mirror of
https://github.com/python-pillow/Pillow.git
synced 2024-12-28 02:46:18 +03:00
169 lines
6.8 KiB
C
169 lines
6.8 KiB
C
#include "Imaging.h"
|
||
#include <math.h>
|
||
|
||
|
||
/* 8 bits for result. Table can overflow [0, 1.0] range,
|
||
so we need extra bits for overflow and negative values.
|
||
NOTE: This value should be the same as in _imaging/_prepare_lut_table() */
|
||
#define PRECISION_BITS (16 - 8 - 2)
|
||
#define PRECISION_ROUNDING (1<<(PRECISION_BITS-1))
|
||
|
||
/* 8 — scales are multiplied on byte.
|
||
6 — max index in the table
|
||
(max size is 65, but index 64 is not reachable) */
|
||
#define SCALE_BITS (32 - 8 - 6)
|
||
#define SCALE_MASK ((1<<SCALE_BITS) - 1)
|
||
|
||
#define SHIFT_BITS (16 - 1)
|
||
|
||
|
||
static inline UINT8 clip8(int in)
|
||
{
|
||
return clip8_lookups[(in + PRECISION_ROUNDING) >> PRECISION_BITS];
|
||
}
|
||
|
||
static inline void
|
||
interpolate3(INT16 out[3], const INT16 a[3], const INT16 b[3], INT16 shift)
|
||
{
|
||
out[0] = (a[0] * ((1<<SHIFT_BITS)-shift) + b[0] * shift) >> SHIFT_BITS;
|
||
out[1] = (a[1] * ((1<<SHIFT_BITS)-shift) + b[1] * shift) >> SHIFT_BITS;
|
||
out[2] = (a[2] * ((1<<SHIFT_BITS)-shift) + b[2] * shift) >> SHIFT_BITS;
|
||
}
|
||
|
||
static inline void
|
||
interpolate4(INT16 out[4], const INT16 a[4], const INT16 b[4], INT16 shift)
|
||
{
|
||
out[0] = (a[0] * ((1<<SHIFT_BITS)-shift) + b[0] * shift) >> SHIFT_BITS;
|
||
out[1] = (a[1] * ((1<<SHIFT_BITS)-shift) + b[1] * shift) >> SHIFT_BITS;
|
||
out[2] = (a[2] * ((1<<SHIFT_BITS)-shift) + b[2] * shift) >> SHIFT_BITS;
|
||
out[3] = (a[3] * ((1<<SHIFT_BITS)-shift) + b[3] * shift) >> SHIFT_BITS;
|
||
}
|
||
|
||
static inline int
|
||
table_index3D(int index1D, int index2D, int index3D,
|
||
int size1D, int size1D_2D)
|
||
{
|
||
return index1D + index2D * size1D + index3D * size1D_2D;
|
||
}
|
||
|
||
|
||
/*
|
||
Transforms colors of imIn using provided 3D lookup table
|
||
and puts the result in imOut. Returns imOut on success or 0 on error.
|
||
|
||
imOut, imIn — images, should be the same size and may be the same image.
|
||
Should have 3 or 4 channels.
|
||
table_channels — number of channels in the lookup table, 3 or 4.
|
||
Should be less or equal than number of channels in imOut image;
|
||
size1D, size_2D and size3D — dimensions of provided table;
|
||
table — flat table,
|
||
array with table_channels × size1D × size2D × size3D elements,
|
||
where channels are changed first, then 1D, then 2D, then 3D.
|
||
Each element is signed 16-bit int where 0 is lowest output value
|
||
and 255 << PRECISION_BITS (16320) is highest value.
|
||
*/
|
||
Imaging
|
||
ImagingColorLUT3D_linear(Imaging imOut, Imaging imIn, int table_channels,
|
||
int size1D, int size2D, int size3D,
|
||
INT16* table)
|
||
{
|
||
/* This float to int conversion doesn't have rounding
|
||
error compensation (+0.5) for two reasons:
|
||
1. As we don't hit the highest value,
|
||
we can use one extra bit for precision.
|
||
2. For every pixel, we interpolate 8 elements from the table:
|
||
current and +1 for every dimension and their combinations.
|
||
If we hit the upper cells from the table,
|
||
+1 cells will be outside of the table.
|
||
With this compensation we never hit the upper cells
|
||
but this also doesn't introduce any noticeable difference. */
|
||
UINT32 scale1D = (size1D - 1) / 255.0 * (1<<SCALE_BITS);
|
||
UINT32 scale2D = (size2D - 1) / 255.0 * (1<<SCALE_BITS);
|
||
UINT32 scale3D = (size3D - 1) / 255.0 * (1<<SCALE_BITS);
|
||
int size1D_2D = size1D * size2D;
|
||
int x, y;
|
||
ImagingSectionCookie cookie;
|
||
|
||
if (table_channels < 3 || table_channels > 4) {
|
||
PyErr_SetString(PyExc_ValueError, "table_channels could be 3 or 4");
|
||
return NULL;
|
||
}
|
||
|
||
if (imIn->type != IMAGING_TYPE_UINT8 ||
|
||
imOut->type != IMAGING_TYPE_UINT8 ||
|
||
imIn->bands < 3 ||
|
||
imOut->bands < table_channels
|
||
) {
|
||
return (Imaging) ImagingError_ModeError();
|
||
}
|
||
|
||
/* In case we have one extra band in imOut and don't have in imIn.*/
|
||
if (imOut->bands > table_channels && imOut->bands > imIn->bands) {
|
||
return (Imaging) ImagingError_ModeError();
|
||
}
|
||
|
||
ImagingSectionEnter(&cookie);
|
||
for (y = 0; y < imOut->ysize; y++) {
|
||
UINT8* rowIn = (UINT8 *)imIn->image[y];
|
||
char* rowOut = (char *)imOut->image[y];
|
||
for (x = 0; x < imOut->xsize; x++) {
|
||
UINT32 index1D = rowIn[x*4 + 0] * scale1D;
|
||
UINT32 index2D = rowIn[x*4 + 1] * scale2D;
|
||
UINT32 index3D = rowIn[x*4 + 2] * scale3D;
|
||
INT16 shift1D = (SCALE_MASK & index1D) >> (SCALE_BITS - SHIFT_BITS);
|
||
INT16 shift2D = (SCALE_MASK & index2D) >> (SCALE_BITS - SHIFT_BITS);
|
||
INT16 shift3D = (SCALE_MASK & index3D) >> (SCALE_BITS - SHIFT_BITS);
|
||
int idx = table_channels * table_index3D(
|
||
index1D >> SCALE_BITS, index2D >> SCALE_BITS,
|
||
index3D >> SCALE_BITS, size1D, size1D_2D);
|
||
INT16 result[4], left[4], right[4];
|
||
INT16 leftleft[4], leftright[4], rightleft[4], rightright[4];
|
||
|
||
if (table_channels == 3) {
|
||
UINT32 v;
|
||
interpolate3(leftleft, &table[idx + 0], &table[idx + 3], shift1D);
|
||
interpolate3(leftright, &table[idx + size1D*3],
|
||
&table[idx + size1D*3 + 3], shift1D);
|
||
interpolate3(left, leftleft, leftright, shift2D);
|
||
|
||
interpolate3(rightleft, &table[idx + size1D_2D*3],
|
||
&table[idx + size1D_2D*3 + 3], shift1D);
|
||
interpolate3(rightright, &table[idx + size1D_2D*3 + size1D*3],
|
||
&table[idx + size1D_2D*3 + size1D*3 + 3], shift1D);
|
||
interpolate3(right, rightleft, rightright, shift2D);
|
||
|
||
interpolate3(result, left, right, shift3D);
|
||
|
||
v = MAKE_UINT32(
|
||
clip8(result[0]), clip8(result[1]),
|
||
clip8(result[2]), rowIn[x*4 + 3]);
|
||
memcpy(rowOut + x * sizeof(v), &v, sizeof(v));
|
||
}
|
||
|
||
if (table_channels == 4) {
|
||
UINT32 v;
|
||
interpolate4(leftleft, &table[idx + 0], &table[idx + 4], shift1D);
|
||
interpolate4(leftright, &table[idx + size1D*4],
|
||
&table[idx + size1D*4 + 4], shift1D);
|
||
interpolate4(left, leftleft, leftright, shift2D);
|
||
|
||
interpolate4(rightleft, &table[idx + size1D_2D*4],
|
||
&table[idx + size1D_2D*4 + 4], shift1D);
|
||
interpolate4(rightright, &table[idx + size1D_2D*4 + size1D*4],
|
||
&table[idx + size1D_2D*4 + size1D*4 + 4], shift1D);
|
||
interpolate4(right, rightleft, rightright, shift2D);
|
||
|
||
interpolate4(result, left, right, shift3D);
|
||
|
||
v = MAKE_UINT32(
|
||
clip8(result[0]), clip8(result[1]),
|
||
clip8(result[2]), clip8(result[3]));
|
||
memcpy(rowOut + x * sizeof(v), &v, sizeof(v));
|
||
}
|
||
}
|
||
}
|
||
ImagingSectionLeave(&cookie);
|
||
|
||
return imOut;
|
||
}
|