# # The Python Imaging Library. # $Id$ # # standard channel operations # # History: # 1996-03-24 fl Created # 1996-08-13 fl Added logical operations (for "1" images) # 2000-10-12 fl Added offset method (from Image.py) # # Copyright (c) 1997-2000 by Secret Labs AB # Copyright (c) 1996-2000 by Fredrik Lundh # # See the README file for information on usage and redistribution. # from . import Image def constant(image, value): """Fill a channel with a given gray level. :rtype: :py:class:`~PIL.Image.Image` """ return Image.new("L", image.size, value) def duplicate(image): """Copy a channel. Alias for :py:meth:`PIL.Image.Image.copy`. :rtype: :py:class:`~PIL.Image.Image` """ return image.copy() def invert(image): """ Invert an image (channel). :: out = MAX - image :rtype: :py:class:`~PIL.Image.Image` """ image.load() return image._new(image.im.chop_invert()) def lighter(image1, image2): """ Compares the two images, pixel by pixel, and returns a new image containing the lighter values. :: out = max(image1, image2) :rtype: :py:class:`~PIL.Image.Image` """ image1.load() image2.load() return image1._new(image1.im.chop_lighter(image2.im)) def darker(image1, image2): """ Compares the two images, pixel by pixel, and returns a new image containing the darker values. :: out = min(image1, image2) :rtype: :py:class:`~PIL.Image.Image` """ image1.load() image2.load() return image1._new(image1.im.chop_darker(image2.im)) def difference(image1, image2): """ Returns the absolute value of the pixel-by-pixel difference between the two images. :: out = abs(image1 - image2) :rtype: :py:class:`~PIL.Image.Image` """ image1.load() image2.load() return image1._new(image1.im.chop_difference(image2.im)) def multiply(image1, image2): """ Superimposes two images on top of each other. If you multiply an image with a solid black image, the result is black. If you multiply with a solid white image, the image is unaffected. :: out = image1 * image2 / MAX :rtype: :py:class:`~PIL.Image.Image` """ image1.load() image2.load() return image1._new(image1.im.chop_multiply(image2.im)) def screen(image1, image2): """ Superimposes two inverted images on top of each other. :: out = MAX - ((MAX - image1) * (MAX - image2) / MAX) :rtype: :py:class:`~PIL.Image.Image` """ image1.load() image2.load() return image1._new(image1.im.chop_screen(image2.im)) def soft_light(image1, image2): """ Superimposes two images on top of each other using the Soft Light algorithm :rtype: :py:class:`~PIL.Image.Image` """ image1.load() image2.load() return image1._new(image1.im.chop_soft_light(image2.im)) def hard_light(image1, image2): """ Superimposes two images on top of each other using the Hard Light algorithm :rtype: :py:class:`~PIL.Image.Image` """ image1.load() image2.load() return image1._new(image1.im.chop_hard_light(image2.im)) def overlay(image1, image2): """ Superimposes two images on top of each other using the Overlay algorithm :rtype: :py:class:`~PIL.Image.Image` """ image1.load() image2.load() return image1._new(image1.im.chop_overlay(image2.im)) def add(image1, image2, scale=1.0, offset=0): """ Adds two images, dividing the result by scale and adding the offset. If omitted, scale defaults to 1.0, and offset to 0.0. :: out = ((image1 + image2) / scale + offset) :rtype: :py:class:`~PIL.Image.Image` """ image1.load() image2.load() return image1._new(image1.im.chop_add(image2.im, scale, offset)) def subtract(image1, image2, scale=1.0, offset=0): """ Subtracts two images, dividing the result by scale and adding the offset. If omitted, scale defaults to 1.0, and offset to 0.0. :: out = ((image1 - image2) / scale + offset) :rtype: :py:class:`~PIL.Image.Image` """ image1.load() image2.load() return image1._new(image1.im.chop_subtract(image2.im, scale, offset)) def add_modulo(image1, image2): """Add two images, without clipping the result. :: out = ((image1 + image2) % MAX) :rtype: :py:class:`~PIL.Image.Image` """ image1.load() image2.load() return image1._new(image1.im.chop_add_modulo(image2.im)) def subtract_modulo(image1, image2): """Subtract two images, without clipping the result. :: out = ((image1 - image2) % MAX) :rtype: :py:class:`~PIL.Image.Image` """ image1.load() image2.load() return image1._new(image1.im.chop_subtract_modulo(image2.im)) def logical_and(image1, image2): """Logical AND between two images. Both of the images must have mode "1". If you would like to perform a logical AND on an image with a mode other than "1", try :py:meth:`~PIL.ImageChops.multiply` instead, using a black-and-white mask as the second image. :: out = ((image1 and image2) % MAX) :rtype: :py:class:`~PIL.Image.Image` """ image1.load() image2.load() return image1._new(image1.im.chop_and(image2.im)) def logical_or(image1, image2): """Logical OR between two images. Both of the images must have mode "1". :: out = ((image1 or image2) % MAX) :rtype: :py:class:`~PIL.Image.Image` """ image1.load() image2.load() return image1._new(image1.im.chop_or(image2.im)) def logical_xor(image1, image2): """Logical XOR between two images. Both of the images must have mode "1". :: out = ((bool(image1) != bool(image2)) % MAX) :rtype: :py:class:`~PIL.Image.Image` """ image1.load() image2.load() return image1._new(image1.im.chop_xor(image2.im)) def blend(image1, image2, alpha): """Blend images using constant transparency weight. Alias for :py:func:`PIL.Image.blend`. :rtype: :py:class:`~PIL.Image.Image` """ return Image.blend(image1, image2, alpha) def composite(image1, image2, mask): """Create composite using transparency mask. Alias for :py:func:`PIL.Image.composite`. :rtype: :py:class:`~PIL.Image.Image` """ return Image.composite(image1, image2, mask) def offset(image, xoffset, yoffset=None): """Returns a copy of the image where data has been offset by the given distances. Data wraps around the edges. If ``yoffset`` is omitted, it is assumed to be equal to ``xoffset``. :param image: Input image. :param xoffset: The horizontal distance. :param yoffset: The vertical distance. If omitted, both distances are set to the same value. :rtype: :py:class:`~PIL.Image.Image` """ if yoffset is None: yoffset = xoffset image.load() return image._new(image.im.offset(xoffset, yoffset))