/*
 * The Python Imaging Library.
 *
 * standard encoder interfaces for the Imaging library
 *
 * History:
 * 1996-04-19 fl   Based on decoders.c
 * 1996-05-12 fl   Compile cleanly as C++
 * 1996-12-30 fl   Plugged potential memory leak for tiled images
 * 1997-01-03 fl   Added GIF encoder
 * 1997-01-05 fl   Plugged encoder buffer leaks
 * 1997-01-11 fl   Added encode_to_file method
 * 1998-03-09 fl   Added mode/rawmode argument to encoders
 * 1998-07-09 fl   Added interlace argument to GIF encoder
 * 1999-02-07 fl   Added PCX encoder
 *
 * Copyright (c) 1997-2001 by Secret Labs AB
 * Copyright (c) 1996-1997 by Fredrik Lundh
 *
 * See the README file for information on usage and redistribution.
 */

/* FIXME: make these pluggable! */

#define PY_SSIZE_T_CLEAN
#include "Python.h"

#include "thirdparty/pythoncapi_compat.h"
#include "libImaging/Imaging.h"
#include "libImaging/Bcn.h"
#include "libImaging/Gif.h"

#ifdef HAVE_UNISTD_H
#include <unistd.h> /* write */
#endif

/* -------------------------------------------------------------------- */
/* Common                                                               */
/* -------------------------------------------------------------------- */

typedef struct {
    PyObject_HEAD int (*encode)(
        Imaging im, ImagingCodecState state, UINT8 *buffer, int bytes
    );
    int (*cleanup)(ImagingCodecState state);
    struct ImagingCodecStateInstance state;
    Imaging im;
    PyObject *lock;
    int pushes_fd;
} ImagingEncoderObject;

static PyTypeObject ImagingEncoderType;

static ImagingEncoderObject *
PyImaging_EncoderNew(int contextsize) {
    ImagingEncoderObject *encoder;
    void *context;

    if (PyType_Ready(&ImagingEncoderType) < 0) {
        return NULL;
    }

    encoder = PyObject_New(ImagingEncoderObject, &ImagingEncoderType);
    if (encoder == NULL) {
        return NULL;
    }

    /* Clear the encoder state */
    memset(&encoder->state, 0, sizeof(encoder->state));

    /* Allocate encoder context */
    if (contextsize > 0) {
        context = (void *)calloc(1, contextsize);
        if (!context) {
            Py_DECREF(encoder);
            (void)ImagingError_MemoryError();
            return NULL;
        }
    } else {
        context = 0;
    }

    /* Initialize encoder context */
    encoder->state.context = context;

    /* Most encoders don't need this */
    encoder->cleanup = NULL;

    /* Target image */
    encoder->lock = NULL;
    encoder->im = NULL;
    encoder->pushes_fd = 0;

    return encoder;
}

static void
_dealloc(ImagingEncoderObject *encoder) {
    if (encoder->cleanup) {
        encoder->cleanup(&encoder->state);
    }
    free(encoder->state.buffer);
    free(encoder->state.context);
    Py_XDECREF(encoder->lock);
    Py_XDECREF(encoder->state.fd);
    PyObject_Del(encoder);
}

static PyObject *
_encode_cleanup(ImagingEncoderObject *encoder, PyObject *args) {
    int status = 0;

    if (encoder->cleanup) {
        status = encoder->cleanup(&encoder->state);
    }

    return Py_BuildValue("i", status);
}

static PyObject *
_encode(ImagingEncoderObject *encoder, PyObject *args) {
    PyObject *buf;
    PyObject *result;
    int status;

    /* Encode to a Python string (allocated by this method) */

    Py_ssize_t bufsize = 16384;

    if (!PyArg_ParseTuple(args, "|n", &bufsize)) {
        return NULL;
    }

    buf = PyBytes_FromStringAndSize(NULL, bufsize);
    if (!buf) {
        return NULL;
    }

    status = encoder->encode(
        encoder->im, &encoder->state, (UINT8 *)PyBytes_AsString(buf), bufsize
    );

    /* adjust string length to avoid slicing in encoder */
    if (_PyBytes_Resize(&buf, (status > 0) ? status : 0) < 0) {
        return NULL;
    }

    result = Py_BuildValue("iiO", status, encoder->state.errcode, buf);

    Py_DECREF(buf); /* must release buffer!!! */

    return result;
}

static PyObject *
_encode_to_pyfd(ImagingEncoderObject *encoder) {
    PyObject *result;
    int status;

    if (!encoder->pushes_fd) {
        // UNDONE, appropriate errcode???
        result = Py_BuildValue("ii", 0, IMAGING_CODEC_CONFIG);
        return result;
    }

    status = encoder->encode(encoder->im, &encoder->state, (UINT8 *)NULL, 0);

    result = Py_BuildValue("ii", status, encoder->state.errcode);

    return result;
}

static PyObject *
_encode_to_file(ImagingEncoderObject *encoder, PyObject *args) {
    UINT8 *buf;
    int status;
    ImagingSectionCookie cookie;

    /* Encode to a file handle */

    Py_ssize_t fh;
    Py_ssize_t bufsize = 16384;

    if (!PyArg_ParseTuple(args, "n|n", &fh, &bufsize)) {
        return NULL;
    }

    /* Allocate an encoder buffer */
    /* malloc check ok, either constant int, or checked by PyArg_ParseTuple */
    buf = (UINT8 *)malloc(bufsize);
    if (!buf) {
        return ImagingError_MemoryError();
    }

    ImagingSectionEnter(&cookie);

    do {
        /* This replaces the inner loop in the ImageFile _save
           function. */

        status = encoder->encode(encoder->im, &encoder->state, buf, bufsize);

        if (status > 0) {
            if (write(fh, buf, status) < 0) {
                ImagingSectionLeave(&cookie);
                free(buf);
                return PyErr_SetFromErrno(PyExc_OSError);
            }
        }

    } while (encoder->state.errcode == 0);

    ImagingSectionLeave(&cookie);

    free(buf);

    return Py_BuildValue("i", encoder->state.errcode);
}

extern Imaging
PyImaging_AsImaging(PyObject *op);

static PyObject *
_setimage(ImagingEncoderObject *encoder, PyObject *args) {
    PyObject *op;
    Imaging im;
    ImagingCodecState state;
    Py_ssize_t x0, y0, x1, y1;

    /* Define where image data should be stored */

    x0 = y0 = x1 = y1 = 0;

    /* FIXME: should publish the ImagingType descriptor */
    if (!PyArg_ParseTuple(args, "O|(nnnn)", &op, &x0, &y0, &x1, &y1)) {
        return NULL;
    }
    im = PyImaging_AsImaging(op);
    if (!im) {
        return NULL;
    }

    encoder->im = im;

    state = &encoder->state;

    if (x0 == 0 && x1 == 0) {
        state->xsize = im->xsize;
        state->ysize = im->ysize;
    } else {
        state->xoff = x0;
        state->yoff = y0;
        state->xsize = x1 - x0;
        state->ysize = y1 - y0;
    }

    if (state->xsize <= 0 || state->xsize + state->xoff > im->xsize ||
        state->ysize <= 0 || state->ysize + state->yoff > im->ysize) {
        PyErr_SetString(PyExc_SystemError, "tile cannot extend outside image");
        return NULL;
    }

    /* Allocate memory buffer (if bits field is set) */
    if (state->bits > 0) {
        if (state->xsize > ((INT_MAX / state->bits) - 7)) {
            return ImagingError_MemoryError();
        }
        state->bytes = (state->bits * state->xsize + 7) / 8;
        /* malloc check ok, overflow checked above */
        state->buffer = (UINT8 *)calloc(1, state->bytes);
        if (!state->buffer) {
            return ImagingError_MemoryError();
        }
    }

    /* Keep a reference to the image object, to make sure it doesn't
       go away before we do */
    Py_INCREF(op);
    Py_XDECREF(encoder->lock);
    encoder->lock = op;

    Py_RETURN_NONE;
}

static PyObject *
_setfd(ImagingEncoderObject *encoder, PyObject *args) {
    PyObject *fd;
    ImagingCodecState state;

    if (!PyArg_ParseTuple(args, "O", &fd)) {
        return NULL;
    }

    state = &encoder->state;

    Py_XINCREF(fd);
    state->fd = fd;

    Py_RETURN_NONE;
}

static PyObject *
_get_pushes_fd(ImagingEncoderObject *encoder, void *closure) {
    return PyBool_FromLong(encoder->pushes_fd);
}

static struct PyMethodDef methods[] = {
    {"encode", (PyCFunction)_encode, METH_VARARGS},
    {"cleanup", (PyCFunction)_encode_cleanup, METH_VARARGS},
    {"encode_to_file", (PyCFunction)_encode_to_file, METH_VARARGS},
    {"encode_to_pyfd", (PyCFunction)_encode_to_pyfd, METH_NOARGS},
    {"setimage", (PyCFunction)_setimage, METH_VARARGS},
    {"setfd", (PyCFunction)_setfd, METH_VARARGS},
    {NULL, NULL} /* sentinel */
};

static struct PyGetSetDef getseters[] = {
    {"pushes_fd",
     (getter)_get_pushes_fd,
     NULL,
     "True if this decoder expects to push directly to self.fd",
     NULL},
    {NULL, NULL, NULL, NULL, NULL} /* sentinel */
};

static PyTypeObject ImagingEncoderType = {
    PyVarObject_HEAD_INIT(NULL, 0).tp_name = "ImagingEncoder",
    .tp_basicsize = sizeof(ImagingEncoderObject),
    .tp_dealloc = (destructor)_dealloc,
    .tp_methods = methods,
    .tp_getset = getseters,
};

/* -------------------------------------------------------------------- */

int
get_packer(ImagingEncoderObject *encoder, const char *mode, const char *rawmode) {
    int bits;
    ImagingShuffler pack;

    pack = ImagingFindPacker(mode, rawmode, &bits);
    if (!pack) {
        Py_DECREF(encoder);
        PyErr_Format(PyExc_ValueError, "No packer found from %s to %s", mode, rawmode);
        return -1;
    }

    encoder->state.shuffle = pack;
    encoder->state.bits = bits;

    return 0;
}

/* -------------------------------------------------------------------- */
/* BCN                                                                  */
/* -------------------------------------------------------------------- */

PyObject *
PyImaging_BcnEncoderNew(PyObject *self, PyObject *args) {
    ImagingEncoderObject *encoder;

    char *mode;
    int n;
    if (!PyArg_ParseTuple(args, "si", &mode, &n)) {
        return NULL;
    }

    encoder = PyImaging_EncoderNew(0);
    if (encoder == NULL) {
        return NULL;
    }

    encoder->encode = ImagingBcnEncode;
    encoder->state.state = n;

    return (PyObject *)encoder;
}

/* -------------------------------------------------------------------- */
/* EPS                                                                  */
/* -------------------------------------------------------------------- */

PyObject *
PyImaging_EpsEncoderNew(PyObject *self, PyObject *args) {
    ImagingEncoderObject *encoder;

    encoder = PyImaging_EncoderNew(0);
    if (encoder == NULL) {
        return NULL;
    }

    encoder->encode = ImagingEpsEncode;

    return (PyObject *)encoder;
}

/* -------------------------------------------------------------------- */
/* GIF                                                                  */
/* -------------------------------------------------------------------- */

PyObject *
PyImaging_GifEncoderNew(PyObject *self, PyObject *args) {
    ImagingEncoderObject *encoder;

    char *mode;
    char *rawmode;
    Py_ssize_t bits = 8;
    Py_ssize_t interlace = 0;
    if (!PyArg_ParseTuple(args, "ss|nn", &mode, &rawmode, &bits, &interlace)) {
        return NULL;
    }

    encoder = PyImaging_EncoderNew(sizeof(GIFENCODERSTATE));
    if (encoder == NULL) {
        return NULL;
    }

    if (get_packer(encoder, mode, rawmode) < 0) {
        return NULL;
    }

    encoder->encode = ImagingGifEncode;

    ((GIFENCODERSTATE *)encoder->state.context)->bits = bits;
    ((GIFENCODERSTATE *)encoder->state.context)->interlace = interlace;

    return (PyObject *)encoder;
}

/* -------------------------------------------------------------------- */
/* PCX                                                                  */
/* -------------------------------------------------------------------- */

PyObject *
PyImaging_PcxEncoderNew(PyObject *self, PyObject *args) {
    ImagingEncoderObject *encoder;

    char *mode;
    char *rawmode;
    Py_ssize_t bits = 8;

    if (!PyArg_ParseTuple(args, "ss|n", &mode, &rawmode, &bits)) {
        return NULL;
    }

    encoder = PyImaging_EncoderNew(0);
    if (encoder == NULL) {
        return NULL;
    }

    if (get_packer(encoder, mode, rawmode) < 0) {
        return NULL;
    }

    encoder->encode = ImagingPcxEncode;

    return (PyObject *)encoder;
}

/* -------------------------------------------------------------------- */
/* RAW                                                                  */
/* -------------------------------------------------------------------- */

PyObject *
PyImaging_RawEncoderNew(PyObject *self, PyObject *args) {
    ImagingEncoderObject *encoder;

    char *mode;
    char *rawmode;
    Py_ssize_t stride = 0;
    Py_ssize_t ystep = 1;

    if (!PyArg_ParseTuple(args, "ss|nn", &mode, &rawmode, &stride, &ystep)) {
        return NULL;
    }

    encoder = PyImaging_EncoderNew(0);
    if (encoder == NULL) {
        return NULL;
    }

    if (get_packer(encoder, mode, rawmode) < 0) {
        return NULL;
    }

    encoder->encode = ImagingRawEncode;

    encoder->state.ystep = ystep;
    encoder->state.count = stride;

    return (PyObject *)encoder;
}

/* -------------------------------------------------------------------- */
/* TGA                                                                  */
/* -------------------------------------------------------------------- */

PyObject *
PyImaging_TgaRleEncoderNew(PyObject *self, PyObject *args) {
    ImagingEncoderObject *encoder;

    char *mode;
    char *rawmode;
    Py_ssize_t ystep = 1;

    if (!PyArg_ParseTuple(args, "ss|n", &mode, &rawmode, &ystep)) {
        return NULL;
    }

    encoder = PyImaging_EncoderNew(0);
    if (encoder == NULL) {
        return NULL;
    }

    if (get_packer(encoder, mode, rawmode) < 0) {
        return NULL;
    }

    encoder->encode = ImagingTgaRleEncode;

    encoder->state.ystep = ystep;

    return (PyObject *)encoder;
}

/* -------------------------------------------------------------------- */
/* XBM                                                                  */
/* -------------------------------------------------------------------- */

PyObject *
PyImaging_XbmEncoderNew(PyObject *self, PyObject *args) {
    ImagingEncoderObject *encoder;

    encoder = PyImaging_EncoderNew(0);
    if (encoder == NULL) {
        return NULL;
    }

    if (get_packer(encoder, "1", "1;R") < 0) {
        return NULL;
    }

    encoder->encode = ImagingXbmEncode;

    return (PyObject *)encoder;
}

/* -------------------------------------------------------------------- */
/* ZIP                                                                  */
/* -------------------------------------------------------------------- */

#ifdef HAVE_LIBZ

#include "libImaging/ZipCodecs.h"

PyObject *
PyImaging_ZipEncoderNew(PyObject *self, PyObject *args) {
    ImagingEncoderObject *encoder;

    char *mode;
    char *rawmode;
    Py_ssize_t optimize = 0;
    Py_ssize_t compress_level = -1;
    Py_ssize_t compress_type = -1;
    char *dictionary = NULL;
    Py_ssize_t dictionary_size = 0;
    if (!PyArg_ParseTuple(
            args,
            "ss|nnny#",
            &mode,
            &rawmode,
            &optimize,
            &compress_level,
            &compress_type,
            &dictionary,
            &dictionary_size
        )) {
        return NULL;
    }

    /* Copy to avoid referencing Python's memory */
    if (dictionary && dictionary_size > 0) {
        /* malloc check ok, size comes from PyArg_ParseTuple */
        char *p = malloc(dictionary_size);
        if (!p) {
            return ImagingError_MemoryError();
        }
        memcpy(p, dictionary, dictionary_size);
        dictionary = p;
    } else {
        dictionary = NULL;
    }

    encoder = PyImaging_EncoderNew(sizeof(ZIPSTATE));
    if (encoder == NULL) {
        free(dictionary);
        return NULL;
    }

    if (get_packer(encoder, mode, rawmode) < 0) {
        free(dictionary);
        return NULL;
    }

    encoder->encode = ImagingZipEncode;
    encoder->cleanup = ImagingZipEncodeCleanup;

    if (rawmode[0] == 'P') {
        /* disable filtering */
        ((ZIPSTATE *)encoder->state.context)->mode = ZIP_PNG_PALETTE;
    }

    ((ZIPSTATE *)encoder->state.context)->optimize = optimize;
    ((ZIPSTATE *)encoder->state.context)->compress_level = compress_level;
    ((ZIPSTATE *)encoder->state.context)->compress_type = compress_type;
    ((ZIPSTATE *)encoder->state.context)->dictionary = dictionary;
    ((ZIPSTATE *)encoder->state.context)->dictionary_size = dictionary_size;

    return (PyObject *)encoder;
}
#endif

/* -------------------------------------------------------------------- */
/* LibTiff                                                              */
/* -------------------------------------------------------------------- */

#ifdef HAVE_LIBTIFF

#include "libImaging/TiffDecode.h"

#include <string.h>

PyObject *
PyImaging_LibTiffEncoderNew(PyObject *self, PyObject *args) {
    ImagingEncoderObject *encoder;

    char *mode;
    char *rawmode;
    char *compname;
    char *filename;
    Py_ssize_t fp;

    PyObject *tags, *types;
    PyObject *key, *value;
    Py_ssize_t pos = 0;
    int key_int, status, is_core_tag, is_var_length, num_core_tags, i;
    TIFFDataType type = TIFF_NOTYPE;
    // This list also exists in TiffTags.py
    const int core_tags[] = {256,   257, 258,   259, 262, 263, 266,   269,   274,
                             277,   278, 280,   281, 340, 341, 282,   283,   284,
                             286,   287, 296,   297, 320, 321, 338,   32995, 32998,
                             32996, 339, 32997, 330, 531, 530, 65537, 301,   532};

    Py_ssize_t tags_size;
    PyObject *item;

    if (!PyArg_ParseTuple(
            args, "sssnsOO", &mode, &rawmode, &compname, &fp, &filename, &tags, &types
        )) {
        return NULL;
    }

    if (!PyList_Check(tags)) {
        PyErr_SetString(PyExc_ValueError, "Invalid tags list");
        return NULL;
    } else {
        tags_size = PyList_Size(tags);
        TRACE(("tags size: %d\n", (int)tags_size));
        for (pos = 0; pos < tags_size; pos++) {
            item = PyList_GetItemRef(tags, pos);
            if (item == NULL) {
                return NULL;
            }

            if (!PyTuple_Check(item) || PyTuple_Size(item) != 2) {
                Py_DECREF(item);
                PyErr_SetString(PyExc_ValueError, "Invalid tags list");
                return NULL;
            }
            Py_DECREF(item);
        }
        pos = 0;
    }
    if (!PyDict_Check(types)) {
        PyErr_SetString(PyExc_ValueError, "Invalid types dictionary");
        return NULL;
    }

    TRACE(("new tiff encoder %s fp: %d, filename: %s \n", compname, fp, filename));

    encoder = PyImaging_EncoderNew(sizeof(TIFFSTATE));
    if (encoder == NULL) {
        return NULL;
    }

    if (get_packer(encoder, mode, rawmode) < 0) {
        return NULL;
    }

    if (!ImagingLibTiffEncodeInit(&encoder->state, filename, fp)) {
        Py_DECREF(encoder);
        PyErr_SetString(PyExc_RuntimeError, "tiff codec initialization failed");
        return NULL;
    }

    num_core_tags = sizeof(core_tags) / sizeof(int);
    for (pos = 0; pos < tags_size; pos++) {
        item = PyList_GetItemRef(tags, pos);
        if (item == NULL) {
            return NULL;
        }

        // We already checked that tags is a 2-tuple list.
        key = PyTuple_GET_ITEM(item, 0);
        key_int = (int)PyLong_AsLong(key);
        value = PyTuple_GET_ITEM(item, 1);
        Py_DECREF(item);

        status = 0;
        is_core_tag = 0;
        is_var_length = 0;
        type = TIFF_NOTYPE;

        for (i = 0; i < num_core_tags; i++) {
            if (core_tags[i] == key_int) {
                is_core_tag = 1;
                break;
            }
        }

        if (!is_core_tag) {
            PyObject *tag_type;
            if (PyDict_GetItemRef(types, key, &tag_type) < 0) {
                return NULL;  // Exception has been already set
            }
            if (tag_type) {
                int type_int = PyLong_AsLong(tag_type);
                if (type_int >= TIFF_BYTE && type_int <= TIFF_LONG8) {
                    type = (TIFFDataType)type_int;
                }
            }
        }

        if (type == TIFF_NOTYPE) {
            // Autodetect type. Types should not be changed for backwards
            // compatibility.
            if (PyLong_Check(value)) {
                type = TIFF_LONG;
            } else if (PyFloat_Check(value)) {
                type = TIFF_DOUBLE;
            } else if (PyBytes_Check(value)) {
                type = TIFF_ASCII;
            }
        }

        if (PyTuple_Check(value)) {
            Py_ssize_t len;
            len = PyTuple_Size(value);

            is_var_length = 1;

            if (!len) {
                continue;
            }

            if (type == TIFF_NOTYPE) {
                // Autodetect type based on first item. Types should not be
                // changed for backwards compatibility.
                if (PyLong_Check(PyTuple_GetItem(value, 0))) {
                    type = TIFF_LONG;
                } else if (PyFloat_Check(PyTuple_GetItem(value, 0))) {
                    type = TIFF_FLOAT;
                }
            }
        }

        if (!is_core_tag) {
            // Register field for non core tags.
            if (type == TIFF_BYTE) {
                is_var_length = 1;
            }
            if (ImagingLibTiffMergeFieldInfo(
                    &encoder->state, type, key_int, is_var_length
                )) {
                continue;
            }
        }

        if (type == TIFF_BYTE || type == TIFF_UNDEFINED) {
            status = ImagingLibTiffSetField(
                &encoder->state,
                (ttag_t)key_int,
                PyBytes_Size(value),
                PyBytes_AsString(value)
            );
        } else if (is_var_length) {
            Py_ssize_t len, i;
            TRACE(("Setting from Tuple: %d \n", key_int));
            len = PyTuple_Size(value);

            if (key_int == TIFFTAG_COLORMAP) {
                int stride = 256;
                if (len != 768) {
                    PyErr_SetString(
                        PyExc_ValueError, "Requiring 768 items for Colormap"
                    );
                    return NULL;
                }
                UINT16 *av;
                /* malloc check ok, calloc checks for overflow */
                av = calloc(len, sizeof(UINT16));
                if (av) {
                    for (i = 0; i < len; i++) {
                        av[i] = (UINT16)PyLong_AsLong(PyTuple_GetItem(value, i));
                    }
                    status = ImagingLibTiffSetField(
                        &encoder->state,
                        (ttag_t)key_int,
                        av,
                        av + stride,
                        av + stride * 2
                    );
                    free(av);
                }
            } else if (key_int == TIFFTAG_YCBCRSUBSAMPLING) {
                status = ImagingLibTiffSetField(
                    &encoder->state,
                    (ttag_t)key_int,
                    (UINT16)PyLong_AsLong(PyTuple_GetItem(value, 0)),
                    (UINT16)PyLong_AsLong(PyTuple_GetItem(value, 1))
                );
            } else if (type == TIFF_SHORT) {
                UINT16 *av;
                /* malloc check ok, calloc checks for overflow */
                av = calloc(len, sizeof(UINT16));
                if (av) {
                    for (i = 0; i < len; i++) {
                        av[i] = (UINT16)PyLong_AsLong(PyTuple_GetItem(value, i));
                    }
                    status = ImagingLibTiffSetField(
                        &encoder->state, (ttag_t)key_int, len, av
                    );
                    free(av);
                }
            } else if (type == TIFF_LONG) {
                UINT32 *av;
                /* malloc check ok, calloc checks for overflow */
                av = calloc(len, sizeof(UINT32));
                if (av) {
                    for (i = 0; i < len; i++) {
                        av[i] = (UINT32)PyLong_AsLong(PyTuple_GetItem(value, i));
                    }
                    status = ImagingLibTiffSetField(
                        &encoder->state, (ttag_t)key_int, len, av
                    );
                    free(av);
                }
            } else if (type == TIFF_SBYTE) {
                INT8 *av;
                /* malloc check ok, calloc checks for overflow */
                av = calloc(len, sizeof(INT8));
                if (av) {
                    for (i = 0; i < len; i++) {
                        av[i] = (INT8)PyLong_AsLong(PyTuple_GetItem(value, i));
                    }
                    status = ImagingLibTiffSetField(
                        &encoder->state, (ttag_t)key_int, len, av
                    );
                    free(av);
                }
            } else if (type == TIFF_SSHORT) {
                INT16 *av;
                /* malloc check ok, calloc checks for overflow */
                av = calloc(len, sizeof(INT16));
                if (av) {
                    for (i = 0; i < len; i++) {
                        av[i] = (INT16)PyLong_AsLong(PyTuple_GetItem(value, i));
                    }
                    status = ImagingLibTiffSetField(
                        &encoder->state, (ttag_t)key_int, len, av
                    );
                    free(av);
                }
            } else if (type == TIFF_SLONG) {
                INT32 *av;
                /* malloc check ok, calloc checks for overflow */
                av = calloc(len, sizeof(INT32));
                if (av) {
                    for (i = 0; i < len; i++) {
                        av[i] = (INT32)PyLong_AsLong(PyTuple_GetItem(value, i));
                    }
                    status = ImagingLibTiffSetField(
                        &encoder->state, (ttag_t)key_int, len, av
                    );
                    free(av);
                }
            } else if (type == TIFF_FLOAT) {
                FLOAT32 *av;
                /* malloc check ok, calloc checks for overflow */
                av = calloc(len, sizeof(FLOAT32));
                if (av) {
                    for (i = 0; i < len; i++) {
                        av[i] = (FLOAT32)PyFloat_AsDouble(PyTuple_GetItem(value, i));
                    }
                    status = ImagingLibTiffSetField(
                        &encoder->state, (ttag_t)key_int, len, av
                    );
                    free(av);
                }
            } else if (type == TIFF_DOUBLE) {
                FLOAT64 *av;
                /* malloc check ok, calloc checks for overflow */
                av = calloc(len, sizeof(FLOAT64));
                if (av) {
                    for (i = 0; i < len; i++) {
                        av[i] = PyFloat_AsDouble(PyTuple_GetItem(value, i));
                    }
                    status = ImagingLibTiffSetField(
                        &encoder->state, (ttag_t)key_int, len, av
                    );
                    free(av);
                }
            }
        } else {
            if (type == TIFF_SHORT) {
                status = ImagingLibTiffSetField(
                    &encoder->state, (ttag_t)key_int, (UINT16)PyLong_AsLong(value)
                );
            } else if (type == TIFF_LONG) {
                status = ImagingLibTiffSetField(
                    &encoder->state, (ttag_t)key_int, (UINT32)PyLong_AsLong(value)
                );
            } else if (type == TIFF_SSHORT) {
                status = ImagingLibTiffSetField(
                    &encoder->state, (ttag_t)key_int, (INT16)PyLong_AsLong(value)
                );
            } else if (type == TIFF_SLONG) {
                status = ImagingLibTiffSetField(
                    &encoder->state, (ttag_t)key_int, (INT32)PyLong_AsLong(value)
                );
            } else if (type == TIFF_FLOAT) {
                status = ImagingLibTiffSetField(
                    &encoder->state, (ttag_t)key_int, (FLOAT32)PyFloat_AsDouble(value)
                );
            } else if (type == TIFF_DOUBLE) {
                status = ImagingLibTiffSetField(
                    &encoder->state, (ttag_t)key_int, (FLOAT64)PyFloat_AsDouble(value)
                );
            } else if (type == TIFF_SBYTE) {
                status = ImagingLibTiffSetField(
                    &encoder->state, (ttag_t)key_int, (INT8)PyLong_AsLong(value)
                );
            } else if (type == TIFF_ASCII) {
                status = ImagingLibTiffSetField(
                    &encoder->state, (ttag_t)key_int, PyBytes_AsString(value)
                );
            } else if (type == TIFF_RATIONAL) {
                status = ImagingLibTiffSetField(
                    &encoder->state, (ttag_t)key_int, (FLOAT64)PyFloat_AsDouble(value)
                );
            } else if (type == TIFF_LONG8) {
                status = ImagingLibTiffSetField(
                    &encoder->state, (ttag_t)key_int, (uint64_t)PyLong_AsLongLong(value)
                );
            } else {
                TRACE(
                    ("Unhandled type for key %d : %s \n",
                     key_int,
                     PyBytes_AsString(PyObject_Str(value)))
                );
            }
        }
        if (!status) {
            TRACE(("Error setting Field\n"));
            Py_DECREF(encoder);
            PyErr_SetString(PyExc_RuntimeError, "Error setting from dictionary");
            return NULL;
        }
    }

    encoder->encode = ImagingLibTiffEncode;

    return (PyObject *)encoder;
}

#endif

/* -------------------------------------------------------------------- */
/* JPEG                                                                 */
/* -------------------------------------------------------------------- */

#ifdef HAVE_LIBJPEG

/* We better define this encoder last in this file, so the following
   undef's won't mess things up for the Imaging library proper. */

#undef HAVE_PROTOTYPES
#undef HAVE_STDDEF_H
#undef HAVE_STDLIB_H
#undef UINT8
#undef UINT16
#undef UINT32
#undef INT8
#undef INT16
#undef INT32

#include "libImaging/Jpeg.h"

static unsigned int *
get_qtables_arrays(PyObject *qtables, int *qtablesLen) {
    PyObject *tables;
    PyObject *table;
    PyObject *table_data;
    int i, j, num_tables;
    unsigned int *qarrays;

    if ((qtables == NULL) || (qtables == Py_None)) {
        return NULL;
    }

    if (!PySequence_Check(qtables)) {
        PyErr_SetString(PyExc_ValueError, "Invalid quantization tables");
        return NULL;
    }

    tables = PySequence_Fast(qtables, "expected a sequence");
    num_tables = PySequence_Size(qtables);
    if (num_tables < 1 || num_tables > NUM_QUANT_TBLS) {
        PyErr_SetString(
            PyExc_ValueError,
            "Not a valid number of quantization tables. Should be between 1 and 4."
        );
        Py_DECREF(tables);
        return NULL;
    }
    /* malloc check ok, num_tables <4, DCTSIZE2 == 64 from jpeglib.h */
    qarrays = (unsigned int *)malloc(num_tables * DCTSIZE2 * sizeof(unsigned int));
    if (!qarrays) {
        Py_DECREF(tables);
        return ImagingError_MemoryError();
    }
    for (i = 0; i < num_tables; i++) {
        table = PySequence_Fast_GET_ITEM(tables, i);
        if (!PySequence_Check(table)) {
            PyErr_SetString(PyExc_ValueError, "Invalid quantization tables");
            goto JPEG_QTABLES_ERR;
        }
        if (PySequence_Size(table) != DCTSIZE2) {
            PyErr_SetString(PyExc_ValueError, "Invalid quantization table size");
            goto JPEG_QTABLES_ERR;
        }
        table_data = PySequence_Fast(table, "expected a sequence");
        for (j = 0; j < DCTSIZE2; j++) {
            qarrays[i * DCTSIZE2 + j] =
                PyLong_AS_LONG(PySequence_Fast_GET_ITEM(table_data, j));
        }
        Py_DECREF(table_data);
    }

    *qtablesLen = num_tables;

JPEG_QTABLES_ERR:
    Py_DECREF(tables);  // Run on both error and not error
    if (PyErr_Occurred()) {
        free(qarrays);
        qarrays = NULL;
        return NULL;
    }

    return qarrays;
}

PyObject *
PyImaging_JpegEncoderNew(PyObject *self, PyObject *args) {
    ImagingEncoderObject *encoder;

    char *mode;
    char *rawmode;
    Py_ssize_t quality = 0;
    Py_ssize_t progressive = 0;
    Py_ssize_t smooth = 0;
    Py_ssize_t optimize = 0;
    int keep_rgb = 0;
    Py_ssize_t streamtype = 0; /* 0=interchange, 1=tables only, 2=image only */
    Py_ssize_t xdpi = 0, ydpi = 0;
    Py_ssize_t subsampling = -1; /* -1=default, 0=none, 1=medium, 2=high */
    Py_ssize_t restart_marker_blocks = 0;
    Py_ssize_t restart_marker_rows = 0;
    PyObject *qtables = NULL;
    unsigned int *qarrays = NULL;
    int qtablesLen = 0;
    char *comment = NULL;
    Py_ssize_t comment_size;
    char *extra = NULL;
    Py_ssize_t extra_size;
    char *rawExif = NULL;
    Py_ssize_t rawExifLen = 0;

    if (!PyArg_ParseTuple(
            args,
            "ss|nnnnpn(nn)nnnOz#y#y#",
            &mode,
            &rawmode,
            &quality,
            &progressive,
            &smooth,
            &optimize,
            &keep_rgb,
            &streamtype,
            &xdpi,
            &ydpi,
            &subsampling,
            &restart_marker_blocks,
            &restart_marker_rows,
            &qtables,
            &comment,
            &comment_size,
            &extra,
            &extra_size,
            &rawExif,
            &rawExifLen
        )) {
        return NULL;
    }

    encoder = PyImaging_EncoderNew(sizeof(JPEGENCODERSTATE));
    if (encoder == NULL) {
        return NULL;
    }

    // libjpeg-turbo supports different output formats.
    // We are choosing Pillow's native format (3 color bytes + 1 padding)
    // to avoid extra conversion in Pack.c.
    if (ImagingJpegUseJCSExtensions() && strcmp(rawmode, "RGB") == 0) {
        rawmode = "RGBX";
    }

    if (get_packer(encoder, mode, rawmode) < 0) {
        return NULL;
    }

    // Freed in JpegEncode, Case 6
    qarrays = get_qtables_arrays(qtables, &qtablesLen);

    if (comment && comment_size > 0) {
        /* malloc check ok, length is from python parsearg */
        char *p = malloc(comment_size);  // Freed in JpegEncode, Case 6
        if (!p) {
            return ImagingError_MemoryError();
        }
        memcpy(p, comment, comment_size);
        comment = p;
    } else {
        comment = NULL;
    }

    if (extra && extra_size > 0) {
        /* malloc check ok, length is from python parsearg */
        char *p = malloc(extra_size);  // Freed in JpegEncode, Case 6
        if (!p) {
            if (comment) {
                free(comment);
            }
            return ImagingError_MemoryError();
        }
        memcpy(p, extra, extra_size);
        extra = p;
    } else {
        extra = NULL;
    }

    if (rawExif && rawExifLen > 0) {
        /* malloc check ok, length is from python parsearg */
        char *pp = malloc(rawExifLen);  // Freed in JpegEncode, Case 6
        if (!pp) {
            if (comment) {
                free(comment);
            }
            if (extra) {
                free(extra);
            }
            return ImagingError_MemoryError();
        }
        memcpy(pp, rawExif, rawExifLen);
        rawExif = pp;
    } else {
        rawExif = NULL;
    }

    encoder->encode = ImagingJpegEncode;

    JPEGENCODERSTATE *jpeg_encoder_state = (JPEGENCODERSTATE *)encoder->state.context;
    strncpy(jpeg_encoder_state->rawmode, rawmode, 8);
    jpeg_encoder_state->keep_rgb = keep_rgb;
    jpeg_encoder_state->quality = quality;
    jpeg_encoder_state->qtables = qarrays;
    jpeg_encoder_state->qtablesLen = qtablesLen;
    jpeg_encoder_state->subsampling = subsampling;
    jpeg_encoder_state->progressive = progressive;
    jpeg_encoder_state->smooth = smooth;
    jpeg_encoder_state->optimize = optimize;
    jpeg_encoder_state->streamtype = streamtype;
    jpeg_encoder_state->xdpi = xdpi;
    jpeg_encoder_state->ydpi = ydpi;
    jpeg_encoder_state->restart_marker_blocks = restart_marker_blocks;
    jpeg_encoder_state->restart_marker_rows = restart_marker_rows;
    jpeg_encoder_state->comment = comment;
    jpeg_encoder_state->comment_size = comment_size;
    jpeg_encoder_state->extra = extra;
    jpeg_encoder_state->extra_size = extra_size;
    jpeg_encoder_state->rawExif = rawExif;
    jpeg_encoder_state->rawExifLen = rawExifLen;

    return (PyObject *)encoder;
}

#endif

/* -------------------------------------------------------------------- */
/* JPEG 2000                                                            */
/* -------------------------------------------------------------------- */

#ifdef HAVE_OPENJPEG

#include "libImaging/Jpeg2K.h"

static void
j2k_decode_coord_tuple(PyObject *tuple, int *x, int *y) {
    *x = *y = 0;

    if (tuple && PyTuple_Check(tuple) && PyTuple_GET_SIZE(tuple) == 2) {
        *x = (int)PyLong_AsLong(PyTuple_GET_ITEM(tuple, 0));
        *y = (int)PyLong_AsLong(PyTuple_GET_ITEM(tuple, 1));

        if (*x < 0) {
            *x = 0;
        }
        if (*y < 0) {
            *y = 0;
        }
    }
}

PyObject *
PyImaging_Jpeg2KEncoderNew(PyObject *self, PyObject *args) {
    ImagingEncoderObject *encoder;
    JPEG2KENCODESTATE *context;

    char *mode;
    char *format;
    OPJ_CODEC_FORMAT codec_format;
    PyObject *offset = NULL, *tile_offset = NULL, *tile_size = NULL;
    char *quality_mode = "rates";
    PyObject *quality_layers = NULL;
    Py_ssize_t num_resolutions = 0;
    PyObject *cblk_size = NULL, *precinct_size = NULL;
    int irreversible = 0;
    char *progression = "LRCP";
    OPJ_PROG_ORDER prog_order;
    char *cinema_mode = "no";
    OPJ_CINEMA_MODE cine_mode;
    char mct = 0;
    int sgnd = 0;
    Py_ssize_t fd = -1;
    char *comment;
    Py_ssize_t comment_size;
    int plt = 0;

    if (!PyArg_ParseTuple(
            args,
            "ss|OOOsOnOOpssbbnz#p",
            &mode,
            &format,
            &offset,
            &tile_offset,
            &tile_size,
            &quality_mode,
            &quality_layers,
            &num_resolutions,
            &cblk_size,
            &precinct_size,
            &irreversible,
            &progression,
            &cinema_mode,
            &mct,
            &sgnd,
            &fd,
            &comment,
            &comment_size,
            &plt
        )) {
        return NULL;
    }

    if (strcmp(format, "j2k") == 0) {
        codec_format = OPJ_CODEC_J2K;
    } else if (strcmp(format, "jpt") == 0) {
        codec_format = OPJ_CODEC_JPT;
    } else if (strcmp(format, "jp2") == 0) {
        codec_format = OPJ_CODEC_JP2;
    } else {
        return NULL;
    }

    if (strcmp(progression, "LRCP") == 0) {
        prog_order = OPJ_LRCP;
    } else if (strcmp(progression, "RLCP") == 0) {
        prog_order = OPJ_RLCP;
    } else if (strcmp(progression, "RPCL") == 0) {
        prog_order = OPJ_RPCL;
    } else if (strcmp(progression, "PCRL") == 0) {
        prog_order = OPJ_PCRL;
    } else if (strcmp(progression, "CPRL") == 0) {
        prog_order = OPJ_CPRL;
    } else {
        return NULL;
    }

    if (strcmp(cinema_mode, "no") == 0) {
        cine_mode = OPJ_OFF;
    } else if (strcmp(cinema_mode, "cinema2k-24") == 0) {
        cine_mode = OPJ_CINEMA2K_24;
    } else if (strcmp(cinema_mode, "cinema2k-48") == 0) {
        cine_mode = OPJ_CINEMA2K_48;
    } else if (strcmp(cinema_mode, "cinema4k-24") == 0) {
        cine_mode = OPJ_CINEMA4K_24;
    } else {
        return NULL;
    }

    encoder = PyImaging_EncoderNew(sizeof(JPEG2KENCODESTATE));
    if (!encoder) {
        return NULL;
    }

    encoder->encode = ImagingJpeg2KEncode;
    encoder->cleanup = ImagingJpeg2KEncodeCleanup;
    encoder->pushes_fd = 1;

    context = (JPEG2KENCODESTATE *)encoder->state.context;

    context->fd = fd;
    context->format = codec_format;
    context->offset_x = context->offset_y = 0;

    j2k_decode_coord_tuple(offset, &context->offset_x, &context->offset_y);
    j2k_decode_coord_tuple(
        tile_offset, &context->tile_offset_x, &context->tile_offset_y
    );
    j2k_decode_coord_tuple(tile_size, &context->tile_size_x, &context->tile_size_y);

    /* Error on illegal tile offsets */
    if (context->tile_size_x && context->tile_size_y) {
        if (context->tile_offset_x <= context->offset_x - context->tile_size_x ||
            context->tile_offset_y <= context->offset_y - context->tile_size_y) {
            PyErr_SetString(
                PyExc_ValueError,
                "JPEG 2000 tile offset too small; top left tile must "
                "intersect image area"
            );
            Py_DECREF(encoder);
            return NULL;
        }

        if (context->tile_offset_x > context->offset_x ||
            context->tile_offset_y > context->offset_y) {
            PyErr_SetString(
                PyExc_ValueError, "JPEG 2000 tile offset too large to cover image area"
            );
            Py_DECREF(encoder);
            return NULL;
        }
    }

    if (comment && comment_size > 0) {
        /* Size is stored as as an uint16, subtract 4 bytes for the header */
        if (comment_size >= 65532) {
            PyErr_SetString(PyExc_ValueError, "JPEG 2000 comment is too long");
            Py_DECREF(encoder);
            return NULL;
        }

        char *p = malloc(comment_size + 1);
        if (!p) {
            Py_DECREF(encoder);
            return ImagingError_MemoryError();
        }
        memcpy(p, comment, comment_size);
        p[comment_size] = '\0';
        context->comment = p;
    }

    if (quality_layers && PySequence_Check(quality_layers)) {
        context->quality_is_in_db = strcmp(quality_mode, "dB") == 0;
        context->quality_layers = quality_layers;
        Py_INCREF(quality_layers);
    }

    context->num_resolutions = num_resolutions;

    j2k_decode_coord_tuple(cblk_size, &context->cblk_width, &context->cblk_height);
    j2k_decode_coord_tuple(
        precinct_size, &context->precinct_width, &context->precinct_height
    );

    context->irreversible = irreversible;
    context->progression = prog_order;
    context->cinema_mode = cine_mode;
    context->mct = mct;
    context->sgnd = sgnd;
    context->plt = plt;

    return (PyObject *)encoder;
}

#endif