/* * The Python Imaging Library * $Id$ * * apply convolution kernel to image * * history: * 1995-11-26 fl Created, supports 3x3 kernels * 1995-11-27 fl Added 5x5 kernels, copy border * 1999-07-26 fl Eliminated a few compiler warnings * 2002-06-09 fl Moved kernel definitions to Python * 2002-06-11 fl Support floating point kernels * 2003-09-15 fl Added ImagingExpand helper * * Copyright (c) Secret Labs AB 1997-2002. All rights reserved. * Copyright (c) Fredrik Lundh 1995. * * See the README file for information on usage and redistribution. */ /* * FIXME: Support RGB and RGBA/CMYK modes as well * FIXME: Expand image border (current version leaves border as is) * FIXME: Implement image processing gradient filters */ #include "Imaging.h" #define ROUND_UP(f) ((int)((f) >= 0.0 ? (f) + 0.5F : (f) - 0.5F)) static inline UINT8 clip8(float in) { if (in <= 0.0) { return 0; } if (in >= 255.0) { return 255; } return (UINT8)in; } static inline INT32 clip32(float in) { if (in <= 0.0) { return 0; } if (in >= pow(2, 31) - 1) { return pow(2, 31) - 1; } return (INT32)in; } Imaging ImagingExpand(Imaging imIn, int xmargin, int ymargin) { Imaging imOut; int x, y; ImagingSectionCookie cookie; if (xmargin < 0 && ymargin < 0) { return (Imaging)ImagingError_ValueError("bad kernel size"); } imOut = ImagingNewDirty( imIn->mode, imIn->xsize + 2 * xmargin, imIn->ysize + 2 * ymargin ); if (!imOut) { return NULL; } #define EXPAND_LINE(type, image, yin, yout) \ { \ for (x = 0; x < xmargin; x++) { \ imOut->image[yout][x] = imIn->image[yin][0]; \ } \ for (x = 0; x < imIn->xsize; x++) { \ imOut->image[yout][x + xmargin] = imIn->image[yin][x]; \ } \ for (x = 0; x < xmargin; x++) { \ imOut->image[yout][xmargin + imIn->xsize + x] = \ imIn->image[yin][imIn->xsize - 1]; \ } \ } #define EXPAND(type, image) \ { \ for (y = 0; y < ymargin; y++) { \ EXPAND_LINE(type, image, 0, y); \ } \ for (y = 0; y < imIn->ysize; y++) { \ EXPAND_LINE(type, image, y, y + ymargin); \ } \ for (y = 0; y < ymargin; y++) { \ EXPAND_LINE(type, image, imIn->ysize - 1, ymargin + imIn->ysize + y); \ } \ } ImagingSectionEnter(&cookie); if (imIn->image8) { EXPAND(UINT8, image8); } else { EXPAND(INT32, image32); } ImagingSectionLeave(&cookie); ImagingCopyPalette(imOut, imIn); return imOut; } float kernel_i16(int size, UINT8 *in0, int x, const float *kernel, int bigendian) { int i; float result = 0; int half_size = (size - 1) / 2; for (i = 0; i < size; i++) { int x1 = x + i - half_size; result += _i2f( in0[x1 * 2 + (bigendian ? 1 : 0)] + (in0[x1 * 2 + (bigendian ? 0 : 1)] >> 8) ) * kernel[i]; } return result; } void ImagingFilter3x3(Imaging imOut, Imaging im, const float *kernel, float offset) { #define KERNEL1x3(in0, x, kernel, d) \ (_i2f(in0[x - d]) * (kernel)[0] + _i2f(in0[x]) * (kernel)[1] + \ _i2f(in0[x + d]) * (kernel)[2]) int x = 0, y = 0; memcpy(imOut->image[0], im->image[0], im->linesize); if (im->bands == 1) { // Add one time for rounding offset += 0.5; if (im->type == IMAGING_TYPE_INT32) { for (y = 1; y < im->ysize - 1; y++) { INT32 *in_1 = (INT32 *)im->image[y - 1]; INT32 *in0 = (INT32 *)im->image[y]; INT32 *in1 = (INT32 *)im->image[y + 1]; INT32 *out = (INT32 *)imOut->image[y]; out[0] = in0[0]; for (x = 1; x < im->xsize - 1; x++) { float ss = offset; ss += KERNEL1x3(in1, x, &kernel[0], 1); ss += KERNEL1x3(in0, x, &kernel[3], 1); ss += KERNEL1x3(in_1, x, &kernel[6], 1); out[x] = clip32(ss); } out[x] = in0[x]; } } else { int bigendian = 0; if (im->type == IMAGING_TYPE_SPECIAL) { if (strcmp(im->mode, "I;16B") == 0 #ifdef WORDS_BIGENDIAN || strcmp(im->mode, "I;16N") == 0 #endif ) { bigendian = 1; } } for (y = 1; y < im->ysize - 1; y++) { UINT8 *in_1 = (UINT8 *)im->image[y - 1]; UINT8 *in0 = (UINT8 *)im->image[y]; UINT8 *in1 = (UINT8 *)im->image[y + 1]; UINT8 *out = (UINT8 *)imOut->image[y]; out[0] = in0[0]; if (im->type == IMAGING_TYPE_SPECIAL) { out[1] = in0[1]; } for (x = 1; x < im->xsize - 1; x++) { float ss = offset; if (im->type == IMAGING_TYPE_SPECIAL) { ss += kernel_i16(3, in1, x, &kernel[0], bigendian); ss += kernel_i16(3, in0, x, &kernel[3], bigendian); ss += kernel_i16(3, in_1, x, &kernel[6], bigendian); int ss_int = ROUND_UP(ss); out[x * 2 + (bigendian ? 1 : 0)] = clip8(ss_int % 256); out[x * 2 + (bigendian ? 0 : 1)] = clip8(ss_int >> 8); } else { ss += KERNEL1x3(in1, x, &kernel[0], 1); ss += KERNEL1x3(in0, x, &kernel[3], 1); ss += KERNEL1x3(in_1, x, &kernel[6], 1); out[x] = clip8(ss); } } if (im->type == IMAGING_TYPE_SPECIAL) { out[x * 2] = in0[x * 2]; out[x * 2 + 1] = in0[x * 2 + 1]; } else { out[x] = in0[x]; } } } } else { // Add one time for rounding offset += 0.5; for (y = 1; y < im->ysize - 1; y++) { UINT8 *in_1 = (UINT8 *)im->image[y - 1]; UINT8 *in0 = (UINT8 *)im->image[y]; UINT8 *in1 = (UINT8 *)im->image[y + 1]; UINT8 *out = (UINT8 *)imOut->image[y]; memcpy(out, in0, sizeof(UINT32)); if (im->bands == 2) { for (x = 1; x < im->xsize - 1; x++) { float ss0 = offset; float ss3 = offset; UINT32 v; ss0 += KERNEL1x3(in1, x * 4 + 0, &kernel[0], 4); ss3 += KERNEL1x3(in1, x * 4 + 3, &kernel[0], 4); ss0 += KERNEL1x3(in0, x * 4 + 0, &kernel[3], 4); ss3 += KERNEL1x3(in0, x * 4 + 3, &kernel[3], 4); ss0 += KERNEL1x3(in_1, x * 4 + 0, &kernel[6], 4); ss3 += KERNEL1x3(in_1, x * 4 + 3, &kernel[6], 4); v = MAKE_UINT32(clip8(ss0), 0, 0, clip8(ss3)); memcpy(out + x * sizeof(v), &v, sizeof(v)); } } else if (im->bands == 3) { for (x = 1; x < im->xsize - 1; x++) { float ss0 = offset; float ss1 = offset; float ss2 = offset; UINT32 v; ss0 += KERNEL1x3(in1, x * 4 + 0, &kernel[0], 4); ss1 += KERNEL1x3(in1, x * 4 + 1, &kernel[0], 4); ss2 += KERNEL1x3(in1, x * 4 + 2, &kernel[0], 4); ss0 += KERNEL1x3(in0, x * 4 + 0, &kernel[3], 4); ss1 += KERNEL1x3(in0, x * 4 + 1, &kernel[3], 4); ss2 += KERNEL1x3(in0, x * 4 + 2, &kernel[3], 4); ss0 += KERNEL1x3(in_1, x * 4 + 0, &kernel[6], 4); ss1 += KERNEL1x3(in_1, x * 4 + 1, &kernel[6], 4); ss2 += KERNEL1x3(in_1, x * 4 + 2, &kernel[6], 4); v = MAKE_UINT32(clip8(ss0), clip8(ss1), clip8(ss2), 0); memcpy(out + x * sizeof(v), &v, sizeof(v)); } } else if (im->bands == 4) { for (x = 1; x < im->xsize - 1; x++) { float ss0 = offset; float ss1 = offset; float ss2 = offset; float ss3 = offset; UINT32 v; ss0 += KERNEL1x3(in1, x * 4 + 0, &kernel[0], 4); ss1 += KERNEL1x3(in1, x * 4 + 1, &kernel[0], 4); ss2 += KERNEL1x3(in1, x * 4 + 2, &kernel[0], 4); ss3 += KERNEL1x3(in1, x * 4 + 3, &kernel[0], 4); ss0 += KERNEL1x3(in0, x * 4 + 0, &kernel[3], 4); ss1 += KERNEL1x3(in0, x * 4 + 1, &kernel[3], 4); ss2 += KERNEL1x3(in0, x * 4 + 2, &kernel[3], 4); ss3 += KERNEL1x3(in0, x * 4 + 3, &kernel[3], 4); ss0 += KERNEL1x3(in_1, x * 4 + 0, &kernel[6], 4); ss1 += KERNEL1x3(in_1, x * 4 + 1, &kernel[6], 4); ss2 += KERNEL1x3(in_1, x * 4 + 2, &kernel[6], 4); ss3 += KERNEL1x3(in_1, x * 4 + 3, &kernel[6], 4); v = MAKE_UINT32(clip8(ss0), clip8(ss1), clip8(ss2), clip8(ss3)); memcpy(out + x * sizeof(v), &v, sizeof(v)); } } memcpy(out + x * sizeof(UINT32), in0 + x * sizeof(UINT32), sizeof(UINT32)); } } memcpy(imOut->image[y], im->image[y], im->linesize); } void ImagingFilter5x5(Imaging imOut, Imaging im, const float *kernel, float offset) { #define KERNEL1x5(in0, x, kernel, d) \ (_i2f(in0[x - d - d]) * (kernel)[0] + _i2f(in0[x - d]) * (kernel)[1] + \ _i2f(in0[x]) * (kernel)[2] + _i2f(in0[x + d]) * (kernel)[3] + \ _i2f(in0[x + d + d]) * (kernel)[4]) int x = 0, y = 0; memcpy(imOut->image[0], im->image[0], im->linesize); memcpy(imOut->image[1], im->image[1], im->linesize); if (im->bands == 1) { // Add one time for rounding offset += 0.5; if (im->type == IMAGING_TYPE_INT32) { for (y = 2; y < im->ysize - 2; y++) { INT32 *in_2 = (INT32 *)im->image[y - 2]; INT32 *in_1 = (INT32 *)im->image[y - 1]; INT32 *in0 = (INT32 *)im->image[y]; INT32 *in1 = (INT32 *)im->image[y + 1]; INT32 *in2 = (INT32 *)im->image[y + 2]; INT32 *out = (INT32 *)imOut->image[y]; out[0] = in0[0]; out[1] = in0[1]; for (x = 2; x < im->xsize - 2; x++) { float ss = offset; ss += KERNEL1x5(in2, x, &kernel[0], 1); ss += KERNEL1x5(in1, x, &kernel[5], 1); ss += KERNEL1x5(in0, x, &kernel[10], 1); ss += KERNEL1x5(in_1, x, &kernel[15], 1); ss += KERNEL1x5(in_2, x, &kernel[20], 1); out[x] = clip32(ss); } out[x + 0] = in0[x + 0]; out[x + 1] = in0[x + 1]; } } else { int bigendian = 0; if (im->type == IMAGING_TYPE_SPECIAL) { if (strcmp(im->mode, "I;16B") == 0 #ifdef WORDS_BIGENDIAN || strcmp(im->mode, "I;16N") == 0 #endif ) { bigendian = 1; } } for (y = 2; y < im->ysize - 2; y++) { UINT8 *in_2 = (UINT8 *)im->image[y - 2]; UINT8 *in_1 = (UINT8 *)im->image[y - 1]; UINT8 *in0 = (UINT8 *)im->image[y]; UINT8 *in1 = (UINT8 *)im->image[y + 1]; UINT8 *in2 = (UINT8 *)im->image[y + 2]; UINT8 *out = (UINT8 *)imOut->image[y]; out[0] = in0[0]; out[1] = in0[1]; if (im->type == IMAGING_TYPE_SPECIAL) { out[2] = in0[2]; out[3] = in0[3]; } for (x = 2; x < im->xsize - 2; x++) { float ss = offset; if (im->type == IMAGING_TYPE_SPECIAL) { ss += kernel_i16(5, in2, x, &kernel[0], bigendian); ss += kernel_i16(5, in1, x, &kernel[5], bigendian); ss += kernel_i16(5, in0, x, &kernel[10], bigendian); ss += kernel_i16(5, in_1, x, &kernel[15], bigendian); ss += kernel_i16(5, in_2, x, &kernel[20], bigendian); int ss_int = ROUND_UP(ss); out[x * 2 + (bigendian ? 1 : 0)] = clip8(ss_int % 256); out[x * 2 + (bigendian ? 0 : 1)] = clip8(ss_int >> 8); } else { ss += KERNEL1x5(in2, x, &kernel[0], 1); ss += KERNEL1x5(in1, x, &kernel[5], 1); ss += KERNEL1x5(in0, x, &kernel[10], 1); ss += KERNEL1x5(in_1, x, &kernel[15], 1); ss += KERNEL1x5(in_2, x, &kernel[20], 1); out[x] = clip8(ss); } } if (im->type == IMAGING_TYPE_SPECIAL) { out[x * 2 + 0] = in0[x * 2 + 0]; out[x * 2 + 1] = in0[x * 2 + 1]; out[x * 2 + 2] = in0[x * 2 + 2]; out[x * 2 + 3] = in0[x * 2 + 3]; } else { out[x + 0] = in0[x + 0]; out[x + 1] = in0[x + 1]; } } } } else { // Add one time for rounding offset += 0.5; for (y = 2; y < im->ysize - 2; y++) { UINT8 *in_2 = (UINT8 *)im->image[y - 2]; UINT8 *in_1 = (UINT8 *)im->image[y - 1]; UINT8 *in0 = (UINT8 *)im->image[y]; UINT8 *in1 = (UINT8 *)im->image[y + 1]; UINT8 *in2 = (UINT8 *)im->image[y + 2]; UINT8 *out = (UINT8 *)imOut->image[y]; memcpy(out, in0, sizeof(UINT32) * 2); if (im->bands == 2) { for (x = 2; x < im->xsize - 2; x++) { float ss0 = offset; float ss3 = offset; UINT32 v; ss0 += KERNEL1x5(in2, x * 4 + 0, &kernel[0], 4); ss3 += KERNEL1x5(in2, x * 4 + 3, &kernel[0], 4); ss0 += KERNEL1x5(in1, x * 4 + 0, &kernel[5], 4); ss3 += KERNEL1x5(in1, x * 4 + 3, &kernel[5], 4); ss0 += KERNEL1x5(in0, x * 4 + 0, &kernel[10], 4); ss3 += KERNEL1x5(in0, x * 4 + 3, &kernel[10], 4); ss0 += KERNEL1x5(in_1, x * 4 + 0, &kernel[15], 4); ss3 += KERNEL1x5(in_1, x * 4 + 3, &kernel[15], 4); ss0 += KERNEL1x5(in_2, x * 4 + 0, &kernel[20], 4); ss3 += KERNEL1x5(in_2, x * 4 + 3, &kernel[20], 4); v = MAKE_UINT32(clip8(ss0), 0, 0, clip8(ss3)); memcpy(out + x * sizeof(v), &v, sizeof(v)); } } else if (im->bands == 3) { for (x = 2; x < im->xsize - 2; x++) { float ss0 = offset; float ss1 = offset; float ss2 = offset; UINT32 v; ss0 += KERNEL1x5(in2, x * 4 + 0, &kernel[0], 4); ss1 += KERNEL1x5(in2, x * 4 + 1, &kernel[0], 4); ss2 += KERNEL1x5(in2, x * 4 + 2, &kernel[0], 4); ss0 += KERNEL1x5(in1, x * 4 + 0, &kernel[5], 4); ss1 += KERNEL1x5(in1, x * 4 + 1, &kernel[5], 4); ss2 += KERNEL1x5(in1, x * 4 + 2, &kernel[5], 4); ss0 += KERNEL1x5(in0, x * 4 + 0, &kernel[10], 4); ss1 += KERNEL1x5(in0, x * 4 + 1, &kernel[10], 4); ss2 += KERNEL1x5(in0, x * 4 + 2, &kernel[10], 4); ss0 += KERNEL1x5(in_1, x * 4 + 0, &kernel[15], 4); ss1 += KERNEL1x5(in_1, x * 4 + 1, &kernel[15], 4); ss2 += KERNEL1x5(in_1, x * 4 + 2, &kernel[15], 4); ss0 += KERNEL1x5(in_2, x * 4 + 0, &kernel[20], 4); ss1 += KERNEL1x5(in_2, x * 4 + 1, &kernel[20], 4); ss2 += KERNEL1x5(in_2, x * 4 + 2, &kernel[20], 4); v = MAKE_UINT32(clip8(ss0), clip8(ss1), clip8(ss2), 0); memcpy(out + x * sizeof(v), &v, sizeof(v)); } } else if (im->bands == 4) { for (x = 2; x < im->xsize - 2; x++) { float ss0 = offset; float ss1 = offset; float ss2 = offset; float ss3 = offset; UINT32 v; ss0 += KERNEL1x5(in2, x * 4 + 0, &kernel[0], 4); ss1 += KERNEL1x5(in2, x * 4 + 1, &kernel[0], 4); ss2 += KERNEL1x5(in2, x * 4 + 2, &kernel[0], 4); ss3 += KERNEL1x5(in2, x * 4 + 3, &kernel[0], 4); ss0 += KERNEL1x5(in1, x * 4 + 0, &kernel[5], 4); ss1 += KERNEL1x5(in1, x * 4 + 1, &kernel[5], 4); ss2 += KERNEL1x5(in1, x * 4 + 2, &kernel[5], 4); ss3 += KERNEL1x5(in1, x * 4 + 3, &kernel[5], 4); ss0 += KERNEL1x5(in0, x * 4 + 0, &kernel[10], 4); ss1 += KERNEL1x5(in0, x * 4 + 1, &kernel[10], 4); ss2 += KERNEL1x5(in0, x * 4 + 2, &kernel[10], 4); ss3 += KERNEL1x5(in0, x * 4 + 3, &kernel[10], 4); ss0 += KERNEL1x5(in_1, x * 4 + 0, &kernel[15], 4); ss1 += KERNEL1x5(in_1, x * 4 + 1, &kernel[15], 4); ss2 += KERNEL1x5(in_1, x * 4 + 2, &kernel[15], 4); ss3 += KERNEL1x5(in_1, x * 4 + 3, &kernel[15], 4); ss0 += KERNEL1x5(in_2, x * 4 + 0, &kernel[20], 4); ss1 += KERNEL1x5(in_2, x * 4 + 1, &kernel[20], 4); ss2 += KERNEL1x5(in_2, x * 4 + 2, &kernel[20], 4); ss3 += KERNEL1x5(in_2, x * 4 + 3, &kernel[20], 4); v = MAKE_UINT32(clip8(ss0), clip8(ss1), clip8(ss2), clip8(ss3)); memcpy(out + x * sizeof(v), &v, sizeof(v)); } } memcpy( out + x * sizeof(UINT32), in0 + x * sizeof(UINT32), sizeof(UINT32) * 2 ); } } memcpy(imOut->image[y], im->image[y], im->linesize); memcpy(imOut->image[y + 1], im->image[y + 1], im->linesize); } Imaging ImagingFilter(Imaging im, int xsize, int ysize, const FLOAT32 *kernel, FLOAT32 offset) { Imaging imOut; ImagingSectionCookie cookie; if (im->type == IMAGING_TYPE_FLOAT32 || (im->type == IMAGING_TYPE_SPECIAL && im->bands != 1)) { return (Imaging)ImagingError_ModeError(); } if (im->xsize < xsize || im->ysize < ysize) { return ImagingCopy(im); } if ((xsize != 3 && xsize != 5) || xsize != ysize) { return (Imaging)ImagingError_ValueError("bad kernel size"); } imOut = ImagingNewDirty(im->mode, im->xsize, im->ysize); if (!imOut) { return NULL; } ImagingSectionEnter(&cookie); if (xsize == 3) { /* 3x3 kernel. */ ImagingFilter3x3(imOut, im, kernel, offset); } else { /* 5x5 kernel. */ ImagingFilter5x5(imOut, im, kernel, offset); } ImagingSectionLeave(&cookie); return imOut; }