Pillow/src/PIL/ImageOps.py
2024-02-29 20:16:41 +11:00

725 lines
24 KiB
Python

#
# The Python Imaging Library.
# $Id$
#
# standard image operations
#
# History:
# 2001-10-20 fl Created
# 2001-10-23 fl Added autocontrast operator
# 2001-12-18 fl Added Kevin's fit operator
# 2004-03-14 fl Fixed potential division by zero in equalize
# 2005-05-05 fl Fixed equalize for low number of values
#
# Copyright (c) 2001-2004 by Secret Labs AB
# Copyright (c) 2001-2004 by Fredrik Lundh
#
# See the README file for information on usage and redistribution.
#
from __future__ import annotations
import functools
import operator
import re
from typing import Protocol, Sequence, cast
from . import ExifTags, Image, ImagePalette
#
# helpers
def _border(border: int | tuple[int, ...]) -> tuple[int, int, int, int]:
if isinstance(border, tuple):
if len(border) == 2:
left, top = right, bottom = border
elif len(border) == 4:
left, top, right, bottom = border
else:
left = top = right = bottom = border
return left, top, right, bottom
def _color(color: str | int | tuple[int, ...], mode: str) -> int | tuple[int, ...]:
if isinstance(color, str):
from . import ImageColor
color = ImageColor.getcolor(color, mode)
return color
def _lut(image: Image.Image, lut: list[int]) -> Image.Image:
if image.mode == "P":
# FIXME: apply to lookup table, not image data
msg = "mode P support coming soon"
raise NotImplementedError(msg)
elif image.mode in ("L", "RGB"):
if image.mode == "RGB" and len(lut) == 256:
lut = lut + lut + lut
return image.point(lut)
else:
msg = f"not supported for mode {image.mode}"
raise OSError(msg)
#
# actions
def autocontrast(
image: Image.Image,
cutoff: float | tuple[float, float] = 0,
ignore: int | Sequence[int] | None = None,
mask: Image.Image | None = None,
preserve_tone: bool = False,
) -> Image.Image:
"""
Maximize (normalize) image contrast. This function calculates a
histogram of the input image (or mask region), removes ``cutoff`` percent of the
lightest and darkest pixels from the histogram, and remaps the image
so that the darkest pixel becomes black (0), and the lightest
becomes white (255).
:param image: The image to process.
:param cutoff: The percent to cut off from the histogram on the low and
high ends. Either a tuple of (low, high), or a single
number for both.
:param ignore: The background pixel value (use None for no background).
:param mask: Histogram used in contrast operation is computed using pixels
within the mask. If no mask is given the entire image is used
for histogram computation.
:param preserve_tone: Preserve image tone in Photoshop-like style autocontrast.
.. versionadded:: 8.2.0
:return: An image.
"""
if preserve_tone:
histogram = image.convert("L").histogram(mask)
else:
histogram = image.histogram(mask)
lut = []
for layer in range(0, len(histogram), 256):
h = histogram[layer : layer + 256]
if ignore is not None:
# get rid of outliers
if isinstance(ignore, int):
h[ignore] = 0
else:
for ix in ignore:
h[ix] = 0
if cutoff:
# cut off pixels from both ends of the histogram
if not isinstance(cutoff, tuple):
cutoff = (cutoff, cutoff)
# get number of pixels
n = 0
for ix in range(256):
n = n + h[ix]
# remove cutoff% pixels from the low end
cut = int(n * cutoff[0] // 100)
for lo in range(256):
if cut > h[lo]:
cut = cut - h[lo]
h[lo] = 0
else:
h[lo] -= cut
cut = 0
if cut <= 0:
break
# remove cutoff% samples from the high end
cut = int(n * cutoff[1] // 100)
for hi in range(255, -1, -1):
if cut > h[hi]:
cut = cut - h[hi]
h[hi] = 0
else:
h[hi] -= cut
cut = 0
if cut <= 0:
break
# find lowest/highest samples after preprocessing
for lo in range(256):
if h[lo]:
break
for hi in range(255, -1, -1):
if h[hi]:
break
if hi <= lo:
# don't bother
lut.extend(list(range(256)))
else:
scale = 255.0 / (hi - lo)
offset = -lo * scale
for ix in range(256):
ix = int(ix * scale + offset)
if ix < 0:
ix = 0
elif ix > 255:
ix = 255
lut.append(ix)
return _lut(image, lut)
def colorize(
image: Image.Image,
black: str | tuple[int, ...],
white: str | tuple[int, ...],
mid: str | int | tuple[int, ...] | None = None,
blackpoint: int = 0,
whitepoint: int = 255,
midpoint: int = 127,
) -> Image.Image:
"""
Colorize grayscale image.
This function calculates a color wedge which maps all black pixels in
the source image to the first color and all white pixels to the
second color. If ``mid`` is specified, it uses three-color mapping.
The ``black`` and ``white`` arguments should be RGB tuples or color names;
optionally you can use three-color mapping by also specifying ``mid``.
Mapping positions for any of the colors can be specified
(e.g. ``blackpoint``), where these parameters are the integer
value corresponding to where the corresponding color should be mapped.
These parameters must have logical order, such that
``blackpoint <= midpoint <= whitepoint`` (if ``mid`` is specified).
:param image: The image to colorize.
:param black: The color to use for black input pixels.
:param white: The color to use for white input pixels.
:param mid: The color to use for midtone input pixels.
:param blackpoint: an int value [0, 255] for the black mapping.
:param whitepoint: an int value [0, 255] for the white mapping.
:param midpoint: an int value [0, 255] for the midtone mapping.
:return: An image.
"""
# Initial asserts
assert image.mode == "L"
if mid is None:
assert 0 <= blackpoint <= whitepoint <= 255
else:
assert 0 <= blackpoint <= midpoint <= whitepoint <= 255
# Define colors from arguments
rgb_black = cast(Sequence[int], _color(black, "RGB"))
rgb_white = cast(Sequence[int], _color(white, "RGB"))
rgb_mid = cast(Sequence[int], _color(mid, "RGB")) if mid is not None else None
# Empty lists for the mapping
red = []
green = []
blue = []
# Create the low-end values
for i in range(0, blackpoint):
red.append(rgb_black[0])
green.append(rgb_black[1])
blue.append(rgb_black[2])
# Create the mapping (2-color)
if rgb_mid is None:
range_map = range(0, whitepoint - blackpoint)
for i in range_map:
red.append(
rgb_black[0] + i * (rgb_white[0] - rgb_black[0]) // len(range_map)
)
green.append(
rgb_black[1] + i * (rgb_white[1] - rgb_black[1]) // len(range_map)
)
blue.append(
rgb_black[2] + i * (rgb_white[2] - rgb_black[2]) // len(range_map)
)
# Create the mapping (3-color)
else:
range_map1 = range(0, midpoint - blackpoint)
range_map2 = range(0, whitepoint - midpoint)
for i in range_map1:
red.append(
rgb_black[0] + i * (rgb_mid[0] - rgb_black[0]) // len(range_map1)
)
green.append(
rgb_black[1] + i * (rgb_mid[1] - rgb_black[1]) // len(range_map1)
)
blue.append(
rgb_black[2] + i * (rgb_mid[2] - rgb_black[2]) // len(range_map1)
)
for i in range_map2:
red.append(rgb_mid[0] + i * (rgb_white[0] - rgb_mid[0]) // len(range_map2))
green.append(
rgb_mid[1] + i * (rgb_white[1] - rgb_mid[1]) // len(range_map2)
)
blue.append(rgb_mid[2] + i * (rgb_white[2] - rgb_mid[2]) // len(range_map2))
# Create the high-end values
for i in range(0, 256 - whitepoint):
red.append(rgb_white[0])
green.append(rgb_white[1])
blue.append(rgb_white[2])
# Return converted image
image = image.convert("RGB")
return _lut(image, red + green + blue)
def contain(
image: Image.Image, size: tuple[int, int], method: int = Image.Resampling.BICUBIC
) -> Image.Image:
"""
Returns a resized version of the image, set to the maximum width and height
within the requested size, while maintaining the original aspect ratio.
:param image: The image to resize.
:param size: The requested output size in pixels, given as a
(width, height) tuple.
:param method: Resampling method to use. Default is
:py:attr:`~PIL.Image.Resampling.BICUBIC`.
See :ref:`concept-filters`.
:return: An image.
"""
im_ratio = image.width / image.height
dest_ratio = size[0] / size[1]
if im_ratio != dest_ratio:
if im_ratio > dest_ratio:
new_height = round(image.height / image.width * size[0])
if new_height != size[1]:
size = (size[0], new_height)
else:
new_width = round(image.width / image.height * size[1])
if new_width != size[0]:
size = (new_width, size[1])
return image.resize(size, resample=method)
def cover(
image: Image.Image, size: tuple[int, int], method: int = Image.Resampling.BICUBIC
) -> Image.Image:
"""
Returns a resized version of the image, so that the requested size is
covered, while maintaining the original aspect ratio.
:param image: The image to resize.
:param size: The requested output size in pixels, given as a
(width, height) tuple.
:param method: Resampling method to use. Default is
:py:attr:`~PIL.Image.Resampling.BICUBIC`.
See :ref:`concept-filters`.
:return: An image.
"""
im_ratio = image.width / image.height
dest_ratio = size[0] / size[1]
if im_ratio != dest_ratio:
if im_ratio < dest_ratio:
new_height = round(image.height / image.width * size[0])
if new_height != size[1]:
size = (size[0], new_height)
else:
new_width = round(image.width / image.height * size[1])
if new_width != size[0]:
size = (new_width, size[1])
return image.resize(size, resample=method)
def pad(
image: Image.Image,
size: tuple[int, int],
method: int = Image.Resampling.BICUBIC,
color: str | int | tuple[int, ...] | None = None,
centering: tuple[float, float] = (0.5, 0.5),
) -> Image.Image:
"""
Returns a resized and padded version of the image, expanded to fill the
requested aspect ratio and size.
:param image: The image to resize and crop.
:param size: The requested output size in pixels, given as a
(width, height) tuple.
:param method: Resampling method to use. Default is
:py:attr:`~PIL.Image.Resampling.BICUBIC`.
See :ref:`concept-filters`.
:param color: The background color of the padded image.
:param centering: Control the position of the original image within the
padded version.
(0.5, 0.5) will keep the image centered
(0, 0) will keep the image aligned to the top left
(1, 1) will keep the image aligned to the bottom
right
:return: An image.
"""
resized = contain(image, size, method)
if resized.size == size:
out = resized
else:
out = Image.new(image.mode, size, color)
if resized.palette:
out.putpalette(resized.getpalette())
if resized.width != size[0]:
x = round((size[0] - resized.width) * max(0, min(centering[0], 1)))
out.paste(resized, (x, 0))
else:
y = round((size[1] - resized.height) * max(0, min(centering[1], 1)))
out.paste(resized, (0, y))
return out
def crop(image: Image.Image, border: int = 0) -> Image.Image:
"""
Remove border from image. The same amount of pixels are removed
from all four sides. This function works on all image modes.
.. seealso:: :py:meth:`~PIL.Image.Image.crop`
:param image: The image to crop.
:param border: The number of pixels to remove.
:return: An image.
"""
left, top, right, bottom = _border(border)
return image.crop((left, top, image.size[0] - right, image.size[1] - bottom))
def scale(
image: Image.Image, factor: float, resample: int = Image.Resampling.BICUBIC
) -> Image.Image:
"""
Returns a rescaled image by a specific factor given in parameter.
A factor greater than 1 expands the image, between 0 and 1 contracts the
image.
:param image: The image to rescale.
:param factor: The expansion factor, as a float.
:param resample: Resampling method to use. Default is
:py:attr:`~PIL.Image.Resampling.BICUBIC`.
See :ref:`concept-filters`.
:returns: An :py:class:`~PIL.Image.Image` object.
"""
if factor == 1:
return image.copy()
elif factor <= 0:
msg = "the factor must be greater than 0"
raise ValueError(msg)
else:
size = (round(factor * image.width), round(factor * image.height))
return image.resize(size, resample)
class SupportsGetMesh(Protocol):
"""
An object that supports the ``getmesh`` method, taking an image as an
argument, and returning a list of tuples. Each tuple contains two tuples,
the source box as a tuple of 4 integers, and a tuple of 8 integers for the
final quadrilateral, in order of top left, bottom left, bottom right, top
right.
"""
def getmesh(
self, image: Image.Image
) -> list[
tuple[tuple[int, int, int, int], tuple[int, int, int, int, int, int, int, int]]
]: ...
def deform(
image: Image.Image,
deformer: SupportsGetMesh,
resample: int = Image.Resampling.BILINEAR,
) -> Image.Image:
"""
Deform the image.
:param image: The image to deform.
:param deformer: A deformer object. Any object that implements a
``getmesh`` method can be used.
:param resample: An optional resampling filter. Same values possible as
in the PIL.Image.transform function.
:return: An image.
"""
return image.transform(
image.size, Image.Transform.MESH, deformer.getmesh(image), resample
)
def equalize(image: Image.Image, mask: Image.Image | None = None) -> Image.Image:
"""
Equalize the image histogram. This function applies a non-linear
mapping to the input image, in order to create a uniform
distribution of grayscale values in the output image.
:param image: The image to equalize.
:param mask: An optional mask. If given, only the pixels selected by
the mask are included in the analysis.
:return: An image.
"""
if image.mode == "P":
image = image.convert("RGB")
h = image.histogram(mask)
lut = []
for b in range(0, len(h), 256):
histo = [_f for _f in h[b : b + 256] if _f]
if len(histo) <= 1:
lut.extend(list(range(256)))
else:
step = (functools.reduce(operator.add, histo) - histo[-1]) // 255
if not step:
lut.extend(list(range(256)))
else:
n = step // 2
for i in range(256):
lut.append(n // step)
n = n + h[i + b]
return _lut(image, lut)
def expand(
image: Image.Image,
border: int | tuple[int, ...] = 0,
fill: str | int | tuple[int, ...] = 0,
) -> Image.Image:
"""
Add border to the image
:param image: The image to expand.
:param border: Border width, in pixels.
:param fill: Pixel fill value (a color value). Default is 0 (black).
:return: An image.
"""
left, top, right, bottom = _border(border)
width = left + image.size[0] + right
height = top + image.size[1] + bottom
color = _color(fill, image.mode)
if image.palette:
palette = ImagePalette.ImagePalette(palette=image.getpalette())
if isinstance(color, tuple):
color = palette.getcolor(color)
else:
palette = None
out = Image.new(image.mode, (width, height), color)
if palette:
out.putpalette(palette.palette)
out.paste(image, (left, top))
return out
def fit(
image: Image.Image,
size: tuple[int, int],
method: int = Image.Resampling.BICUBIC,
bleed: float = 0.0,
centering: tuple[float, float] = (0.5, 0.5),
) -> Image.Image:
"""
Returns a resized and cropped version of the image, cropped to the
requested aspect ratio and size.
This function was contributed by Kevin Cazabon.
:param image: The image to resize and crop.
:param size: The requested output size in pixels, given as a
(width, height) tuple.
:param method: Resampling method to use. Default is
:py:attr:`~PIL.Image.Resampling.BICUBIC`.
See :ref:`concept-filters`.
:param bleed: Remove a border around the outside of the image from all
four edges. The value is a decimal percentage (use 0.01 for
one percent). The default value is 0 (no border).
Cannot be greater than or equal to 0.5.
:param centering: Control the cropping position. Use (0.5, 0.5) for
center cropping (e.g. if cropping the width, take 50% off
of the left side, and therefore 50% off the right side).
(0.0, 0.0) will crop from the top left corner (i.e. if
cropping the width, take all of the crop off of the right
side, and if cropping the height, take all of it off the
bottom). (1.0, 0.0) will crop from the bottom left
corner, etc. (i.e. if cropping the width, take all of the
crop off the left side, and if cropping the height take
none from the top, and therefore all off the bottom).
:return: An image.
"""
# by Kevin Cazabon, Feb 17/2000
# kevin@cazabon.com
# https://www.cazabon.com
centering_x, centering_y = centering
if not 0.0 <= centering_x <= 1.0:
centering_x = 0.5
if not 0.0 <= centering_y <= 1.0:
centering_y = 0.5
if not 0.0 <= bleed < 0.5:
bleed = 0.0
# calculate the area to use for resizing and cropping, subtracting
# the 'bleed' around the edges
# number of pixels to trim off on Top and Bottom, Left and Right
bleed_pixels = (bleed * image.size[0], bleed * image.size[1])
live_size = (
image.size[0] - bleed_pixels[0] * 2,
image.size[1] - bleed_pixels[1] * 2,
)
# calculate the aspect ratio of the live_size
live_size_ratio = live_size[0] / live_size[1]
# calculate the aspect ratio of the output image
output_ratio = size[0] / size[1]
# figure out if the sides or top/bottom will be cropped off
if live_size_ratio == output_ratio:
# live_size is already the needed ratio
crop_width = live_size[0]
crop_height = live_size[1]
elif live_size_ratio >= output_ratio:
# live_size is wider than what's needed, crop the sides
crop_width = output_ratio * live_size[1]
crop_height = live_size[1]
else:
# live_size is taller than what's needed, crop the top and bottom
crop_width = live_size[0]
crop_height = live_size[0] / output_ratio
# make the crop
crop_left = bleed_pixels[0] + (live_size[0] - crop_width) * centering_x
crop_top = bleed_pixels[1] + (live_size[1] - crop_height) * centering_y
crop = (crop_left, crop_top, crop_left + crop_width, crop_top + crop_height)
# resize the image and return it
return image.resize(size, method, box=crop)
def flip(image: Image.Image) -> Image.Image:
"""
Flip the image vertically (top to bottom).
:param image: The image to flip.
:return: An image.
"""
return image.transpose(Image.Transpose.FLIP_TOP_BOTTOM)
def grayscale(image: Image.Image) -> Image.Image:
"""
Convert the image to grayscale.
:param image: The image to convert.
:return: An image.
"""
return image.convert("L")
def invert(image: Image.Image) -> Image.Image:
"""
Invert (negate) the image.
:param image: The image to invert.
:return: An image.
"""
lut = list(range(255, -1, -1))
return image.point(lut) if image.mode == "1" else _lut(image, lut)
def mirror(image: Image.Image) -> Image.Image:
"""
Flip image horizontally (left to right).
:param image: The image to mirror.
:return: An image.
"""
return image.transpose(Image.Transpose.FLIP_LEFT_RIGHT)
def posterize(image: Image.Image, bits: int) -> Image.Image:
"""
Reduce the number of bits for each color channel.
:param image: The image to posterize.
:param bits: The number of bits to keep for each channel (1-8).
:return: An image.
"""
mask = ~(2 ** (8 - bits) - 1)
lut = [i & mask for i in range(256)]
return _lut(image, lut)
def solarize(image: Image.Image, threshold: int = 128) -> Image.Image:
"""
Invert all pixel values above a threshold.
:param image: The image to solarize.
:param threshold: All pixels above this grayscale level are inverted.
:return: An image.
"""
lut = []
for i in range(256):
if i < threshold:
lut.append(i)
else:
lut.append(255 - i)
return _lut(image, lut)
def exif_transpose(image: Image.Image, *, in_place: bool = False) -> Image.Image | None:
"""
If an image has an EXIF Orientation tag, other than 1, transpose the image
accordingly, and remove the orientation data.
:param image: The image to transpose.
:param in_place: Boolean. Keyword-only argument.
If ``True``, the original image is modified in-place, and ``None`` is returned.
If ``False`` (default), a new :py:class:`~PIL.Image.Image` object is returned
with the transposition applied. If there is no transposition, a copy of the
image will be returned.
"""
image.load()
image_exif = image.getexif()
orientation = image_exif.get(ExifTags.Base.Orientation, 1)
method = {
2: Image.Transpose.FLIP_LEFT_RIGHT,
3: Image.Transpose.ROTATE_180,
4: Image.Transpose.FLIP_TOP_BOTTOM,
5: Image.Transpose.TRANSPOSE,
6: Image.Transpose.ROTATE_270,
7: Image.Transpose.TRANSVERSE,
8: Image.Transpose.ROTATE_90,
}.get(orientation)
if method is not None:
transposed_image = image.transpose(method)
if in_place:
image.im = transposed_image.im
image.pyaccess = None
image._size = transposed_image._size
exif_image = image if in_place else transposed_image
exif = exif_image.getexif()
if ExifTags.Base.Orientation in exif:
del exif[ExifTags.Base.Orientation]
if "exif" in exif_image.info:
exif_image.info["exif"] = exif.tobytes()
elif "Raw profile type exif" in exif_image.info:
exif_image.info["Raw profile type exif"] = exif.tobytes().hex()
elif "XML:com.adobe.xmp" in exif_image.info:
for pattern in (
r'tiff:Orientation="([0-9])"',
r"<tiff:Orientation>([0-9])</tiff:Orientation>",
):
exif_image.info["XML:com.adobe.xmp"] = re.sub(
pattern, "", exif_image.info["XML:com.adobe.xmp"]
)
if not in_place:
return transposed_image
elif not in_place:
return image.copy()
return None