from helper import unittest, PillowTestCase, lena, py3 from helper import djpeg_available, cjpeg_available import random from io import BytesIO from PIL import Image from PIL import ImageFile from PIL import JpegImagePlugin codecs = dir(Image.core) test_file = "Tests/images/lena.jpg" class TestFileJpeg(PillowTestCase): def setUp(self): if "jpeg_encoder" not in codecs or "jpeg_decoder" not in codecs: self.skipTest("jpeg support not available") def roundtrip(self, im, **options): out = BytesIO() im.save(out, "JPEG", **options) bytes = out.tell() out.seek(0) im = Image.open(out) im.bytes = bytes # for testing only return im def test_sanity(self): # internal version number self.assertRegexpMatches(Image.core.jpeglib_version, "\d+\.\d+$") im = Image.open(test_file) im.load() self.assertEqual(im.mode, "RGB") self.assertEqual(im.size, (128, 128)) self.assertEqual(im.format, "JPEG") def test_app(self): # Test APP/COM reader (@PIL135) im = Image.open(test_file) self.assertEqual( im.applist[0], ("APP0", b"JFIF\x00\x01\x01\x00\x00\x01\x00\x01\x00\x00")) self.assertEqual(im.applist[1], ("COM", b"Python Imaging Library")) self.assertEqual(len(im.applist), 2) def test_cmyk(self): # Test CMYK handling. Thanks to Tim and Charlie for test data, # Michael for getting me to look one more time. f = "Tests/images/pil_sample_cmyk.jpg" im = Image.open(f) # the source image has red pixels in the upper left corner. c, m, y, k = [x / 255.0 for x in im.getpixel((0, 0))] self.assertEqual(c, 0.0) self.assertGreater(m, 0.8) self.assertGreater(y, 0.8) self.assertEqual(k, 0.0) # the opposite corner is black c, m, y, k = [x / 255.0 for x in im.getpixel(( im.size[0]-1, im.size[1]-1))] self.assertGreater(k, 0.9) # roundtrip, and check again im = self.roundtrip(im) c, m, y, k = [x / 255.0 for x in im.getpixel((0, 0))] self.assertEqual(c, 0.0) self.assertGreater(m, 0.8) self.assertGreater(y, 0.8) self.assertEqual(k, 0.0) c, m, y, k = [x / 255.0 for x in im.getpixel(( im.size[0]-1, im.size[1]-1))] self.assertGreater(k, 0.9) def test_dpi(self): def test(xdpi, ydpi=None): im = Image.open(test_file) im = self.roundtrip(im, dpi=(xdpi, ydpi or xdpi)) return im.info.get("dpi") self.assertEqual(test(72), (72, 72)) self.assertEqual(test(300), (300, 300)) self.assertEqual(test(100, 200), (100, 200)) self.assertEqual(test(0), None) # square pixels def test_icc(self): # Test ICC support im1 = Image.open("Tests/images/rgb.jpg") icc_profile = im1.info["icc_profile"] self.assertEqual(len(icc_profile), 3144) # Roundtrip via physical file. f = self.tempfile("temp.jpg") im1.save(f, icc_profile=icc_profile) im2 = Image.open(f) self.assertEqual(im2.info.get("icc_profile"), icc_profile) # Roundtrip via memory buffer. im1 = self.roundtrip(lena()) im2 = self.roundtrip(lena(), icc_profile=icc_profile) self.assert_image_equal(im1, im2) self.assertFalse(im1.info.get("icc_profile")) self.assertTrue(im2.info.get("icc_profile")) def test_icc_big(self): # Make sure that the "extra" support handles large blocks def test(n): # The ICC APP marker can store 65519 bytes per marker, so # using a 4-byte test code should allow us to detect out of # order issues. icc_profile = (b"Test"*int(n/4+1))[:n] assert len(icc_profile) == n # sanity im1 = self.roundtrip(lena(), icc_profile=icc_profile) self.assertEqual(im1.info.get("icc_profile"), icc_profile or None) test(0) test(1) test(3) test(4) test(5) test(65533-14) # full JPEG marker block test(65533-14+1) # full block plus one byte test(ImageFile.MAXBLOCK) # full buffer block test(ImageFile.MAXBLOCK+1) # full buffer block plus one byte test(ImageFile.MAXBLOCK*4+3) # large block def test_optimize(self): im1 = self.roundtrip(lena()) im2 = self.roundtrip(lena(), optimize=1) self.assert_image_equal(im1, im2) self.assertGreaterEqual(im1.bytes, im2.bytes) def test_optimize_large_buffer(self): # https://github.com/python-pillow/Pillow/issues/148 f = self.tempfile('temp.jpg') # this requires ~ 1.5x Image.MAXBLOCK im = Image.new("RGB", (4096, 4096), 0xff3333) im.save(f, format="JPEG", optimize=True) def test_progressive(self): im1 = self.roundtrip(lena()) im2 = self.roundtrip(lena(), progressive=True) self.assert_image_equal(im1, im2) self.assertGreaterEqual(im1.bytes, im2.bytes) def test_progressive_large_buffer(self): f = self.tempfile('temp.jpg') # this requires ~ 1.5x Image.MAXBLOCK im = Image.new("RGB", (4096, 4096), 0xff3333) im.save(f, format="JPEG", progressive=True) def test_progressive_large_buffer_highest_quality(self): f = self.tempfile('temp.jpg') if py3: a = bytes(random.randint(0, 255) for _ in range(256 * 256 * 3)) else: a = b''.join(chr(random.randint(0, 255)) for _ in range( 256 * 256 * 3)) im = Image.frombuffer("RGB", (256, 256), a, "raw", "RGB", 0, 1) # this requires more bytes than pixels in the image im.save(f, format="JPEG", progressive=True, quality=100) def test_large_exif(self): # https://github.com/python-pillow/Pillow/issues/148 f = self.tempfile('temp.jpg') im = lena() im.save(f, 'JPEG', quality=90, exif=b"1"*65532) def test_progressive_compat(self): im1 = self.roundtrip(lena()) im2 = self.roundtrip(lena(), progressive=1) im3 = self.roundtrip(lena(), progression=1) # compatibility self.assert_image_equal(im1, im2) self.assert_image_equal(im1, im3) self.assertFalse(im1.info.get("progressive")) self.assertFalse(im1.info.get("progression")) self.assertTrue(im2.info.get("progressive")) self.assertTrue(im2.info.get("progression")) self.assertTrue(im3.info.get("progressive")) self.assertTrue(im3.info.get("progression")) def test_quality(self): im1 = self.roundtrip(lena()) im2 = self.roundtrip(lena(), quality=50) self.assert_image(im1, im2.mode, im2.size) self.assertGreaterEqual(im1.bytes, im2.bytes) def test_smooth(self): im1 = self.roundtrip(lena()) im2 = self.roundtrip(lena(), smooth=100) self.assert_image(im1, im2.mode, im2.size) def test_subsampling(self): def getsampling(im): layer = im.layer return layer[0][1:3] + layer[1][1:3] + layer[2][1:3] # experimental API im = self.roundtrip(lena(), subsampling=-1) # default self.assertEqual(getsampling(im), (2, 2, 1, 1, 1, 1)) im = self.roundtrip(lena(), subsampling=0) # 4:4:4 self.assertEqual(getsampling(im), (1, 1, 1, 1, 1, 1)) im = self.roundtrip(lena(), subsampling=1) # 4:2:2 self.assertEqual(getsampling(im), (2, 1, 1, 1, 1, 1)) im = self.roundtrip(lena(), subsampling=2) # 4:1:1 self.assertEqual(getsampling(im), (2, 2, 1, 1, 1, 1)) im = self.roundtrip(lena(), subsampling=3) # default (undefined) self.assertEqual(getsampling(im), (2, 2, 1, 1, 1, 1)) im = self.roundtrip(lena(), subsampling="4:4:4") self.assertEqual(getsampling(im), (1, 1, 1, 1, 1, 1)) im = self.roundtrip(lena(), subsampling="4:2:2") self.assertEqual(getsampling(im), (2, 1, 1, 1, 1, 1)) im = self.roundtrip(lena(), subsampling="4:1:1") self.assertEqual(getsampling(im), (2, 2, 1, 1, 1, 1)) self.assertRaises( TypeError, lambda: self.roundtrip(lena(), subsampling="1:1:1")) def test_exif(self): im = Image.open("Tests/images/pil_sample_rgb.jpg") info = im._getexif() self.assertEqual(info[305], 'Adobe Photoshop CS Macintosh') def test_mp(self): im = Image.open("Tests/images/pil_sample_rgb.jpg") self.assertIsNone(im._getmp()) def test_quality_keep(self): im = Image.open("Tests/images/lena.jpg") f = self.tempfile('temp.jpg') im.save(f, quality='keep') def test_junk_jpeg_header(self): # https://github.com/python-pillow/Pillow/issues/630 filename = "Tests/images/junk_jpeg_header.jpg" Image.open(filename) def test_qtables(self): im = Image.open("Tests/images/lena.jpg") qtables = im.quantization reloaded = self.roundtrip(im, qtables=qtables, subsampling=0) self.assertEqual(im.quantization, reloaded.quantization) self.assert_image_similar(im, self.roundtrip(im, qtables='web_low'), 30) self.assert_image_similar(im, self.roundtrip(im, qtables='web_high'), 30) self.assert_image_similar(im, self.roundtrip(im, qtables='keep'), 30) # values from wizard.txt in jpeg9-a src package. standard_l_qtable = [int(s) for s in """ 16 11 10 16 24 40 51 61 12 12 14 19 26 58 60 55 14 13 16 24 40 57 69 56 14 17 22 29 51 87 80 62 18 22 37 56 68 109 103 77 24 35 55 64 81 104 113 92 49 64 78 87 103 121 120 101 72 92 95 98 112 100 103 99 """.split(None)] standard_chrominance_qtable = [int(s) for s in """ 17 18 24 47 99 99 99 99 18 21 26 66 99 99 99 99 24 26 56 99 99 99 99 99 47 66 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 """.split(None)] # list of qtable lists self.assert_image_similar(im, self.roundtrip(im, qtables=[standard_l_qtable, standard_chrominance_qtable]), 30) # tuple of qtable lists self.assert_image_similar(im, self.roundtrip(im, qtables=(standard_l_qtable, standard_chrominance_qtable)), 30) # dict of qtable lists self.assert_image_similar(im, self.roundtrip(im, qtables={0: standard_l_qtable, 1: standard_chrominance_qtable}), 30) @unittest.skipUnless(djpeg_available(), "djpeg not available") def test_load_djpeg(self): img = Image.open(test_file) img.load_djpeg() self.assert_image_similar(img, Image.open(test_file), 0) @unittest.skipUnless(cjpeg_available(), "cjpeg not available") def test_save_cjpeg(self): img = Image.open(test_file) tempfile = self.tempfile("temp.jpg") JpegImagePlugin._save_cjpeg(img, 0, tempfile) # Default save quality is 75%, so a tiny bit of difference is alright self.assert_image_similar(img, Image.open(tempfile), 1) def test_no_duplicate_0x1001_tag(self): # Arrange from PIL import ExifTags tag_ids = dict(zip(ExifTags.TAGS.values(), ExifTags.TAGS.keys())) # Assert self.assertEqual(tag_ids['RelatedImageWidth'], 0x1001) self.assertEqual(tag_ids['RelatedImageLength'], 0x1002) if __name__ == '__main__': unittest.main() # End of file