Pillow/src/libImaging/BcnEncode.c
2025-03-17 07:55:25 +11:00

299 lines
8.4 KiB
C

/*
* The Python Imaging Library
*
* encoder for DXT1-compressed data
*
* Format documentation:
* https://web.archive.org/web/20170802060935/http://oss.sgi.com/projects/ogl-sample/registry/EXT/texture_compression_s3tc.txt
*
*/
#include "Imaging.h"
typedef struct {
UINT8 color[3];
} rgb;
typedef struct {
UINT8 color[4];
} rgba;
static rgb
decode_565(UINT16 x) {
rgb item;
int r, g, b;
r = (x & 0xf800) >> 8;
r |= r >> 5;
item.color[0] = r;
g = (x & 0x7e0) >> 3;
g |= g >> 6;
item.color[1] = g;
b = (x & 0x1f) << 3;
b |= b >> 5;
item.color[2] = b;
return item;
}
static UINT16
encode_565(rgba item) {
UINT8 r, g, b;
r = item.color[0] >> (8 - 5);
g = item.color[1] >> (8 - 6);
b = item.color[2] >> (8 - 5);
return (r << (5 + 6)) | (g << 5) | b;
}
static void
encode_bc1_color(Imaging im, ImagingCodecState state, UINT8 *dst, int separate_alpha) {
int i, j, k;
UINT16 color_min = 0, color_max = 0;
rgb color_min_rgb, color_max_rgb;
rgba block[16], *current_rgba;
// Determine the min and max colors in this 4x4 block
int first = 1;
int transparency = 0;
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
current_rgba = &block[i + j * 4];
int x = state->x + i * im->pixelsize;
int y = state->y + j;
if (x >= state->xsize * im->pixelsize || y >= state->ysize) {
// The 4x4 block extends past the edge of the image
for (k = 0; k < 3; k++) {
current_rgba->color[k] = 0;
}
continue;
}
for (k = 0; k < 3; k++) {
current_rgba->color[k] =
(UINT8)im->image[y][x + (im->pixelsize == 1 ? 0 : k)];
}
if (separate_alpha) {
if ((UINT8)im->image[y][x + 3] == 0) {
current_rgba->color[3] = 0;
transparency = 1;
continue;
} else {
current_rgba->color[3] = 1;
}
}
UINT16 color = encode_565(*current_rgba);
if (first || color < color_min) {
color_min = color;
}
if (first || color > color_max) {
color_max = color;
}
first = 0;
}
}
if (transparency) {
*dst++ = color_min;
*dst++ = color_min >> 8;
}
*dst++ = color_max;
*dst++ = color_max >> 8;
if (!transparency) {
*dst++ = color_min;
*dst++ = color_min >> 8;
}
color_min_rgb = decode_565(color_min);
color_max_rgb = decode_565(color_max);
for (i = 0; i < 4; i++) {
UINT8 l = 0;
for (j = 3; j > -1; j--) {
current_rgba = &block[i * 4 + j];
if (transparency && !current_rgba->color[3]) {
l |= 3 << (j * 2);
continue;
}
float distance = 0;
int total = 0;
for (k = 0; k < 3; k++) {
float denom =
(float)abs(color_max_rgb.color[k] - color_min_rgb.color[k]);
if (denom != 0) {
distance +=
abs(current_rgba->color[k] - color_min_rgb.color[k]) / denom;
total += 1;
}
}
if (total == 0) {
continue;
}
if (transparency) {
distance *= 4 / total;
if (distance < 1) {
// color_max
} else if (distance < 3) {
l |= 2 << (j * 2); // 1/2 * color_min + 1/2 * color_max
} else {
l |= 1 << (j * 2); // color_min
}
} else {
distance *= 6 / total;
if (distance < 1) {
l |= 1 << (j * 2); // color_min
} else if (distance < 3) {
l |= 3 << (j * 2); // 1/3 * color_min + 2/3 * color_max
} else if (distance < 5) {
l |= 2 << (j * 2); // 2/3 * color_min + 1/3 * color_max
} else {
// color_max
}
}
}
*dst++ = l;
}
}
static void
encode_bc2_block(Imaging im, ImagingCodecState state, UINT8 *dst) {
int i, j;
UINT8 block[16], current_alpha;
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
int x = state->x + i * im->pixelsize;
int y = state->y + j;
if (x >= state->xsize * im->pixelsize || y >= state->ysize) {
// The 4x4 block extends past the edge of the image
block[i + j * 4] = 0;
continue;
}
current_alpha = (UINT8)im->image[y][x + 3];
block[i + j * 4] = current_alpha;
}
}
for (i = 0; i < 4; i++) {
UINT16 l = 0;
for (j = 3; j > -1; j--) {
current_alpha = block[i * 4 + j];
l |= current_alpha << (j * 4);
}
*dst++ = l;
*dst++ = l >> 8;
}
}
static void
encode_bc3_alpha(Imaging im, ImagingCodecState state, UINT8 *dst, int o) {
int i, j;
UINT8 alpha_min = 0, alpha_max = 0;
UINT8 block[16], current_alpha;
// Determine the min and max colors in this 4x4 block
int first = 1;
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
int x = state->x + i * im->pixelsize;
int y = state->y + j;
if (x >= state->xsize * im->pixelsize || y >= state->ysize) {
// The 4x4 block extends past the edge of the image
block[i + j * 4] = 0;
continue;
}
current_alpha = (UINT8)im->image[y][x + o];
block[i + j * 4] = current_alpha;
if (first || current_alpha < alpha_min) {
alpha_min = current_alpha;
}
if (first || current_alpha > alpha_max) {
alpha_max = current_alpha;
}
first = 0;
}
}
*dst++ = alpha_min;
*dst++ = alpha_max;
float denom = (float)abs(alpha_max - alpha_min);
for (i = 0; i < 2; i++) {
UINT32 l = 0;
for (j = 7; j > -1; j--) {
current_alpha = block[i * 8 + j];
if (!current_alpha) {
l |= 6 << (j * 3);
continue;
} else if (current_alpha == 255) {
l |= 7 << (j * 3);
continue;
}
float distance =
denom == 0 ? 0 : abs(current_alpha - alpha_min) / denom * 10;
if (distance < 3) {
l |= 2 << (j * 3); // 4/5 * alpha_min + 1/5 * alpha_max
} else if (distance < 5) {
l |= 3 << (j * 3); // 3/5 * alpha_min + 2/5 * alpha_max
} else if (distance < 7) {
l |= 4 << (j * 3); // 2/5 * alpha_min + 3/5 * alpha_max
} else {
l |= 5 << (j * 3); // 1/5 * alpha_min + 4/5 * alpha_max
}
}
*dst++ = l;
*dst++ = l >> 8;
*dst++ = l >> 16;
}
}
int
ImagingBcnEncode(Imaging im, ImagingCodecState state, UINT8 *buf, int bytes) {
int n = state->state;
int has_alpha_channel =
strcmp(im->mode, "RGBA") == 0 || strcmp(im->mode, "LA") == 0;
UINT8 *dst = buf;
for (;;) {
if (n == 5) {
encode_bc3_alpha(im, state, dst, 0);
dst += 8;
encode_bc3_alpha(im, state, dst, 1);
} else {
if (n == 2 || n == 3) {
if (has_alpha_channel) {
if (n == 2) {
encode_bc2_block(im, state, dst);
} else {
encode_bc3_alpha(im, state, dst, 3);
}
dst += 8;
} else {
for (int i = 0; i < 8; i++) {
*dst++ = 0xff;
}
}
}
encode_bc1_color(im, state, dst, n == 1 && has_alpha_channel);
}
dst += 8;
state->x += im->pixelsize * 4;
if (state->x >= state->xsize * im->pixelsize) {
state->x = 0;
state->y += 4;
if (state->y >= state->ysize) {
state->errcode = IMAGING_CODEC_END;
break;
}
}
}
return dst - buf;
}