python expressions, but they’re evaluated in a non-standard environment. .. danger:: :py:meth:`unsafe_eval` uses Python's ``eval()`` function to process the expression string, and carries the security risks of doing so. It is not recommended to process expressions without considering this. :py:meth:`lambda_eval` is a more secure alternative. Standard Operators ^^^^^^^^^^^^^^^^^^ You can use standard arithmetical operators for addition (+), subtraction (-), multiplication (*), and division (/). The module also supports unary minus (-), modulo (%), and power (**) operators. Note that all operations are done with 32-bit integers or 32-bit floating point values, as necessary. For example, if you add two 8-bit images, the result will be a 32-bit integer image. If you add a floating point constant to an 8-bit image, the result will be a 32-bit floating point image. You can force conversion using the ``convert()``, ``float()``, and ``int()`` functions described below. Bitwise Operators ^^^^^^^^^^^^^^^^^ The module also provides operations that operate on individual bits. This includes and (&), or (|), and exclusive or (^). You can also invert (~) all pixel bits. Note that the operands are converted to 32-bit signed integers before the bitwise operation is applied. This means that you’ll get negative values if you invert an ordinary grayscale image. You can use the and (&) operator to mask off unwanted bits. Bitwise operators don’t work on floating point images. Logical Operators ^^^^^^^^^^^^^^^^^ Logical operators like ``and``, ``or``, and ``not`` work on entire images, rather than individual pixels. An empty image (all pixels zero) is treated as false. All other images are treated as true. Note that ``and`` and ``or`` return the last evaluated operand, while not always returns a boolean value. Built-in Functions ^^^^^^^^^^^^^^^^^^ These functions are applied to each individual pixel. .. py:currentmodule:: None .. py:function:: abs(image) :noindex: Absolute value. .. py:function:: convert(image, mode) :noindex: Convert image to the given mode. The mode must be given as a string constant. .. py:function:: float(image) :noindex: Convert image to 32-bit floating point. This is equivalent to convert(image, “F”). .. py:function:: int(image) :noindex: Convert image to 32-bit integer. This is equivalent to convert(image, “I”). Note that 1-bit and 8-bit images are automatically converted to 32-bit integers if necessary to get a correct result. .. py:function:: max(image1, image2) :noindex: Maximum value. .. py:function:: min(image1, image2) :noindex: Minimum value.