# # The Python Imaging Library. # $Id$ # # JPEG (JFIF) file handling # # See "Digital Compression and Coding of Continous-Tone Still Images, # Part 1, Requirements and Guidelines" (CCITT T.81 / ISO 10918-1) # # History: # 1995-09-09 fl Created # 1995-09-13 fl Added full parser # 1996-03-25 fl Added hack to use the IJG command line utilities # 1996-05-05 fl Workaround Photoshop 2.5 CMYK polarity bug # 1996-05-28 fl Added draft support, JFIF version (0.1) # 1996-12-30 fl Added encoder options, added progression property (0.2) # 1997-08-27 fl Save mode 1 images as BW (0.3) # 1998-07-12 fl Added YCbCr to draft and save methods (0.4) # 1998-10-19 fl Don't hang on files using 16-bit DQT's (0.4.1) # 2001-04-16 fl Extract DPI settings from JFIF files (0.4.2) # 2002-07-01 fl Skip pad bytes before markers; identify Exif files (0.4.3) # 2003-04-25 fl Added experimental EXIF decoder (0.5) # 2003-06-06 fl Added experimental EXIF GPSinfo decoder # 2003-09-13 fl Extract COM markers # 2009-09-06 fl Added icc_profile support (from Florian Hoech) # 2009-03-06 fl Changed CMYK handling; always use Adobe polarity (0.6) # 2009-03-08 fl Added subsampling support (from Justin Huff). # # Copyright (c) 1997-2003 by Secret Labs AB. # Copyright (c) 1995-1996 by Fredrik Lundh. # # See the README file for information on usage and redistribution. # __version__ = "0.6" import array, struct from . import Image, ImageFile, _binary i8 = _binary.i8 o8 = _binary.o8 i16 = _binary.i16be i32 = _binary.i32be # # Parser def Skip(self, marker): n = i16(self.fp.read(2))-2 ImageFile._safe_read(self.fp, n) def APP(self, marker): # # Application marker. Store these in the APP dictionary. # Also look for well-known application markers. n = i16(self.fp.read(2))-2 s = ImageFile._safe_read(self.fp, n) app = "APP%d" % (marker&15) self.app[app] = s # compatibility self.applist.append((app, s)) if marker == 0xFFE0 and s[:4] == b"JFIF": # extract JFIF information self.info["jfif"] = version = i16(s, 5) # version self.info["jfif_version"] = divmod(version, 256) # extract JFIF properties try: jfif_unit = i8(s[7]) jfif_density = i16(s, 8), i16(s, 10) except: pass else: if jfif_unit == 1: self.info["dpi"] = jfif_density self.info["jfif_unit"] = jfif_unit self.info["jfif_density"] = jfif_density elif marker == 0xFFE1 and s[:5] == b"Exif\0": # extract Exif information (incomplete) self.info["exif"] = s # FIXME: value will change elif marker == 0xFFE2 and s[:5] == b"FPXR\0": # extract FlashPix information (incomplete) self.info["flashpix"] = s # FIXME: value will change elif marker == 0xFFE2 and s[:12] == b"ICC_PROFILE\0": # Since an ICC profile can be larger than the maximum size of # a JPEG marker (64K), we need provisions to split it into # multiple markers. The format defined by the ICC specifies # one or more APP2 markers containing the following data: # Identifying string ASCII "ICC_PROFILE\0" (12 bytes) # Marker sequence number 1, 2, etc (1 byte) # Number of markers Total of APP2's used (1 byte) # Profile data (remainder of APP2 data) # Decoders should use the marker sequence numbers to # reassemble the profile, rather than assuming that the APP2 # markers appear in the correct sequence. self.icclist.append(s) elif marker == 0xFFEE and s[:5] == b"Adobe": self.info["adobe"] = i16(s, 5) # extract Adobe custom properties try: adobe_transform = i8(s[1]) except: pass else: self.info["adobe_transform"] = adobe_transform def COM(self, marker): # # Comment marker. Store these in the APP dictionary. n = i16(self.fp.read(2))-2 s = ImageFile._safe_read(self.fp, n) self.app["COM"] = s # compatibility self.applist.append(("COM", s)) def SOF(self, marker): # # Start of frame marker. Defines the size and mode of the # image. JPEG is colour blind, so we use some simple # heuristics to map the number of layers to an appropriate # mode. Note that this could be made a bit brighter, by # looking for JFIF and Adobe APP markers. n = i16(self.fp.read(2))-2 s = ImageFile._safe_read(self.fp, n) self.size = i16(s[3:]), i16(s[1:]) self.bits = i8(s[0]) if self.bits != 8: raise SyntaxError("cannot handle %d-bit layers" % self.bits) self.layers = i8(s[5]) if self.layers == 1: self.mode = "L" elif self.layers == 3: self.mode = "RGB" elif self.layers == 4: self.mode = "CMYK" else: raise SyntaxError("cannot handle %d-layer images" % self.layers) if marker in [0xFFC2, 0xFFC6, 0xFFCA, 0xFFCE]: self.info["progressive"] = self.info["progression"] = 1 if self.icclist: # fixup icc profile self.icclist.sort() # sort by sequence number if i8(self.icclist[0][13]) == len(self.icclist): profile = [] for p in self.icclist: profile.append(p[14:]) icc_profile = b"".join(profile) else: icc_profile = None # wrong number of fragments self.info["icc_profile"] = icc_profile self.icclist = None for i in range(6, len(s), 3): t = s[i:i+3] # 4-tuples: id, vsamp, hsamp, qtable self.layer.append((t[0], i8(t[1])//16, i8(t[1])&15, i8(t[2]))) def DQT(self, marker): # # Define quantization table. Support baseline 8-bit tables # only. Note that there might be more than one table in # each marker. # FIXME: The quantization tables can be used to estimate the # compression quality. n = i16(self.fp.read(2))-2 s = ImageFile._safe_read(self.fp, n) while len(s): if len(s) < 65: raise SyntaxError("bad quantization table marker") v = i8(s[0]) if v//16 == 0: self.quantization[v&15] = array.array("b", s[1:65]) s = s[65:] else: return # FIXME: add code to read 16-bit tables! # raise SyntaxError, "bad quantization table element size" # # JPEG marker table MARKER = { 0xFFC0: ("SOF0", "Baseline DCT", SOF), 0xFFC1: ("SOF1", "Extended Sequential DCT", SOF), 0xFFC2: ("SOF2", "Progressive DCT", SOF), 0xFFC3: ("SOF3", "Spatial lossless", SOF), 0xFFC4: ("DHT", "Define Huffman table", Skip), 0xFFC5: ("SOF5", "Differential sequential DCT", SOF), 0xFFC6: ("SOF6", "Differential progressive DCT", SOF), 0xFFC7: ("SOF7", "Differential spatial", SOF), 0xFFC8: ("JPG", "Extension", None), 0xFFC9: ("SOF9", "Extended sequential DCT (AC)", SOF), 0xFFCA: ("SOF10", "Progressive DCT (AC)", SOF), 0xFFCB: ("SOF11", "Spatial lossless DCT (AC)", SOF), 0xFFCC: ("DAC", "Define arithmetic coding conditioning", Skip), 0xFFCD: ("SOF13", "Differential sequential DCT (AC)", SOF), 0xFFCE: ("SOF14", "Differential progressive DCT (AC)", SOF), 0xFFCF: ("SOF15", "Differential spatial (AC)", SOF), 0xFFD0: ("RST0", "Restart 0", None), 0xFFD1: ("RST1", "Restart 1", None), 0xFFD2: ("RST2", "Restart 2", None), 0xFFD3: ("RST3", "Restart 3", None), 0xFFD4: ("RST4", "Restart 4", None), 0xFFD5: ("RST5", "Restart 5", None), 0xFFD6: ("RST6", "Restart 6", None), 0xFFD7: ("RST7", "Restart 7", None), 0xFFD8: ("SOI", "Start of image", None), 0xFFD9: ("EOI", "End of image", None), 0xFFDA: ("SOS", "Start of scan", Skip), 0xFFDB: ("DQT", "Define quantization table", DQT), 0xFFDC: ("DNL", "Define number of lines", Skip), 0xFFDD: ("DRI", "Define restart interval", Skip), 0xFFDE: ("DHP", "Define hierarchical progression", SOF), 0xFFDF: ("EXP", "Expand reference component", Skip), 0xFFE0: ("APP0", "Application segment 0", APP), 0xFFE1: ("APP1", "Application segment 1", APP), 0xFFE2: ("APP2", "Application segment 2", APP), 0xFFE3: ("APP3", "Application segment 3", APP), 0xFFE4: ("APP4", "Application segment 4", APP), 0xFFE5: ("APP5", "Application segment 5", APP), 0xFFE6: ("APP6", "Application segment 6", APP), 0xFFE7: ("APP7", "Application segment 7", APP), 0xFFE8: ("APP8", "Application segment 8", APP), 0xFFE9: ("APP9", "Application segment 9", APP), 0xFFEA: ("APP10", "Application segment 10", APP), 0xFFEB: ("APP11", "Application segment 11", APP), 0xFFEC: ("APP12", "Application segment 12", APP), 0xFFED: ("APP13", "Application segment 13", APP), 0xFFEE: ("APP14", "Application segment 14", APP), 0xFFEF: ("APP15", "Application segment 15", APP), 0xFFF0: ("JPG0", "Extension 0", None), 0xFFF1: ("JPG1", "Extension 1", None), 0xFFF2: ("JPG2", "Extension 2", None), 0xFFF3: ("JPG3", "Extension 3", None), 0xFFF4: ("JPG4", "Extension 4", None), 0xFFF5: ("JPG5", "Extension 5", None), 0xFFF6: ("JPG6", "Extension 6", None), 0xFFF7: ("JPG7", "Extension 7", None), 0xFFF8: ("JPG8", "Extension 8", None), 0xFFF9: ("JPG9", "Extension 9", None), 0xFFFA: ("JPG10", "Extension 10", None), 0xFFFB: ("JPG11", "Extension 11", None), 0xFFFC: ("JPG12", "Extension 12", None), 0xFFFD: ("JPG13", "Extension 13", None), 0xFFFE: ("COM", "Comment", COM) } def _accept(prefix): return prefix[0:1] == b"\377" ## # Image plugin for JPEG and JFIF images. class JpegImageFile(ImageFile.ImageFile): format = "JPEG" format_description = "JPEG (ISO 10918)" def _open(self): s = self.fp.read(1) if i8(s[0]) != 255: raise SyntaxError("not a JPEG file") # Create attributes self.bits = self.layers = 0 # JPEG specifics (internal) self.layer = [] self.huffman_dc = {} self.huffman_ac = {} self.quantization = {} self.app = {} # compatibility self.applist = [] self.icclist = [] while True: s = s + self.fp.read(1) i = i16(s) if i in MARKER: name, description, handler = MARKER[i] # print hex(i), name, description if handler is not None: handler(self, i) if i == 0xFFDA: # start of scan rawmode = self.mode if self.mode == "CMYK": rawmode = "CMYK;I" # assume adobe conventions self.tile = [("jpeg", (0,0) + self.size, 0, (rawmode, ""))] # self.__offset = self.fp.tell() break s = self.fp.read(1) elif i == 0 or i == 65535: # padded marker or junk; move on s = "\xff" else: raise SyntaxError("no marker found") def draft(self, mode, size): if len(self.tile) != 1: return d, e, o, a = self.tile[0] scale = 0 if a[0] == "RGB" and mode in ["L", "YCbCr"]: self.mode = mode a = mode, "" if size: scale = max(self.size[0] // size[0], self.size[1] // size[1]) for s in [8, 4, 2, 1]: if scale >= s: break e = e[0], e[1], (e[2]-e[0]+s-1)//s+e[0], (e[3]-e[1]+s-1)//s+e[1] self.size = ((self.size[0]+s-1)//s, (self.size[1]+s-1)//s) scale = s self.tile = [(d, e, o, a)] self.decoderconfig = (scale, 1) return self def load_djpeg(self): # ALTERNATIVE: handle JPEGs via the IJG command line utilities import tempfile, os file = tempfile.mktemp() os.system("djpeg %s >%s" % (self.filename, file)) try: self.im = Image.core.open_ppm(file) finally: try: os.unlink(file) except: pass self.mode = self.im.mode self.size = self.im.size self.tile = [] def _getexif(self): # Extract EXIF information. This method is highly experimental, # and is likely to be replaced with something better in a future # version. from . import TiffImagePlugin import io def fixup(value): if len(value) == 1: return value[0] return value # The EXIF record consists of a TIFF file embedded in a JPEG # application marker (!). try: data = self.info["exif"] except KeyError: return None file = io.BytesIO(data[6:]) head = file.read(8) exif = {} # process dictionary info = TiffImagePlugin.ImageFileDirectory(head) info.load(file) for key, value in info.items(): exif[key] = fixup(value) # get exif extension try: file.seek(exif[0x8769]) except KeyError: pass else: info = TiffImagePlugin.ImageFileDirectory(head) info.load(file) for key, value in info.items(): exif[key] = fixup(value) # get gpsinfo extension try: file.seek(exif[0x8825]) except KeyError: pass else: info = TiffImagePlugin.ImageFileDirectory(head) info.load(file) exif[0x8825] = gps = {} for key, value in info.items(): gps[key] = fixup(value) return exif # -------------------------------------------------------------------- # stuff to save JPEG files RAWMODE = { "1": "L", "L": "L", "RGB": "RGB", "RGBA": "RGB", "RGBX": "RGB", "CMYK": "CMYK;I", # assume adobe conventions "YCbCr": "YCbCr", } def _save(im, fp, filename): try: rawmode = RAWMODE[im.mode] except KeyError: raise IOError("cannot write mode %s as JPEG" % im.mode) info = im.encoderinfo dpi = info.get("dpi", (0, 0)) subsampling = info.get("subsampling", -1) if subsampling == "4:4:4": subsampling = 0 elif subsampling == "4:2:2": subsampling = 1 elif subsampling == "4:1:1": subsampling = 2 extra = b"" icc_profile = info.get("icc_profile") if icc_profile: ICC_OVERHEAD_LEN = 14 MAX_BYTES_IN_MARKER = 65533 MAX_DATA_BYTES_IN_MARKER = MAX_BYTES_IN_MARKER - ICC_OVERHEAD_LEN markers = [] while icc_profile: markers.append(icc_profile[:MAX_DATA_BYTES_IN_MARKER]) icc_profile = icc_profile[MAX_DATA_BYTES_IN_MARKER:] i = 1 for marker in markers: size = struct.pack(">H", 2 + ICC_OVERHEAD_LEN + len(marker)) extra = extra + (b"\xFF\xE2" + size + b"ICC_PROFILE\0" + o8(i) + o8(len(markers)) + marker) i = i + 1 # get keyword arguments im.encoderconfig = ( info.get("quality", 0), # "progressive" is the official name, but older documentation # says "progression" # FIXME: issue a warning if the wrong form is used (post-1.1.7) "progressive" in info or "progression" in info, info.get("smooth", 0), "optimize" in info, info.get("streamtype", 0), dpi[0], dpi[1], subsampling, extra, info.get("exif", b"") ) ImageFile._save(im, fp, [("jpeg", (0,0)+im.size, 0, rawmode)]) def _save_cjpeg(im, fp, filename): # ALTERNATIVE: handle JPEGs via the IJG command line utilities. import os file = im._dump() os.system("cjpeg %s >%s" % (file, filename)) try: os.unlink(file) except: pass # -------------------------------------------------------------------q- # Registry stuff Image.register_open("JPEG", JpegImageFile, _accept) Image.register_save("JPEG", _save) Image.register_extension("JPEG", ".jfif") Image.register_extension("JPEG", ".jpe") Image.register_extension("JPEG", ".jpg") Image.register_extension("JPEG", ".jpeg") Image.register_mime("JPEG", "image/jpeg")