# # The Python Imaging Library. # $Id$ # # the Image class wrapper # # partial release history: # 1995-09-09 fl Created # 1996-03-11 fl PIL release 0.0 (proof of concept) # 1996-04-30 fl PIL release 0.1b1 # 1999-07-28 fl PIL release 1.0 final # 2000-06-07 fl PIL release 1.1 # 2000-10-20 fl PIL release 1.1.1 # 2001-05-07 fl PIL release 1.1.2 # 2002-03-15 fl PIL release 1.1.3 # 2003-05-10 fl PIL release 1.1.4 # 2005-03-28 fl PIL release 1.1.5 # 2006-12-02 fl PIL release 1.1.6 # 2009-11-15 fl PIL release 1.1.7 # # Copyright (c) 1997-2009 by Secret Labs AB. All rights reserved. # Copyright (c) 1995-2009 by Fredrik Lundh. # # See the README file for information on usage and redistribution. # from __future__ import print_function from PIL import VERSION, PILLOW_VERSION, _plugins import warnings class _imaging_not_installed: # module placeholder def __getattr__(self, id): raise ImportError("The _imaging C module is not installed") try: # give Tk a chance to set up the environment, in case we're # using an _imaging module linked against libtcl/libtk (use # __import__ to hide this from naive packagers; we don't really # depend on Tk unless ImageTk is used, and that module already # imports Tkinter) __import__("FixTk") except ImportError: pass try: # If the _imaging C module is not present, you can still use # the "open" function to identify files, but you cannot load # them. Note that other modules should not refer to _imaging # directly; import Image and use the Image.core variable instead. from PIL import _imaging as core if PILLOW_VERSION != getattr(core, 'PILLOW_VERSION', None): raise ImportError("The _imaging extension was built for another " " version of Pillow or PIL") except ImportError as v: core = _imaging_not_installed() # Explanations for ways that we know we might have an import error if str(v).startswith("Module use of python"): # The _imaging C module is present, but not compiled for # the right version (windows only). Print a warning, if # possible. warnings.warn( "The _imaging extension was built for another version " "of Python.", RuntimeWarning ) elif str(v).startswith("The _imaging extension"): warnings.warn(str(v), RuntimeWarning) elif "Symbol not found: _PyUnicodeUCS2_FromString" in str(v): warnings.warn( "The _imaging extension was built for Python with UCS2 support; " "recompile PIL or build Python --without-wide-unicode. ", RuntimeWarning ) elif "Symbol not found: _PyUnicodeUCS4_FromString" in str(v): warnings.warn( "The _imaging extension was built for Python with UCS4 support; " "recompile PIL or build Python --with-wide-unicode. ", RuntimeWarning ) # Fail here anyway. Don't let people run with a mostly broken Pillow. raise try: import builtins except ImportError: import __builtin__ builtins = __builtin__ from PIL import ImageMode from PIL._binary import i8, o8 from PIL._util import isPath, isStringType import os, sys # type stuff import collections import numbers def isImageType(t): """ Checks if an object is an image object. .. warning:: This function is for internal use only. :param t: object to check if it's an image :returns: True if the object is an image """ return hasattr(t, "im") # # Debug level DEBUG = 0 # # Constants (also defined in _imagingmodule.c!) NONE = 0 # transpose FLIP_LEFT_RIGHT = 0 FLIP_TOP_BOTTOM = 1 ROTATE_90 = 2 ROTATE_180 = 3 ROTATE_270 = 4 # transforms AFFINE = 0 EXTENT = 1 PERSPECTIVE = 2 QUAD = 3 MESH = 4 # resampling filters NONE = 0 NEAREST = 0 ANTIALIAS = 1 # 3-lobed lanczos LINEAR = BILINEAR = 2 CUBIC = BICUBIC = 3 # dithers NONE = 0 NEAREST = 0 ORDERED = 1 # Not yet implemented RASTERIZE = 2 # Not yet implemented FLOYDSTEINBERG = 3 # default # palettes/quantizers WEB = 0 ADAPTIVE = 1 MEDIANCUT = 0 MAXCOVERAGE = 1 FASTOCTREE = 2 # categories NORMAL = 0 SEQUENCE = 1 CONTAINER = 2 if hasattr(core, 'DEFAULT_STRATEGY'): DEFAULT_STRATEGY = core.DEFAULT_STRATEGY FILTERED = core.FILTERED HUFFMAN_ONLY = core.HUFFMAN_ONLY RLE = core.RLE FIXED = core.FIXED # -------------------------------------------------------------------- # Registries ID = [] OPEN = {} MIME = {} SAVE = {} EXTENSION = {} # -------------------------------------------------------------------- # Modes supported by this version _MODEINFO = { # NOTE: this table will be removed in future versions. use # getmode* functions or ImageMode descriptors instead. # official modes "1": ("L", "L", ("1",)), "L": ("L", "L", ("L",)), "I": ("L", "I", ("I",)), "F": ("L", "F", ("F",)), "P": ("RGB", "L", ("P",)), "RGB": ("RGB", "L", ("R", "G", "B")), "RGBX": ("RGB", "L", ("R", "G", "B", "X")), "RGBA": ("RGB", "L", ("R", "G", "B", "A")), "CMYK": ("RGB", "L", ("C", "M", "Y", "K")), "YCbCr": ("RGB", "L", ("Y", "Cb", "Cr")), # Experimental modes include I;16, I;16L, I;16B, RGBa, BGR;15, and # BGR;24. Use these modes only if you know exactly what you're # doing... } if sys.byteorder == 'little': _ENDIAN = '<' else: _ENDIAN = '>' _MODE_CONV = { # official modes "1": ('|b1', None), # broken "L": ('|u1', None), "I": (_ENDIAN + 'i4', None), "F": (_ENDIAN + 'f4', None), "P": ('|u1', None), "RGB": ('|u1', 3), "RGBX": ('|u1', 4), "RGBA": ('|u1', 4), "CMYK": ('|u1', 4), "YCbCr": ('|u1', 3), } def _conv_type_shape(im): shape = im.size[1], im.size[0] typ, extra = _MODE_CONV[im.mode] if extra is None: return shape, typ else: return shape+(extra,), typ MODES = sorted(_MODEINFO.keys()) # raw modes that may be memory mapped. NOTE: if you change this, you # may have to modify the stride calculation in map.c too! _MAPMODES = ("L", "P", "RGBX", "RGBA", "CMYK", "I;16", "I;16L", "I;16B") def getmodebase(mode): """ Gets the "base" mode for given mode. This function returns "L" for images that contain grayscale data, and "RGB" for images that contain color data. :param mode: Input mode. :returns: "L" or "RGB". :exception KeyError: If the input mode was not a standard mode. """ return ImageMode.getmode(mode).basemode def getmodetype(mode): """ Gets the storage type mode. Given a mode, this function returns a single-layer mode suitable for storing individual bands. :param mode: Input mode. :returns: "L", "I", or "F". :exception KeyError: If the input mode was not a standard mode. """ return ImageMode.getmode(mode).basetype def getmodebandnames(mode): """ Gets a list of individual band names. Given a mode, this function returns a tuple containing the names of individual bands (use :func:`PIL.Image.getmodetype` to get the mode used to store each individual band. :param mode: Input mode. :returns: A tuple containing band names. The length of the tuple gives the number of bands in an image of the given mode. :exception KeyError: If the input mode was not a standard mode. """ return ImageMode.getmode(mode).bands def getmodebands(mode): """ Gets the number of individual bands for this mode. :param mode: Input mode. :returns: The number of bands in this mode. :exception KeyError: If the input mode was not a standard mode. """ return len(ImageMode.getmode(mode).bands) # -------------------------------------------------------------------- # Helpers _initialized = 0 def preinit(): "Explicitly load standard file format drivers." global _initialized if _initialized >= 1: return try: from PIL import BmpImagePlugin except ImportError: pass try: from PIL import GifImagePlugin except ImportError: pass try: from PIL import JpegImagePlugin except ImportError: pass try: from PIL import PpmImagePlugin except ImportError: pass try: from PIL import PngImagePlugin except ImportError: pass # try: # import TiffImagePlugin # except ImportError: # pass _initialized = 1 def init(): """ Explicitly initializes the Python Imaging Library. This function loads all available file format drivers. """ global _initialized if _initialized >= 2: return 0 for plugin in _plugins: try: if DEBUG: print ("Importing %s"%plugin) __import__("PIL.%s"%plugin, globals(), locals(), []) except ImportError: if DEBUG: print("Image: failed to import", end=' ') print(plugin, ":", sys.exc_info()[1]) if OPEN or SAVE: _initialized = 2 return 1 # -------------------------------------------------------------------- # Codec factories (used by tobytes/frombytes and ImageFile.load) def _getdecoder(mode, decoder_name, args, extra=()): # tweak arguments if args is None: args = () elif not isinstance(args, tuple): args = (args,) try: # get decoder decoder = getattr(core, decoder_name + "_decoder") # print(decoder, mode, args + extra) return decoder(mode, *args + extra) except AttributeError: raise IOError("decoder %s not available" % decoder_name) def _getencoder(mode, encoder_name, args, extra=()): # tweak arguments if args is None: args = () elif not isinstance(args, tuple): args = (args,) try: # get encoder encoder = getattr(core, encoder_name + "_encoder") # print(encoder, mode, args + extra) return encoder(mode, *args + extra) except AttributeError: raise IOError("encoder %s not available" % encoder_name) # -------------------------------------------------------------------- # Simple expression analyzer def coerce_e(value): return value if isinstance(value, _E) else _E(value) class _E: def __init__(self, data): self.data = data def __add__(self, other): return _E((self.data, "__add__", coerce_e(other).data)) def __mul__(self, other): return _E((self.data, "__mul__", coerce_e(other).data)) def _getscaleoffset(expr): stub = ["stub"] data = expr(_E(stub)).data try: (a, b, c) = data # simplified syntax if (a is stub and b == "__mul__" and isinstance(c, numbers.Number)): return c, 0.0 if (a is stub and b == "__add__" and isinstance(c, numbers.Number)): return 1.0, c except TypeError: pass try: ((a, b, c), d, e) = data # full syntax if (a is stub and b == "__mul__" and isinstance(c, numbers.Number) and d == "__add__" and isinstance(e, numbers.Number)): return c, e except TypeError: pass raise ValueError("illegal expression") # -------------------------------------------------------------------- # Implementation wrapper class Image: """ This class represents an image object. To create Image objects, use the appropriate factory functions. There's hardly ever any reason to call the Image constructor directly. * :func:`PIL.Image.open` * :func:`PIL.Image.new` * :func:`PIL.Image.frombytes` """ format = None format_description = None def __init__(self): # FIXME: take "new" parameters / other image? # FIXME: turn mode and size into delegating properties? self.im = None self.mode = "" self.size = (0, 0) self.palette = None self.info = {} self.category = NORMAL self.readonly = 0 def _new(self, im): new = Image() new.im = im new.mode = im.mode new.size = im.size new.palette = self.palette if im.mode == "P": from PIL import ImagePalette new.palette = ImagePalette.ImagePalette() try: new.info = self.info.copy() except AttributeError: # fallback (pre-1.5.2) new.info = {} for k, v in self.info: new.info[k] = v return new _makeself = _new # compatibility def _copy(self): self.load() self.im = self.im.copy() self.readonly = 0 def _dump(self, file=None, format=None): import tempfile if not file: file = tempfile.mktemp() self.load() if not format or format == "PPM": self.im.save_ppm(file) else: file = file + "." + format self.save(file, format) return file def __repr__(self): return "<%s.%s image mode=%s size=%dx%d at 0x%X>" % ( self.__class__.__module__, self.__class__.__name__, self.mode, self.size[0], self.size[1], id(self) ) def __getattr__(self, name): if name == "__array_interface__": # numpy array interface support new = {} shape, typestr = _conv_type_shape(self) new['shape'] = shape new['typestr'] = typestr new['data'] = self.tobytes() return new raise AttributeError(name) def tobytes(self, encoder_name="raw", *args): """ Return image as a bytes object :param encoder_name: What encoder to use. The default is to use the standard "raw" encoder. :param args: Extra arguments to the encoder. :rtype: A bytes object. """ # may pass tuple instead of argument list if len(args) == 1 and isinstance(args[0], tuple): args = args[0] if encoder_name == "raw" and args == (): args = self.mode self.load() # unpack data e = _getencoder(self.mode, encoder_name, args) e.setimage(self.im) bufsize = max(65536, self.size[0] * 4) # see RawEncode.c data = [] while True: l, s, d = e.encode(bufsize) data.append(d) if s: break if s < 0: raise RuntimeError("encoder error %d in tobytes" % s) return b"".join(data) # Declare tostring as alias to tobytes def tostring(self, *args, **kw): warnings.warn( 'tostring() is deprecated. Please call tobytes() instead.', DeprecationWarning, stacklevel=2, ) return self.tobytes(*args, **kw) def tobitmap(self, name="image"): """ Returns the image converted to an X11 bitmap. .. note:: This method only works for mode "1" images. :param name: The name prefix to use for the bitmap variables. :returns: A string containing an X11 bitmap. :raises ValueError: If the mode is not "1" """ self.load() if self.mode != "1": raise ValueError("not a bitmap") data = self.tobytes("xbm") return b"".join([("#define %s_width %d\n" % (name, self.size[0])).encode('ascii'), ("#define %s_height %d\n"% (name, self.size[1])).encode('ascii'), ("static char %s_bits[] = {\n" % name).encode('ascii'), data, b"};"]) def frombytes(self, data, decoder_name="raw", *args): """ Loads this image with pixel data from a bytes object. This method is similar to the :func:`PIL.Image.frombytes` function, but loads data into this image instead of creating a new image object. """ # may pass tuple instead of argument list if len(args) == 1 and isinstance(args[0], tuple): args = args[0] # default format if decoder_name == "raw" and args == (): args = self.mode # unpack data d = _getdecoder(self.mode, decoder_name, args) d.setimage(self.im) s = d.decode(data) if s[0] >= 0: raise ValueError("not enough image data") if s[1] != 0: raise ValueError("cannot decode image data") def fromstring(self, *args, **kw): """ Deprecated alias to frombytes """ warnings.warn('fromstring() is deprecated. Please call frombytes() instead.', DeprecationWarning) return self.frombytes(*args, **kw) def load(self): """ Allocates storage for the image and loads the pixel data. In normal cases, you don't need to call this method, since the Image class automatically loads an opened image when it is accessed for the first time. :returns: An image access object. """ if self.im and self.palette and self.palette.dirty: # realize palette self.im.putpalette(*self.palette.getdata()) self.palette.dirty = 0 self.palette.mode = "RGB" self.palette.rawmode = None if "transparency" in self.info: if isinstance(self.info["transparency"], int): self.im.putpalettealpha(self.info["transparency"], 0) else: self.im.putpalettealphas(self.info["transparency"]) self.palette.mode = "RGBA" if self.im: return self.im.pixel_access(self.readonly) def verify(self): """ Verifies the contents of a file. For data read from a file, this method attempts to determine if the file is broken, without actually decoding the image data. If this method finds any problems, it raises suitable exceptions. If you need to load the image after using this method, you must reopen the image file. """ pass def convert(self, mode=None, data=None, dither=None, palette=WEB, colors=256): """ Returns a converted copy of this image. For the "P" mode, this method translates pixels through the palette. If mode is omitted, a mode is chosen so that all information in the image and the palette can be represented without a palette. The current version supports all possible conversions between "L", "RGB" and "CMYK." When translating a colour image to black and white (mode "L"), the library uses the ITU-R 601-2 luma transform: L = R * 299/1000 + G * 587/1000 + B * 114/1000 When translating a greyscale image into a bilevel image (mode "1"), all non-zero values are set to 255 (white). To use other thresholds, use the :func:`PIL.Image.Image.point` method. :param mode: The requested mode. :param matrix: An optional conversion matrix. If given, this should be 4- or 16-tuple containing floating point values. :param dither: Dithering method, used when converting from mode "RGB" to "P". Available methods are NONE or FLOYDSTEINBERG (default). :param palette: Palette to use when converting from mode "RGB" to "P". Available palettes are WEB or ADAPTIVE. :param colors: Number of colors to use for the ADAPTIVE palette. Defaults to 256. :rtype: :class:`PIL.Image.Image` :returns: An Image object. """ if not mode: # determine default mode if self.mode == "P": self.load() if self.palette: mode = self.palette.mode else: mode = "RGB" else: return self.copy() self.load() if data: # matrix conversion if mode not in ("L", "RGB"): raise ValueError("illegal conversion") im = self.im.convert_matrix(mode, data) return self._new(im) if mode == "P" and palette == ADAPTIVE: im = self.im.quantize(colors) return self._new(im) # colourspace conversion if dither is None: dither = FLOYDSTEINBERG # fake a P-mode image, otherwise the transparency will get lost as there is # currently no other way to convert transparency into an RGBA image if self.mode == "L" and mode == "RGBA" and "transparency" in self.info: from PIL import ImagePalette self.mode = "P" bytePalette = bytes([i//3 for i in range(768)]) self.palette = ImagePalette.raw("RGB", bytePalette) self.palette.dirty = 1 self.load() try: im = self.im.convert(mode, dither) except ValueError: try: # normalize source image and try again im = self.im.convert(getmodebase(self.mode)) im = im.convert(mode, dither) except KeyError: raise ValueError("illegal conversion") return self._new(im) def quantize(self, colors=256, method=0, kmeans=0, palette=None): # methods: # 0 = median cut # 1 = maximum coverage # 2 = fast octree # NOTE: this functionality will be moved to the extended # quantizer interface in a later version of PIL. self.load() if palette: # use palette from reference image palette.load() if palette.mode != "P": raise ValueError("bad mode for palette image") if self.mode != "RGB" and self.mode != "L": raise ValueError( "only RGB or L mode images can be quantized to a palette" ) im = self.im.convert("P", 1, palette.im) return self._makeself(im) im = self.im.quantize(colors, method, kmeans) return self._new(im) def copy(self): """ Copies this image. Use this method if you wish to paste things into an image, but still retain the original. :rtype: :class:`PIL.Image.Image` :returns: An Image object. """ self.load() im = self.im.copy() return self._new(im) def crop(self, box=None): """ Returns a rectangular region from this image. The box is a 4-tuple defining the left, upper, right, and lower pixel coordinate. This is a lazy operation. Changes to the source image may or may not be reflected in the cropped image. To break the connection, call the {@link #Image.load} method on the cropped copy. :param box: The crop rectangle, as a (left, upper, right, lower)-tuple. :rtype: :class:`PIL.Image.Image` :returns: An Image object. """ self.load() if box is None: return self.copy() # lazy operation return _ImageCrop(self, box) def draft(self, mode, size): """ Configures the image file loader so it returns a version of the image that as closely as possible matches the given mode and size. For example, you can use this method to convert a colour JPEG to greyscale while loading it, or to extract a 128x192 version from a PCD file. Note that this method modifies the Image object in place. If the image has already been loaded, this method has no effect. :param mode: The requested mode. :param size: The requested size. """ pass def _expand(self, xmargin, ymargin=None): if ymargin is None: ymargin = xmargin self.load() return self._new(self.im.expand(xmargin, ymargin, 0)) def filter(self, filter): """ Filters this image using the given filter. For a list of available filters, see the :mod:`PIL.ImageFilter` module. :param filter: Filter kernel. :returns: An Image object. """ self.load() if isinstance(filter, collections.Callable): filter = filter() if not hasattr(filter, "filter"): raise TypeError("filter argument should be ImageFilter.Filter instance or class") if self.im.bands == 1: return self._new(filter.filter(self.im)) # fix to handle multiband images since _imaging doesn't ims = [] for c in range(self.im.bands): ims.append(self._new(filter.filter(self.im.getband(c)))) return merge(self.mode, ims) def getbands(self): """ Returns a tuple containing the name of each band in this image. For example, **getbands** on an RGB image returns ("R", "G", "B"). :returns: A tuple containing band names. :rtype: tuple """ return ImageMode.getmode(self.mode).bands def getbbox(self): """ Calculates the bounding box of the non-zero regions in the image. :returns: The bounding box is returned as a 4-tuple defining the left, upper, right, and lower pixel coordinate. If the image is completely empty, this method returns None. """ self.load() return self.im.getbbox() def getcolors(self, maxcolors=256): """ Returns a list of colors used in this image. :param maxcolors: Maximum number of colors. If this number is exceeded, this method returns None. The default limit is 256 colors. :returns: An unsorted list of (count, pixel) values. """ self.load() if self.mode in ("1", "L", "P"): h = self.im.histogram() out = [] for i in range(256): if h[i]: out.append((h[i], i)) if len(out) > maxcolors: return None return out return self.im.getcolors(maxcolors) def getdata(self, band = None): """ Returns the contents of this image as a sequence object containing pixel values. The sequence object is flattened, so that values for line one follow directly after the values of line zero, and so on. Note that the sequence object returned by this method is an internal PIL data type, which only supports certain sequence operations. To convert it to an ordinary sequence (e.g. for printing), use **list(im.getdata())**. :param band: What band to return. The default is to return all bands. To return a single band, pass in the index value (e.g. 0 to get the "R" band from an "RGB" image). :returns: A sequence-like object. """ self.load() if band is not None: return self.im.getband(band) return self.im # could be abused def getextrema(self): """ Gets the the minimum and maximum pixel values for each band in the image. :returns: For a single-band image, a 2-tuple containing the minimum and maximum pixel value. For a multi-band image, a tuple containing one 2-tuple for each band. """ self.load() if self.im.bands > 1: extrema = [] for i in range(self.im.bands): extrema.append(self.im.getband(i).getextrema()) return tuple(extrema) return self.im.getextrema() def getim(self): """ Returns a capsule that points to the internal image memory. :returns: A capsule object. """ self.load() return self.im.ptr def getpalette(self): """ Returns the image palette as a list. :returns: A list of color values [r, g, b, ...], or None if the image has no palette. """ self.load() try: if bytes is str: return [i8(c) for c in self.im.getpalette()] else: return list(self.im.getpalette()) except ValueError: return None # no palette def getpixel(self, xy): """ Returns the pixel value at a given position. :param xy: The coordinate, given as (x, y). :returns: The pixel value. If the image is a multi-layer image, this method returns a tuple. """ self.load() return self.im.getpixel(xy) def getprojection(self): """ Get projection to x and y axes :returns: Two sequences, indicating where there are non-zero pixels along the X-axis and the Y-axis, respectively. """ self.load() x, y = self.im.getprojection() return [i8(c) for c in x], [i8(c) for c in y] def histogram(self, mask=None, extrema=None): """ Returns a histogram for the image. The histogram is returned as a list of pixel counts, one for each pixel value in the source image. If the image has more than one band, the histograms for all bands are concatenated (for example, the histogram for an "RGB" image contains 768 values). A bilevel image (mode "1") is treated as a greyscale ("L") image by this method. If a mask is provided, the method returns a histogram for those parts of the image where the mask image is non-zero. The mask image must have the same size as the image, and be either a bi-level image (mode "1") or a greyscale image ("L"). :param mask: An optional mask. :returns: A list containing pixel counts. """ self.load() if mask: mask.load() return self.im.histogram((0, 0), mask.im) if self.mode in ("I", "F"): if extrema is None: extrema = self.getextrema() return self.im.histogram(extrema) return self.im.histogram() def offset(self, xoffset, yoffset=None): """ (Deprecated) Returns a copy of the image where the data has been offset by the given distances. Data wraps around the edges. If yoffset is omitted, it is assumed to be equal to xoffset. This method is deprecated. New code should use the :func:`PIL.ImageChops.offset` function in the :mod:`PIL.ImageChops` module. :param xoffset: The horizontal distance. :param yoffset: The vertical distance. If omitted, both distances are set to the same value. :returns: An Image object. """ if warnings: warnings.warn( "'offset' is deprecated; use 'ImageChops.offset' instead", DeprecationWarning, stacklevel=2 ) from PIL import ImageChops return ImageChops.offset(self, xoffset, yoffset) def paste(self, im, box=None, mask=None): """ Pastes another image into this image. The box argument is either a 2-tuple giving the upper left corner, a 4-tuple defining the left, upper, right, and lower pixel coordinate, or None (same as (0, 0)). If a 4-tuple is given, the size of the pasted image must match the size of the region. If the modes don't match, the pasted image is converted to the mode of this image (see the :func:`PIL.Image.Image.convert` method for details). Instead of an image, the source can be a integer or tuple containing pixel values. The method then fills the region with the given colour. When creating RGB images, you can also use colour strings as supported by the ImageColor module. If a mask is given, this method updates only the regions indicated by the mask. You can use either "1", "L" or "RGBA" images (in the latter case, the alpha band is used as mask). Where the mask is 255, the given image is copied as is. Where the mask is 0, the current value is preserved. Intermediate values can be used for transparency effects. Note that if you paste an "RGBA" image, the alpha band is ignored. You can work around this by using the same image as both source image and mask. :param im: Source image or pixel value (integer or tuple). :param box: An optional 4-tuple giving the region to paste into. If a 2-tuple is used instead, it's treated as the upper left corner. If omitted or None, the source is pasted into the upper left corner. If an image is given as the second argument and there is no third, the box defaults to (0, 0), and the second argument is interpreted as a mask image. :param mask: An optional mask image. :returns: An Image object. """ if isImageType(box) and mask is None: # abbreviated paste(im, mask) syntax mask = box; box = None if box is None: # cover all of self box = (0, 0) + self.size if len(box) == 2: # lower left corner given; get size from image or mask if isImageType(im): size = im.size elif isImageType(mask): size = mask.size else: # FIXME: use self.size here? raise ValueError( "cannot determine region size; use 4-item box" ) box = box + (box[0]+size[0], box[1]+size[1]) if isStringType(im): from PIL import ImageColor im = ImageColor.getcolor(im, self.mode) elif isImageType(im): im.load() if self.mode != im.mode: if self.mode != "RGB" or im.mode not in ("RGBA", "RGBa"): # should use an adapter for this! im = im.convert(self.mode) im = im.im self.load() if self.readonly: self._copy() if mask: mask.load() self.im.paste(im, box, mask.im) else: self.im.paste(im, box) def point(self, lut, mode=None): """ Maps this image through a lookup table or function. :param lut: A lookup table, containing 256 values per band in the image. A function can be used instead, it should take a single argument. The function is called once for each possible pixel value, and the resulting table is applied to all bands of the image. :param mode: Output mode (default is same as input). In the current version, this can only be used if the source image has mode "L" or "P", and the output has mode "1". :returns: An Image object. """ self.load() if isinstance(lut, ImagePointHandler): return lut.point(self) if not isinstance(lut, collections.Sequence): # if it isn't a list, it should be a function if self.mode in ("I", "I;16", "F"): # check if the function can be used with point_transform scale, offset = _getscaleoffset(lut) return self._new(self.im.point_transform(scale, offset)) # for other modes, convert the function to a table lut = [lut(i) for i in range(256)] * self.im.bands if self.mode == "F": # FIXME: _imaging returns a confusing error message for this case raise ValueError("point operation not supported for this mode") return self._new(self.im.point(lut, mode)) def putalpha(self, alpha): """ Adds or replaces the alpha layer in this image. If the image does not have an alpha layer, it's converted to "LA" or "RGBA". The new layer must be either "L" or "1". :param alpha: The new alpha layer. This can either be an "L" or "1" image having the same size as this image, or an integer or other color value. """ self.load() if self.readonly: self._copy() if self.mode not in ("LA", "RGBA"): # attempt to promote self to a matching alpha mode try: mode = getmodebase(self.mode) + "A" try: self.im.setmode(mode) except (AttributeError, ValueError): # do things the hard way im = self.im.convert(mode) if im.mode not in ("LA", "RGBA"): raise ValueError # sanity check self.im = im self.mode = self.im.mode except (KeyError, ValueError): raise ValueError("illegal image mode") if self.mode == "LA": band = 1 else: band = 3 if isImageType(alpha): # alpha layer if alpha.mode not in ("1", "L"): raise ValueError("illegal image mode") alpha.load() if alpha.mode == "1": alpha = alpha.convert("L") else: # constant alpha try: self.im.fillband(band, alpha) except (AttributeError, ValueError): # do things the hard way alpha = new("L", self.size, alpha) else: return self.im.putband(alpha.im, band) def putdata(self, data, scale=1.0, offset=0.0): """ Copies pixel data to this image. This method copies data from a sequence object into the image, starting at the upper left corner (0, 0), and continuing until either the image or the sequence ends. The scale and offset values are used to adjust the sequence values: **pixel = value*scale + offset**. :param data: A sequence object. :param scale: An optional scale value. The default is 1.0. :param offset: An optional offset value. The default is 0.0. """ self.load() if self.readonly: self._copy() self.im.putdata(data, scale, offset) def putpalette(self, data, rawmode="RGB"): """ Attaches a palette to this image. The image must be a "P" or "L" image, and the palette sequence must contain 768 integer values, where each group of three values represent the red, green, and blue values for the corresponding pixel index. Instead of an integer sequence, you can use an 8-bit string. :param data: A palette sequence (either a list or a string). """ from PIL import ImagePalette if self.mode not in ("L", "P"): raise ValueError("illegal image mode") self.load() if isinstance(data, ImagePalette.ImagePalette): palette = ImagePalette.raw(data.rawmode, data.palette) else: if not isinstance(data, bytes): if bytes is str: data = "".join(chr(x) for x in data) else: data = bytes(data) palette = ImagePalette.raw(rawmode, data) self.mode = "P" self.palette = palette self.palette.mode = "RGB" self.load() # install new palette def putpixel(self, xy, value): """ Modifies the pixel at the given position. The colour is given as a single numerical value for single-band images, and a tuple for multi-band images. Note that this method is relatively slow. For more extensive changes, use :func:`PIL.Image.Image.paste` or the :mod:`PIL.ImageDraw` module instead. See: * :func:`PIL.Image.Image.paste` * :func:`PIL.Image.Image.putdata` * :mod:`PIL.ImageDraw` :param xy: The pixel coordinate, given as (x, y). :param value: The pixel value. """ self.load() if self.readonly: self._copy() return self.im.putpixel(xy, value) def resize(self, size, resample=NEAREST): """ Returns a resized copy of this image. :param size: The requested size in pixels, as a 2-tuple: (width, height). :param filter: An optional resampling filter. This can be one of :attr:`PIL.Image.NEAREST` (use nearest neighbour), :attr:`PIL.Image.BILINEAR` (linear interpolation in a 2x2 environment), :attr:`PIL.Image.BICUBIC` (cubic spline interpolation in a 4x4 environment), or :attr:`PIL.Image.ANTIALIAS` (a high-quality downsampling filter). If omitted, or if the image has mode "1" or "P", it is set :attr:`PIL.Image.NEAREST`. :returns: An Image object. """ if resample not in (NEAREST, BILINEAR, BICUBIC, ANTIALIAS): raise ValueError("unknown resampling filter") self.load() if self.mode in ("1", "P"): resample = NEAREST if resample == ANTIALIAS: # requires stretch support (imToolkit & PIL 1.1.3) try: im = self.im.stretch(size, resample) except AttributeError: raise ValueError("unsupported resampling filter") else: im = self.im.resize(size, resample) return self._new(im) def rotate(self, angle, resample=NEAREST, expand=0): """ Returns a rotated copy of this image. This method returns a copy of this image, rotated the given number of degrees counter clockwise around its centre. :param angle: In degrees counter clockwise. :param filter: An optional resampling filter. This can be one of :attr:`PIL.Image.NEAREST` (use nearest neighbour), :attr:`PIL.Image.BILINEAR` (linear interpolation in a 2x2 environment), or :attr:`PIL.Image.BICUBIC` (cubic spline interpolation in a 4x4 environment). If omitted, or if the image has mode "1" or "P", it is set :attr:`PIL.Image.NEAREST`. :param expand: Optional expansion flag. If true, expands the output image to make it large enough to hold the entire rotated image. If false or omitted, make the output image the same size as the input image. :returns: An Image object. """ if expand: import math angle = -angle * math.pi / 180 matrix = [ math.cos(angle), math.sin(angle), 0.0, -math.sin(angle), math.cos(angle), 0.0 ] def transform(x, y, matrix=matrix): (a, b, c, d, e, f) = matrix return a*x + b*y + c, d*x + e*y + f # calculate output size w, h = self.size xx = [] yy = [] for x, y in ((0, 0), (w, 0), (w, h), (0, h)): x, y = transform(x, y) xx.append(x) yy.append(y) w = int(math.ceil(max(xx)) - math.floor(min(xx))) h = int(math.ceil(max(yy)) - math.floor(min(yy))) # adjust center x, y = transform(w / 2.0, h / 2.0) matrix[2] = self.size[0] / 2.0 - x matrix[5] = self.size[1] / 2.0 - y return self.transform((w, h), AFFINE, matrix, resample) if resample not in (NEAREST, BILINEAR, BICUBIC): raise ValueError("unknown resampling filter") self.load() if self.mode in ("1", "P"): resample = NEAREST return self._new(self.im.rotate(angle, resample)) def save(self, fp, format=None, **params): """ Saves this image under the given filename. If no format is specified, the format to use is determined from the filename extension, if possible. Keyword options can be used to provide additional instructions to the writer. If a writer doesn't recognise an option, it is silently ignored. The available options are described later in this handbook. You can use a file object instead of a filename. In this case, you must always specify the format. The file object must implement the **seek**, **tell**, and **write** methods, and be opened in binary mode. :param file: File name or file object. :param format: Optional format override. If omitted, the format to use is determined from the filename extension. If a file object was used instead of a filename, this parameter should always be used. :param options: Extra parameters to the image writer. :returns: None :exception KeyError: If the output format could not be determined from the file name. Use the format option to solve this. :exception IOError: If the file could not be written. The file may have been created, and may contain partial data. """ if isPath(fp): filename = fp else: if hasattr(fp, "name") and isPath(fp.name): filename = fp.name else: filename = "" # may mutate self! self.load() self.encoderinfo = params self.encoderconfig = () preinit() ext = os.path.splitext(filename)[1].lower() if not format: try: format = EXTENSION[ext] except KeyError: init() try: format = EXTENSION[ext] except KeyError: raise KeyError(ext) # unknown extension try: save_handler = SAVE[format.upper()] except KeyError: init() save_handler = SAVE[format.upper()] # unknown format if isPath(fp): fp = builtins.open(fp, "wb") close = 1 else: close = 0 try: save_handler(self, fp, filename) finally: # do what we can to clean up if close: fp.close() def seek(self, frame): """ Seeks to the given frame in this sequence file. If you seek beyond the end of the sequence, the method raises an **EOFError** exception. When a sequence file is opened, the library automatically seeks to frame 0. Note that in the current version of the library, most sequence formats only allows you to seek to the next frame. See :func:`PIL.Image.Image.tell`. :param frame: Frame number, starting at 0. :exception EOFError: If the call attempts to seek beyond the end of the sequence. """ # overridden by file handlers if frame != 0: raise EOFError def show(self, title=None, command=None): """ Displays this image. This method is mainly intended for debugging purposes. On Unix platforms, this method saves the image to a temporary PPM file, and calls the **xv** utility. On Windows, it saves the image to a temporary BMP file, and uses the standard BMP display utility to show it (usually Paint). :param title: Optional title to use for the image window, where possible. :param command: command used to show the image """ _show(self, title=title, command=command) def split(self): """ Split this image into individual bands. This method returns a tuple of individual image bands from an image. For example, splitting an "RGB" image creates three new images each containing a copy of one of the original bands (red, green, blue). :returns: A tuple containing bands. """ self.load() if self.im.bands == 1: ims = [self.copy()] else: ims = [] for i in range(self.im.bands): ims.append(self._new(self.im.getband(i))) return tuple(ims) def tell(self): """ Returns the current frame number. See :func:`PIL.Image.Image.seek`. :returns: Frame number, starting with 0. """ return 0 def thumbnail(self, size, resample=NEAREST): """ Make this image into a thumbnail. This method modifies the image to contain a thumbnail version of itself, no larger than the given size. This method calculates an appropriate thumbnail size to preserve the aspect of the image, calls the :func:`PIL.Image.Image.draft` method to configure the file reader (where applicable), and finally resizes the image. Note that the bilinear and bicubic filters in the current version of PIL are not well-suited for thumbnail generation. You should use :attr:`PIL.Image.ANTIALIAS` unless speed is much more important than quality. Also note that this function modifies the Image object in place. If you need to use the full resolution image as well, apply this method to a :func:`PIL.Image.Image.copy` of the original image. :param size: Requested size. :param resample: Optional resampling filter. This can be one of :attr:`PIL.Image.NEAREST`, :attr:`PIL.Image.BILINEAR`, :attr:`PIL.Image.BICUBIC`, or :attr:`PIL.Image.ANTIALIAS` (best quality). If omitted, it defaults to :attr:`PIL.Image.NEAREST` (this will be changed to ANTIALIAS in a future version). :returns: None """ # FIXME: the default resampling filter will be changed # to ANTIALIAS in future versions # preserve aspect ratio x, y = self.size if x > size[0]: y = int(max(y * size[0] / x, 1)); x = int(size[0]) if y > size[1]: x = int(max(x * size[1] / y, 1)); y = int(size[1]) size = x, y if size == self.size: return self.draft(None, size) self.load() try: im = self.resize(size, resample) except ValueError: if resample != ANTIALIAS: raise im = self.resize(size, NEAREST) # fallback self.im = im.im self.mode = im.mode self.size = size self.readonly = 0 # FIXME: the different tranform methods need further explanation # instead of bloating the method docs, add a separate chapter. def transform(self, size, method, data=None, resample=NEAREST, fill=1): """ Transforms this image. This method creates a new image with the given size, and the same mode as the original, and copies data to the new image using the given transform. :param size: The output size. :param method: The transformation method. This is one of :attr:`PIL.Image.EXTENT` (cut out a rectangular subregion), :attr:`PIL.Image.AFFINE` (affine transform), :attr:`PIL.Image.PERSPECTIVE` (perspective transform), :attr:`PIL.Image.QUAD` (map a quadrilateral to a rectangle), or :attr:`PIL.Image.MESH` (map a number of source quadrilaterals in one operation). :param data: Extra data to the transformation method. :param resample: Optional resampling filter. It can be one of :attr:`PIL.Image.NEAREST` (use nearest neighbour), :attr:`PIL.Image.BILINEAR` (linear interpolation in a 2x2 environment), or :attr:`PIL.Image.BICUBIC` (cubic spline interpolation in a 4x4 environment). If omitted, or if the image has mode "1" or "P", it is set to :attr:`PIL.Image.NEAREST`. :returns: An Image object. """ if isinstance(method, ImageTransformHandler): return method.transform(size, self, resample=resample, fill=fill) if hasattr(method, "getdata"): # compatibility w. old-style transform objects method, data = method.getdata() if data is None: raise ValueError("missing method data") im = new(self.mode, size, None) if method == MESH: # list of quads for box, quad in data: im.__transformer(box, self, QUAD, quad, resample, fill) else: im.__transformer((0, 0)+size, self, method, data, resample, fill) return im def __transformer(self, box, image, method, data, resample=NEAREST, fill=1): # FIXME: this should be turned into a lazy operation (?) w = box[2]-box[0] h = box[3]-box[1] if method == AFFINE: # change argument order to match implementation data = (data[2], data[0], data[1], data[5], data[3], data[4]) elif method == EXTENT: # convert extent to an affine transform x0, y0, x1, y1 = data xs = float(x1 - x0) / w ys = float(y1 - y0) / h method = AFFINE data = (x0 + xs/2, xs, 0, y0 + ys/2, 0, ys) elif method == PERSPECTIVE: # change argument order to match implementation data = (data[2], data[0], data[1], data[5], data[3], data[4], data[6], data[7]) elif method == QUAD: # quadrilateral warp. data specifies the four corners # given as NW, SW, SE, and NE. nw = data[0:2]; sw = data[2:4]; se = data[4:6]; ne = data[6:8] x0, y0 = nw; As = 1.0 / w; At = 1.0 / h data = (x0, (ne[0]-x0)*As, (sw[0]-x0)*At, (se[0]-sw[0]-ne[0]+x0)*As*At, y0, (ne[1]-y0)*As, (sw[1]-y0)*At, (se[1]-sw[1]-ne[1]+y0)*As*At) else: raise ValueError("unknown transformation method") if resample not in (NEAREST, BILINEAR, BICUBIC): raise ValueError("unknown resampling filter") image.load() self.load() if image.mode in ("1", "P"): resample = NEAREST self.im.transform2(box, image.im, method, data, resample, fill) def transpose(self, method): """ Transpose image (flip or rotate in 90 degree steps) :param method: One of :attr:`PIL.Image.FLIP_LEFT_RIGHT`, :attr:`PIL.Image.FLIP_TOP_BOTTOM`, :attr:`PIL.Image.ROTATE_90`, :attr:`PIL.Image.ROTATE_180`, or :attr:`PIL.Image.ROTATE_270`. :returns: Returns a flipped or rotated copy of this image. """ self.load() im = self.im.transpose(method) return self._new(im) # -------------------------------------------------------------------- # Lazy operations class _ImageCrop(Image): def __init__(self, im, box): Image.__init__(self) x0, y0, x1, y1 = box if x1 < x0: x1 = x0 if y1 < y0: y1 = y0 self.mode = im.mode self.size = x1-x0, y1-y0 self.__crop = x0, y0, x1, y1 self.im = im.im def load(self): # lazy evaluation! if self.__crop: self.im = self.im.crop(self.__crop) self.__crop = None if self.im: return self.im.pixel_access(self.readonly) # FIXME: future versions should optimize crop/paste # sequences! # -------------------------------------------------------------------- # Abstract handlers. class ImagePointHandler: # used as a mixin by point transforms (for use with im.point) pass class ImageTransformHandler: # used as a mixin by geometry transforms (for use with im.transform) pass # -------------------------------------------------------------------- # Factories # # Debugging def _wedge(): "Create greyscale wedge (for debugging only)" return Image()._new(core.wedge("L")) def new(mode, size, color=0): """ Creates a new image with the given mode and size. :param mode: The mode to use for the new image. :param size: A 2-tuple, containing (width, height) in pixels. :param color: What colour to use for the image. Default is black. If given, this should be a single integer or floating point value for single-band modes, and a tuple for multi-band modes (one value per band). When creating RGB images, you can also use colour strings as supported by the ImageColor module. If the colour is None, the image is not initialised. :returns: An Image object. """ if color is None: # don't initialize return Image()._new(core.new(mode, size)) if isStringType(color): # css3-style specifier from PIL import ImageColor color = ImageColor.getcolor(color, mode) return Image()._new(core.fill(mode, size, color)) def frombytes(mode, size, data, decoder_name="raw", *args): """ Creates a copy of an image memory from pixel data in a buffer. In its simplest form, this function takes three arguments (mode, size, and unpacked pixel data). You can also use any pixel decoder supported by PIL. For more information on available decoders, see the section **Writing Your Own File Decoder**. Note that this function decodes pixel data only, not entire images. If you have an entire image in a string, wrap it in a **BytesIO** object, and use :func:`PIL.Image.open` to load it. :param mode: The image mode. :param size: The image size. :param data: A byte buffer containing raw data for the given mode. :param decoder_name: What decoder to use. :param args: Additional parameters for the given decoder. :returns: An Image object. """ # may pass tuple instead of argument list if len(args) == 1 and isinstance(args[0], tuple): args = args[0] if decoder_name == "raw" and args == (): args = mode im = new(mode, size) im.frombytes(data, decoder_name, args) return im def fromstring(*args, **kw): " Deprecated alias to frombytes " warnings.warn( 'fromstring() is deprecated. Please call frombytes() instead.', DeprecationWarning, stacklevel=2 ) return frombytes(*args, **kw) def frombuffer(mode, size, data, decoder_name="raw", *args): """ Creates an image memory referencing pixel data in a byte buffer. This function is similar to :func:`PIL.Image.frombytes`, but uses data in the byte buffer, where possible. This means that changes to the original buffer object are reflected in this image). Not all modes can share memory; supported modes include "L", "RGBX", "RGBA", and "CMYK". Note that this function decodes pixel data only, not entire images. If you have an entire image file in a string, wrap it in a **BytesIO** object, and use :func:`PIL.Image.open` to load it. In the current version, the default parameters used for the "raw" decoder differs from that used for :func:`PIL.Image.fromstring`. This is a bug, and will probably be fixed in a future release. The current release issues a warning if you do this; to disable the warning, you should provide the full set of parameters. See below for details. :param mode: The image mode. :param size: The image size. :param data: A bytes or other buffer object containing raw data for the given mode. :param decoder_name: What decoder to use. :param args: Additional parameters for the given decoder. For the default encoder ("raw"), it's recommended that you provide the full set of parameters:: frombuffer(mode, size, data, "raw", mode, 0, 1) :returns: An Image object. .. versionadded:: 1.1.4 """ "Load image from bytes or buffer" # may pass tuple instead of argument list if len(args) == 1 and isinstance(args[0], tuple): args = args[0] if decoder_name == "raw": if args == (): if warnings: warnings.warn( "the frombuffer defaults may change in a future release; " "for portability, change the call to read:\n" " frombuffer(mode, size, data, 'raw', mode, 0, 1)", RuntimeWarning, stacklevel=2 ) args = mode, 0, -1 # may change to (mode, 0, 1) post-1.1.6 if args[0] in _MAPMODES: im = new(mode, (1,1)) im = im._new( core.map_buffer(data, size, decoder_name, None, 0, args) ) im.readonly = 1 return im return frombytes(mode, size, data, decoder_name, args) def fromarray(obj, mode=None): """ Creates an image memory from an object exporting the array interface (using the buffer protocol). If obj is not contiguous, then the tobytes method is called and :func:`PIL.Image.frombuffer` is used. :param obj: Object with array interface :param mode: Mode to use (will be determined from type if None) :returns: An image memory. .. versionadded:: 1.1.6 """ arr = obj.__array_interface__ shape = arr['shape'] ndim = len(shape) try: strides = arr['strides'] except KeyError: strides = None if mode is None: try: typekey = (1, 1) + shape[2:], arr['typestr'] mode, rawmode = _fromarray_typemap[typekey] except KeyError: # print typekey raise TypeError("Cannot handle this data type") else: rawmode = mode if mode in ["1", "L", "I", "P", "F"]: ndmax = 2 elif mode == "RGB": ndmax = 3 else: ndmax = 4 if ndim > ndmax: raise ValueError("Too many dimensions.") size = shape[1], shape[0] if strides is not None: if hasattr(obj, 'tobytes'): obj = obj.tobytes() else: obj = obj.tostring() return frombuffer(mode, size, obj, "raw", rawmode, 0, 1) _fromarray_typemap = { # (shape, typestr) => mode, rawmode # first two members of shape are set to one # ((1, 1), "|b1"): ("1", "1"), # broken ((1, 1), "|u1"): ("L", "L"), ((1, 1), "|i1"): ("I", "I;8"), ((1, 1), "i2"): ("I", "I;16B"), ((1, 1), "i4"): ("I", "I;32B"), ((1, 1), "f4"): ("F", "F;32BF"), ((1, 1), "f8"): ("F", "F;64BF"), ((1, 1, 3), "|u1"): ("RGB", "RGB"), ((1, 1, 4), "|u1"): ("RGBA", "RGBA"), } # shortcuts _fromarray_typemap[((1, 1), _ENDIAN + "i4")] = ("I", "I") _fromarray_typemap[((1, 1), _ENDIAN + "f4")] = ("F", "F") def open(fp, mode="r"): """ Opens and identifies the given image file. This is a lazy operation; this function identifies the file, but the actual image data is not read from the file until you try to process the data (or call the :func:`PIL.Image.Image.load` method). See :func:`PIL.Image.new` :param file: A filename (string) or a file object. The file object must implement **read**, **seek**, and **tell** methods, and be opened in binary mode. :param mode: The mode. If given, this argument must be "r". :returns: An Image object. :exception IOError: If the file cannot be found, or the image cannot be opened and identified. """ if mode != "r": raise ValueError("bad mode") if isPath(fp): filename = fp fp = builtins.open(fp, "rb") else: filename = "" prefix = fp.read(16) preinit() for i in ID: try: factory, accept = OPEN[i] if not accept or accept(prefix): fp.seek(0) return factory(fp, filename) except (SyntaxError, IndexError, TypeError): #import traceback #traceback.print_exc() pass if init(): for i in ID: try: factory, accept = OPEN[i] if not accept or accept(prefix): fp.seek(0) return factory(fp, filename) except (SyntaxError, IndexError, TypeError): #import traceback #traceback.print_exc() pass raise IOError("cannot identify image file") # # Image processing. def alpha_composite(im1, im2): """ Alpha composite im2 over im1. :param im1: The first image. :param im2: The second image. Must have the same mode and size as the first image. :returns: An Image object. """ im1.load() im2.load() return im1._new(core.alpha_composite(im1.im, im2.im)) def blend(im1, im2, alpha): """ Creates a new image by interpolating between two input images, using a constant alpha.:: out = image1 * (1.0 - alpha) + image2 * alpha :param im1: The first image. :param im2: The second image. Must have the same mode and size as the first image. :param alpha: The interpolation alpha factor. If alpha is 0.0, a copy of the first image is returned. If alpha is 1.0, a copy of the second image is returned. There are no restrictions on the alpha value. If necessary, the result is clipped to fit into the allowed output range. :returns: An Image object. """ im1.load() im2.load() return im1._new(core.blend(im1.im, im2.im, alpha)) def composite(image1, image2, mask): """ Create composite image by blending images using a transparency mask. :param image1: The first image. :param image2: The second image. Must have the same mode and size as the first image. :param mask: A mask image. This image can can have mode "1", "L", or "RGBA", and must have the same size as the other two images. """ image = image2.copy() image.paste(image1, None, mask) return image def eval(image, *args): """ Applies the function (which should take one argument) to each pixel in the given image. If the image has more than one band, the same function is applied to each band. Note that the function is evaluated once for each possible pixel value, so you cannot use random components or other generators. :param image: The input image. :param function: A function object, taking one integer argument. :returns: An Image object. """ return image.point(args[0]) def merge(mode, bands): """ Merge a set of single band images into a new multiband image. :param mode: The mode to use for the output image. :param bands: A sequence containing one single-band image for each band in the output image. All bands must have the same size. :returns: An Image object. """ if getmodebands(mode) != len(bands) or "*" in mode: raise ValueError("wrong number of bands") for im in bands[1:]: if im.mode != getmodetype(mode): raise ValueError("mode mismatch") if im.size != bands[0].size: raise ValueError("size mismatch") im = core.new(mode, bands[0].size) for i in range(getmodebands(mode)): bands[i].load() im.putband(bands[i].im, i) return bands[0]._new(im) # -------------------------------------------------------------------- # Plugin registry def register_open(id, factory, accept=None): """ Register an image file plugin. This function should not be used in application code. :param id: An image format identifier. :param factory: An image file factory method. :param accept: An optional function that can be used to quickly reject images having another format. """ id = id.upper() ID.append(id) OPEN[id] = factory, accept def register_mime(id, mimetype): """ Registers an image MIME type. This function should not be used in application code. :param id: An image format identifier. :param mimetype: The image MIME type for this format. """ MIME[id.upper()] = mimetype def register_save(id, driver): """ Registers an image save function. This function should not be used in application code. :param id: An image format identifier. :param driver: A function to save images in this format. """ SAVE[id.upper()] = driver def register_extension(id, extension): """ Registers an image extension. This function should not be used in application code. :param id: An image format identifier. :param extension: An extension used for this format. """ EXTENSION[extension.lower()] = id.upper() # -------------------------------------------------------------------- # Simple display support. User code may override this. def _show(image, **options): # override me, as necessary _showxv(image, **options) def _showxv(image, title=None, **options): from PIL import ImageShow ImageShow.show(image, title, **options)