#include "Imaging.h" #include #define ROUND_UP(f) ((int) ((f) >= 0.0 ? (f) + 0.5F : (f) - 0.5F)) struct filter { double (*filter)(double x); double support; }; static inline double box_filter(double x) { if (x >= -0.5 && x < 0.5) return 1.0; return 0.0; } static inline double bilinear_filter(double x) { if (x < 0.0) x = -x; if (x < 1.0) return 1.0-x; return 0.0; } static inline double hamming_filter(double x) { if (x < 0.0) x = -x; if (x == 0.0) return 1.0; if (x >= 1.0) return 0.0; x = x * M_PI; return sin(x) / x * (0.54f + 0.46f * cos(x)); } static inline double bicubic_filter(double x) { /* https://en.wikipedia.org/wiki/Bicubic_interpolation#Bicubic_convolution_algorithm */ #define a -0.5 if (x < 0.0) x = -x; if (x < 1.0) return ((a + 2.0) * x - (a + 3.0)) * x*x + 1; if (x < 2.0) return (((x - 5) * x + 8) * x - 4) * a; return 0.0; #undef a } static inline double sinc_filter(double x) { if (x == 0.0) return 1.0; x = x * M_PI; return sin(x) / x; } static inline double lanczos_filter(double x) { /* truncated sinc */ if (-3.0 <= x && x < 3.0) return sinc_filter(x) * sinc_filter(x/3); return 0.0; } static struct filter BOX = { box_filter, 0.5 }; static struct filter BILINEAR = { bilinear_filter, 1.0 }; static struct filter HAMMING = { hamming_filter, 1.0 }; static struct filter BICUBIC = { bicubic_filter, 2.0 }; static struct filter LANCZOS = { lanczos_filter, 3.0 }; /* 8 bits for result. Filter can have negative areas. In one cases the sum of the coefficients will be negative, in the other it will be more than 1.0. That is why we need two extra bits for overflow and int type. */ #define PRECISION_BITS (32 - 8 - 2) UINT8 _lookups[512] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }; UINT8 *lookups = &_lookups[128]; static inline UINT8 clip8(int in) { return lookups[in >> PRECISION_BITS]; } int precompute_coeffs(int inSize, float in0, float in1, int outSize, struct filter *filterp, int **boundsp, double **kkp) { double support, scale, filterscale; double center, ww, ss; int xx, x, ksize, xmin, xmax; int *bounds; double *kk, *k; /* prepare for horizontal stretch */ filterscale = scale = (double) (in1 - in0) / outSize; if (filterscale < 1.0) { filterscale = 1.0; } /* determine support size (length of resampling filter) */ support = filterp->support * filterscale; /* maximum number of coeffs */ ksize = (int) ceil(support) * 2 + 1; // check for overflow if (outSize > INT_MAX / (ksize * sizeof(double))) { ImagingError_MemoryError(); return 0; } /* coefficient buffer */ /* malloc check ok, overflow checked above */ kk = malloc(outSize * ksize * sizeof(double)); if ( ! kk) { ImagingError_MemoryError(); return 0; } /* malloc check ok, ksize*sizeof(double) > 2*sizeof(int) */ bounds = malloc(outSize * 2 * sizeof(int)); if ( ! bounds) { free(kk); ImagingError_MemoryError(); return 0; } for (xx = 0; xx < outSize; xx++) { center = in0 + (xx + 0.5) * scale; ww = 0.0; ss = 1.0 / filterscale; // Round the value xmin = (int) (center - support + 0.5); if (xmin < 0) xmin = 0; // Round the value xmax = (int) (center + support + 0.5); if (xmax > inSize) xmax = inSize; xmax -= xmin; k = &kk[xx * ksize]; for (x = 0; x < xmax; x++) { double w = filterp->filter((x + xmin - center + 0.5) * ss); k[x] = w; ww += w; } for (x = 0; x < xmax; x++) { if (ww != 0.0) k[x] /= ww; } // Remaining values should stay empty if they are used despite of xmax. for (; x < ksize; x++) { k[x] = 0; } bounds[xx * 2 + 0] = xmin; bounds[xx * 2 + 1] = xmax; } *boundsp = bounds; *kkp = kk; return ksize; } void normalize_coeffs_8bpc(int outSize, int ksize, double *prekk) { int x; INT32 *kk; // use the same buffer for normalized coefficients kk = (INT32 *) prekk; for (x = 0; x < outSize * ksize; x++) { if (prekk[x] < 0) { kk[x] = (int) (-0.5 + prekk[x] * (1 << PRECISION_BITS)); } else { kk[x] = (int) (0.5 + prekk[x] * (1 << PRECISION_BITS)); } } } void ImagingResampleHorizontal_8bpc(Imaging imOut, Imaging imIn, int offset, int ksize, int *bounds, double *prekk) { ImagingSectionCookie cookie; int ss0, ss1, ss2, ss3; int xx, yy, x, xmin, xmax; INT32 *k, *kk; // use the same buffer for normalized coefficients kk = (INT32 *) prekk; normalize_coeffs_8bpc(imOut->xsize, ksize, prekk); ImagingSectionEnter(&cookie); if (imIn->image8) { for (yy = 0; yy < imOut->ysize; yy++) { for (xx = 0; xx < imOut->xsize; xx++) { xmin = bounds[xx * 2 + 0]; xmax = bounds[xx * 2 + 1]; k = &kk[xx * ksize]; ss0 = 1 << (PRECISION_BITS -1); for (x = 0; x < xmax; x++) ss0 += ((UINT8) imIn->image8[yy + offset][x + xmin]) * k[x]; imOut->image8[yy][xx] = clip8(ss0); } } } else if (imIn->type == IMAGING_TYPE_UINT8) { if (imIn->bands == 2) { for (yy = 0; yy < imOut->ysize; yy++) { for (xx = 0; xx < imOut->xsize; xx++) { xmin = bounds[xx * 2 + 0]; xmax = bounds[xx * 2 + 1]; k = &kk[xx * ksize]; ss0 = ss3 = 1 << (PRECISION_BITS -1); for (x = 0; x < xmax; x++) { ss0 += ((UINT8) imIn->image[yy + offset][(x + xmin)*4 + 0]) * k[x]; ss3 += ((UINT8) imIn->image[yy + offset][(x + xmin)*4 + 3]) * k[x]; } ((UINT32 *) imOut->image[yy])[xx] = MAKE_UINT32( clip8(ss0), 0, 0, clip8(ss3)); } } } else if (imIn->bands == 3) { for (yy = 0; yy < imOut->ysize; yy++) { for (xx = 0; xx < imOut->xsize; xx++) { xmin = bounds[xx * 2 + 0]; xmax = bounds[xx * 2 + 1]; k = &kk[xx * ksize]; ss0 = ss1 = ss2 = 1 << (PRECISION_BITS -1); for (x = 0; x < xmax; x++) { ss0 += ((UINT8) imIn->image[yy + offset][(x + xmin)*4 + 0]) * k[x]; ss1 += ((UINT8) imIn->image[yy + offset][(x + xmin)*4 + 1]) * k[x]; ss2 += ((UINT8) imIn->image[yy + offset][(x + xmin)*4 + 2]) * k[x]; } ((UINT32 *) imOut->image[yy])[xx] = MAKE_UINT32( clip8(ss0), clip8(ss1), clip8(ss2), 0); } } } else { for (yy = 0; yy < imOut->ysize; yy++) { for (xx = 0; xx < imOut->xsize; xx++) { xmin = bounds[xx * 2 + 0]; xmax = bounds[xx * 2 + 1]; k = &kk[xx * ksize]; ss0 = ss1 = ss2 = ss3 = 1 << (PRECISION_BITS -1); for (x = 0; x < xmax; x++) { ss0 += ((UINT8) imIn->image[yy + offset][(x + xmin)*4 + 0]) * k[x]; ss1 += ((UINT8) imIn->image[yy + offset][(x + xmin)*4 + 1]) * k[x]; ss2 += ((UINT8) imIn->image[yy + offset][(x + xmin)*4 + 2]) * k[x]; ss3 += ((UINT8) imIn->image[yy + offset][(x + xmin)*4 + 3]) * k[x]; } ((UINT32 *) imOut->image[yy])[xx] = MAKE_UINT32( clip8(ss0), clip8(ss1), clip8(ss2), clip8(ss3)); } } } } ImagingSectionLeave(&cookie); } void ImagingResampleVertical_8bpc(Imaging imOut, Imaging imIn, int offset, int ksize, int *bounds, double *prekk) { ImagingSectionCookie cookie; int ss0, ss1, ss2, ss3; int xx, yy, y, ymin, ymax; INT32 *k, *kk; // use the same buffer for normalized coefficients kk = (INT32 *) prekk; normalize_coeffs_8bpc(imOut->ysize, ksize, prekk); ImagingSectionEnter(&cookie); if (imIn->image8) { for (yy = 0; yy < imOut->ysize; yy++) { k = &kk[yy * ksize]; ymin = bounds[yy * 2 + 0]; ymax = bounds[yy * 2 + 1]; for (xx = 0; xx < imOut->xsize; xx++) { ss0 = 1 << (PRECISION_BITS -1); for (y = 0; y < ymax; y++) ss0 += ((UINT8) imIn->image8[y + ymin][xx]) * k[y]; imOut->image8[yy][xx] = clip8(ss0); } } } else if (imIn->type == IMAGING_TYPE_UINT8) { if (imIn->bands == 2) { for (yy = 0; yy < imOut->ysize; yy++) { k = &kk[yy * ksize]; ymin = bounds[yy * 2 + 0]; ymax = bounds[yy * 2 + 1]; for (xx = 0; xx < imOut->xsize; xx++) { ss0 = ss3 = 1 << (PRECISION_BITS -1); for (y = 0; y < ymax; y++) { ss0 += ((UINT8) imIn->image[y + ymin][xx*4 + 0]) * k[y]; ss3 += ((UINT8) imIn->image[y + ymin][xx*4 + 3]) * k[y]; } ((UINT32 *) imOut->image[yy])[xx] = MAKE_UINT32( clip8(ss0), 0, 0, clip8(ss3)); } } } else if (imIn->bands == 3) { for (yy = 0; yy < imOut->ysize; yy++) { k = &kk[yy * ksize]; ymin = bounds[yy * 2 + 0]; ymax = bounds[yy * 2 + 1]; for (xx = 0; xx < imOut->xsize; xx++) { ss0 = ss1 = ss2 = 1 << (PRECISION_BITS -1); for (y = 0; y < ymax; y++) { ss0 += ((UINT8) imIn->image[y + ymin][xx*4 + 0]) * k[y]; ss1 += ((UINT8) imIn->image[y + ymin][xx*4 + 1]) * k[y]; ss2 += ((UINT8) imIn->image[y + ymin][xx*4 + 2]) * k[y]; } ((UINT32 *) imOut->image[yy])[xx] = MAKE_UINT32( clip8(ss0), clip8(ss1), clip8(ss2), 0); } } } else { for (yy = 0; yy < imOut->ysize; yy++) { k = &kk[yy * ksize]; ymin = bounds[yy * 2 + 0]; ymax = bounds[yy * 2 + 1]; for (xx = 0; xx < imOut->xsize; xx++) { ss0 = ss1 = ss2 = ss3 = 1 << (PRECISION_BITS -1); for (y = 0; y < ymax; y++) { ss0 += ((UINT8) imIn->image[y + ymin][xx*4 + 0]) * k[y]; ss1 += ((UINT8) imIn->image[y + ymin][xx*4 + 1]) * k[y]; ss2 += ((UINT8) imIn->image[y + ymin][xx*4 + 2]) * k[y]; ss3 += ((UINT8) imIn->image[y + ymin][xx*4 + 3]) * k[y]; } ((UINT32 *) imOut->image[yy])[xx] = MAKE_UINT32( clip8(ss0), clip8(ss1), clip8(ss2), clip8(ss3)); } } } } ImagingSectionLeave(&cookie); } void ImagingResampleHorizontal_32bpc(Imaging imOut, Imaging imIn, int offset, int ksize, int *bounds, double *kk) { ImagingSectionCookie cookie; double ss; int xx, yy, x, xmin, xmax; double *k; ImagingSectionEnter(&cookie); switch(imIn->type) { case IMAGING_TYPE_INT32: for (yy = 0; yy < imOut->ysize; yy++) { for (xx = 0; xx < imOut->xsize; xx++) { xmin = bounds[xx * 2 + 0]; xmax = bounds[xx * 2 + 1]; k = &kk[xx * ksize]; ss = 0.0; for (x = 0; x < xmax; x++) ss += IMAGING_PIXEL_I(imIn, x + xmin, yy + offset) * k[x]; IMAGING_PIXEL_I(imOut, xx, yy) = ROUND_UP(ss); } } break; case IMAGING_TYPE_FLOAT32: for (yy = 0; yy < imOut->ysize; yy++) { for (xx = 0; xx < imOut->xsize; xx++) { xmin = bounds[xx * 2 + 0]; xmax = bounds[xx * 2 + 1]; k = &kk[xx * ksize]; ss = 0.0; for (x = 0; x < xmax; x++) ss += IMAGING_PIXEL_F(imIn, x + xmin, yy + offset) * k[x]; IMAGING_PIXEL_F(imOut, xx, yy) = ss; } } break; } ImagingSectionLeave(&cookie); } void ImagingResampleVertical_32bpc(Imaging imOut, Imaging imIn, int offset, int ksize, int *bounds, double *kk) { ImagingSectionCookie cookie; double ss; int xx, yy, y, ymin, ymax; double *k; ImagingSectionEnter(&cookie); switch(imIn->type) { case IMAGING_TYPE_INT32: for (yy = 0; yy < imOut->ysize; yy++) { ymin = bounds[yy * 2 + 0]; ymax = bounds[yy * 2 + 1]; k = &kk[yy * ksize]; for (xx = 0; xx < imOut->xsize; xx++) { ss = 0.0; for (y = 0; y < ymax; y++) ss += IMAGING_PIXEL_I(imIn, xx, y + ymin) * k[y]; IMAGING_PIXEL_I(imOut, xx, yy) = ROUND_UP(ss); } } break; case IMAGING_TYPE_FLOAT32: for (yy = 0; yy < imOut->ysize; yy++) { ymin = bounds[yy * 2 + 0]; ymax = bounds[yy * 2 + 1]; k = &kk[yy * ksize]; for (xx = 0; xx < imOut->xsize; xx++) { ss = 0.0; for (y = 0; y < ymax; y++) ss += IMAGING_PIXEL_F(imIn, xx, y + ymin) * k[y]; IMAGING_PIXEL_F(imOut, xx, yy) = ss; } } break; } ImagingSectionLeave(&cookie); } typedef void (*ResampleFunction)(Imaging imOut, Imaging imIn, int offset, int ksize, int *bounds, double *kk); Imaging ImagingResampleInner(Imaging imIn, int xsize, int ysize, struct filter *filterp, float box[4], ResampleFunction ResampleHorizontal, ResampleFunction ResampleVertical); Imaging ImagingResample(Imaging imIn, int xsize, int ysize, int filter, float box[4]) { struct filter *filterp; ResampleFunction ResampleHorizontal; ResampleFunction ResampleVertical; if (strcmp(imIn->mode, "P") == 0 || strcmp(imIn->mode, "1") == 0) return (Imaging) ImagingError_ModeError(); if (imIn->type == IMAGING_TYPE_SPECIAL) { return (Imaging) ImagingError_ModeError(); } else if (imIn->image8) { ResampleHorizontal = ImagingResampleHorizontal_8bpc; ResampleVertical = ImagingResampleVertical_8bpc; } else { switch(imIn->type) { case IMAGING_TYPE_UINT8: ResampleHorizontal = ImagingResampleHorizontal_8bpc; ResampleVertical = ImagingResampleVertical_8bpc; break; case IMAGING_TYPE_INT32: case IMAGING_TYPE_FLOAT32: ResampleHorizontal = ImagingResampleHorizontal_32bpc; ResampleVertical = ImagingResampleVertical_32bpc; break; default: return (Imaging) ImagingError_ModeError(); } } /* check filter */ switch (filter) { case IMAGING_TRANSFORM_BOX: filterp = &BOX; break; case IMAGING_TRANSFORM_BILINEAR: filterp = &BILINEAR; break; case IMAGING_TRANSFORM_HAMMING: filterp = &HAMMING; break; case IMAGING_TRANSFORM_BICUBIC: filterp = &BICUBIC; break; case IMAGING_TRANSFORM_LANCZOS: filterp = &LANCZOS; break; default: return (Imaging) ImagingError_ValueError( "unsupported resampling filter" ); } return ImagingResampleInner(imIn, xsize, ysize, filterp, box, ResampleHorizontal, ResampleVertical); } Imaging ImagingResampleInner(Imaging imIn, int xsize, int ysize, struct filter *filterp, float box[4], ResampleFunction ResampleHorizontal, ResampleFunction ResampleVertical) { Imaging imTemp = NULL; Imaging imOut = NULL; int i; int yroi_min, yroi_max; int ksize_horiz, ksize_vert; int *bounds_horiz, *bounds_vert; double *kk_horiz, *kk_vert; ksize_horiz = precompute_coeffs(imIn->xsize, box[0], box[2], xsize, filterp, &bounds_horiz, &kk_horiz); if ( ! ksize_horiz) { return NULL; } ksize_vert = precompute_coeffs(imIn->ysize, box[1], box[3], ysize, filterp, &bounds_vert, &kk_vert); if ( ! ksize_vert) { free(bounds_horiz); free(kk_horiz); return NULL; } // First used row in the source image yroi_min = bounds_vert[0]; // Last used row in the source image yroi_max = bounds_vert[ysize*2 - 2] + bounds_vert[ysize*2 - 1]; /* two-pass resize, first pass */ if (box[0] || box[2] != xsize) { // Shift bounds for vertical pass for (i = 0; i < ysize; i++) { bounds_vert[i * 2] -= yroi_min; } imTemp = ImagingNewDirty(imIn->mode, xsize, yroi_max - yroi_min); if (imTemp) { ResampleHorizontal(imTemp, imIn, yroi_min, ksize_horiz, bounds_horiz, kk_horiz); } free(bounds_horiz); free(kk_horiz); if ( ! imTemp) { free(bounds_vert); free(kk_vert); return NULL; } imOut = imIn = imTemp; } else { // Free in any case free(bounds_horiz); free(kk_horiz); } /* second pass */ if (box[1] || box[3] != ysize) { imOut = ImagingNewDirty(imIn->mode, imIn->xsize, ysize); if (imOut) { /* imIn can be the original image or horizontally resampled one */ ResampleVertical(imOut, imIn, 0, ksize_vert, bounds_vert, kk_vert); } /* it's safe to call ImagingDelete with empty value if previous step was not performed. */ ImagingDelete(imTemp); free(bounds_vert); free(kk_vert); if ( ! imOut) { return NULL; } } else { // Free in any case free(bounds_vert); free(kk_vert); } /* none of the previous steps are performed, copying */ if ( ! imOut) { imOut = ImagingCopy(imIn); } return imOut; }